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On the robustness of the computed torque technique
in manipulator controlf
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In this paper, the robustness of the computed torque technique for manipulator
control is investigated in the presence of model errors. The robustness analysis is
performed in the frequency domain by means of the block Gerschgorin theorem.
This theorem gives inclusion regions for the eigenvalues of the linearized state
space model. The stability of the system close to a trajectory can then be investi-
gated. The results indicate that relatively large errors in the non-linear feedback
compensation of system non-linearities may be tolerated without affecting system
stability. However, even small errors in the computed inertia matrix may result
in instability.

1. Introduction

The state space equations of motion of an n-link robotic manipulator are non-
linear and contain a large number of terms. However, due to the special structure of
the state space model, the non-linearities may be compensated for by non-linear
feedback. In this way a linear time-invariant state space model consisting of n
decoupled double integrators is obtained. A controller for each of these n double
integrators may then be designed using linear control theory.

This is the well-known inverse dynamics or computed torque technique (Bejczy,
1974) when the problem is formulated in the joint space. The same technique has
been applied in the task space by Luh, Walker and Paul (1980a) in their resolved
acceleration control scheme and by Tarn, Bejczy, Isidori and Chen (1984). These
control schemes have also been derived by Luo and Saridis (1985) by means of
optimal control theory.

The computed torque technique is based upon the assumption that the non-
linear feedback compensation is exact and that the inertia matrix is known. The
assumption will not hold in the presence of modeling errors or model simplifica-
tions. The question of the robustness of the resulting control system is therefore
raised. This problem has been treated by Spong and Vidyasagar (1985), who employ
the stable factorization technique to derive a controller that is stable in the presence
of model uncertainty provided that the difference between the actual and computed
inertia matrix is less than a given bound. The closed loop performance of the system
is given by an explicit bound on the tracking error as a function of model uncer-
tainty.
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In this paper, the robustness of the computed torque technique is analyzed in the
frequency domain. The block Gerschgorin theorem (Feingold and Varga, 1962) is
used to determine inclusion regions for the eigenvalues of the overall system in the
presence of modeling errors or model simplifications (Solheim, 1981; 1983).

When the block Gerschgorin theorem is used, the inclusion regions for the eigen-
values are usually sharper than those obtained from the usual Gerschgorin circle
theorem. The advantages of using the block Gerschgorin theorem in stability studies
are that the necessary computations are rather simple and that variations in model-
ing errors or model simplifications can be studied without much extra computa-
tional effort. The eigenvalues of the overall system may, of course, be computed
directly. However, the influence of parameter and structure variations on eigenvalue
location is then hard to evaluate.

The inclusion regions are in general not very sharp. Therefore, the stability of
the system may be better than the method indicates. The use of the block Gerschgo-
rin theorem therefore leads to a conservative design.

Stability close to the trajectory under consideration is guaranteed if all the eigen-
values have negative real parts. In addition to this, the location of the eigenvalues
gives an indication of the dynamic properties of the overall system. This is of great
interest in robotic manipulators, as oscillatory behaviour is not acceptable in many
applications.

The paper is organized as follows: In § 2 the computed torque technique is
presented. Then in § 3 the block Gerschgorin theorem is presented. In § 4 the
theorem is applied to a general manipulator controlled by the computed torque
technique, and an example is given in § 5.

2. The computed torque technique

The equations of motion for a general n-link manipulator can be found from
Newton—Euler’s equation (Luh, Walker and Paul, 1980b), and is written

M.(@)§=n,(¢q. 9 + (1)

where ¢ is the vector of joint coordinates, M, (q) is the inertia matrix for the mecha-
nical part of the manipulator, n(g, §) is a vector defining friction, Coriolis and cen-
trifugal terms, and t is the vector of input generalized forces. Actuator models are
given in the form (Paul, 1981)

Jaﬁf— —C,¢— 1+ Bu, )

where u, is the vector of actuator control variables and J,, C, and B, are constant
diagonal matrices. Combining (1) and (2), and normalizing the input coefficients to
unity, we get the state space model

¥, =x; 3)
M(x,)ik, = nix) + u, 4
where
x=[x{, %3], x=¢q x=4§
M(xy) = M, (x,) + J,
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and
n(x) = n,(x,, x;) + C,x,
By choosing

u, = M(x;)u — nix) )

we get the linear time invariant state space model
.i.' 1 =X 2 (6)
X,=u ]

where u is the control vector of the linear system (6), (7).
The problem of finding a controller for the system (3) and (4) is now reduced to
the much simpler problem of finding a controller to each of the n subsystems

Xpi = Xy (8)
Ka =y )
of (6) and (7). The actuator control vector u,is then given by (5).

In this paper we assume that u; is generated by linear state feedback from x;
and xZ; as

u; = Gy[Axy;, Ax, 1" (10)
where Gy; = [gi1, 9:-] is the feedback gain matrix for subsystem i. G; can be chosen

from classical servomechanism theory, pole-placement techniques or linear quadra-
tic optimal control. The control vector « is then given by

u = GAx (11)

where

G= [Gl | GZ]s
G, = diag (g1, --.» gm) and G, = diag (g,3, .-, gn2), and Ax = [Ax{, Ax7]", where
Axy =x; — X0, Ax;=x3 —x30, Xy =[%115-.1; XpudTs Xy = (X215 -0 X201 s

x10 = [X11,05 s xln,O]T’ and x;0 = [X21,04 - - -» xzn,o]T- )
We now consider the computed torque technique in the presence of modeling
errors or model simplifications. The actuator control is now

u, = Mc(x,)u — nc(x) (12)
where M and n. are the computed values of M and a, respectively. The state space
model is then found by inserting (12) into (4):

k= x; (13)
£, = M(x,)"'An(x) + M(x,) " *Mc(x,)GAx (14)

where An = n — ng.
The system (13), (14) is linearized around a trajectory x,(t), x,(¢). The linearized

system is
Ak, | |0 | T Axl] (15)
Ax, | [ A, 14, ] Ax, (16)

A1=M_l(¥+ MCGI) (17)

where
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and

JAn
Ay =M Y—+ MG 18
2 ( ox, c z) (18)
The state vector ¥ = [X;;, X315 ---» X1n» X2.]" is selected for use in the robust-
ness analysis in Section 4. The linearized state space model (15), (16) is written as

x=Fx (19)
where
-—Fll - .. Fl“
F= T , (20)
_‘Fnl FM
o {
Fil‘ = 21
[ (A (A2):] @)
and
- o 0
F;; = , IL#]j 22
(4y (4] "7 2

We see from (11), (13) and (14) that when M = M and Anr = 0, we have the nominal
system matrix F,_,,, where

0 1
F ). = 23
Fooak: [9:'1 giz] @)
and
0 0
(me).,=[0 0], i#]) 24)

3. The block Gerschgorin theorem

The block Gerschgorin theorem was first presented by Feingold and Varga
(1962). The theorem has been used by Solheim (1981, 1983) in the design of decen-
tralizea control of interconnected dynamic systems and in robustness analysis.

We let || x | denote the Euclidean norm

1/2
Ixl = [}__’ 1%, P] 25)
and | A || the matrix norm
1/2
lAl = [mx AAATA}] (26)
i

where A{ATA) is an eigenvalue of ATA. For a normal matrix N, we have
[AMN)}* = A(NTN), and therefore

I N || = max | Z{N)]| (27)
i
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In the following we need the relation
(IN"1) ™" = min | 4(N)] (28)

By continuity, we define (| N~ "' [) "' to be zero when N is singular. The relation (28)
holds as (A~ ') = [4A)] ' for any non-singular matrix A.
We consider the n x n matrix 4 which is partitioned in the following manner:

Ay o A
A= . (29)
AN‘ .. ANN

where the diagonal sub-matrices A;;,i = 1, ..., N are square of order n;.
The block Gerschgorin theorem then states that for the partitioned matrix A of
(29), each eigenvalue of A4 satisfies

N

(1A =)' 7H< 3 1 Agll (30)
k=1
i

for at least one j, 1 <j < N.
Here I;is the n; x n;identity matrix.
When the diagonal sub-matrices are normal, we get from (28)

(14 — fuj)_l n=—"'= m‘in lo; — 4]

where o, is an eigenvalue of A4;;. The inclusion regions for the eigenvalues of A are
then given by

N
m‘inlal_llﬁ Z“A;n" (31)
- <

We see that when the diagonal sub-matrices are normal, the eigenvalues of A will
for at least one j, 1 < j < N, be included in the union of circles that have their centre
in the eigenvalues of A;; and a radius that is equal to the right side of (31).

4, Determination of inclusion regions for the eigenvalues in the
presence of model errors

In this section the stability of the linear perturbation model (19) is analysed in
terms of its eigenvalues.

We consider the system matrix F,,,, with perturbations +AF. F,,, is given by
(23) and (24). We establish an augmented system matrix (Solheim, 1983)

Fom+AF, 0 ]

= | Fpom T 2T R S 2
Fal.lg [ 0 |an.n—AF (3 )

F " AF _
-1 — | Tmom O _ =
S 1F,,S [AF o ] F (33)
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where
e |
s=[—-——'r---l-] (34)

The eigenvalues of F consist of the eigenvalues of F,,, + AF and the eigenvalues
Of Fom — AF. In order to make F suitable for the use of the block Gerschgorin
theorem, we make the diagonal submatrices normal by the similarity transformation

T ') 0 JFaom: AF[T10] -
[0 VT AF :FM][OIT]_F (35)

where T = diag (1, gi/%, 1, g312, ..., 1, g}{?). This gives

T 'Fpu T T 'AFT
‘E=[ T-IAFT 'T"'F,,, T] (36)
where
. [0 9;‘{’]
T lF i = 3
( nomT)! _glllﬂ 912 ( 7)
_ [0 0] . .
(T anom T)u= _0 0]» i$] (38]
i 0 0
T_IAF i = _ :| 39
¢ n _9‘11”2[(1‘11)-‘5 —gunl] (A2 —9i 39)
and
0 0
T 'AFT);=| _ . ] i#j 40
{ T)j _gum(Al)u (g_n/gu) ”z(Az)u J (40)

where A, and A, are defined in (19)-(22).
The inclusion regions for the eigenvalues of F,,, are then found from (31) and
are given by

min|o; — A| < r; (41)
i

where ¢; is an eigenvalue of (F ), and

n g ' -1 1/2
= Z {[gﬁ l((AIJU)z + (_'L) ((Az)fj)z:l }
ﬁ : i1

+ [9i (A )i — 90) + (A2)s — 920112 (42)

5. Application to the positioning part of manipulator with rotary joints
We consider the manipulator in Fig. 1 which is the positioning part of an indus-
trial manipulator. The state space model of motion is given by (Saridis, 1983)

iy =X, (43)
M(x,)k, = n(x) + © (44)

where x; = [¢,, 45, 41", xo = [0, G2, 451", 7y = [t1, 72, 7317, 14, 7, and T3 are the
input joint torques,
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7, 0 0
Mx)=|0 Jy+2J,35C3+J33 Jp3Cy+Jay (45)
0 J33C3 +J3a J33
and
Jy=J11 +J22CE +J33C 3+ J33C2Ca 5 (46)

n = [n,, n,, ny]" where

ny=2[J,38,Czi3 +J228,C21444,

+ 2[J238,42C5 + J138243C2431804(42 + §3) (47
ny= —[J33(Cas3 Sy + C28243) +J22C5 82 + J33Ca43 5242141

+J238:385 + My Cy + 2M3Cy s (48)
ny= —[J23C; 8243+ J33C243824318F — J23 5383 + M3Cy 45 (49)

Here C,=co08q,, Cz.3=¢0s (g, +q3), Ci=cosqy, S;= Sin gz, Spi3=
sin (¢, + g,) and S; = sin g5
For the robot in our study, the moments of inertia are

Ju= 20
Jqy = 18:1
Jy3= 80
Jyy= 667

Figure 1. Manipulator.
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and the gravitational coefficients are
M, =125
M, =100

Here we consider the joint torques to be our control variables. This will be the
case when direct current motors with current feedback or hydraulic motors with
pressure feedback are used. In the case of voltage controlled direct current motors,
we see from (3) and (4) that although the parameters of the model are changed, the
structure is the same.

We use the computed torque technique, and choose

T = —ndx) + Mdx,)GAx (50)
The feedback gain matrix G is chosen as
G =[—100I, ' —20I,] (51)

The eigenvalues of the diagonal submatrices of F,,, will then be ¢, = o, = — 10.

We first consider the case where the compensation for the nonlinear terms is
inaccurate, that is An # 0, while the inertia matrix M. = M.

The inclusion regions were computed for §, = §, = §; = 0 and |§;| < 1 rad/s,
i=1,...,3 from eqns (17), (18), (42) and (44)-(49). The nominal eigenvalues were
located at o, = ¢, = —10, which means that when the radius of the largest inclu-
sion region is less than 10, the eigenvalues will be in the left half plane. When link
three is horizontal, that is g, + g, = 0°% and 30° < g, < 150°, the largest radius is
r = 3-0(Fig. 2).

In Fig. 3 the inclusion region is shown when g, = 60°and ¢, + g, = 0°.

rd

-+ 3.0
+4 2.5’_\\~,
\"\\
T,
<+ 2.0 ‘k"“\
.\"\!

+ 1.5 R
-+ 1.0
<+ ©O.5

40..0 80.0 120.0

| } : —— g P

q2

Figure 2. Radius of inclusion region when | g;| < 1 rad/s, i = 1, 2, 3. and link 3 is horizontal
(g, + g5 =0°).
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Figure 3. Inclusion region when |g,| < 1 radfs,i =1, 2, 3, g, = 60° and g, = —60°.

When link two is vertical, that is g, = 90°, and —60° < g, + g, < 20°, the larg-

est radius is still » = 3-0. When g, = 90° and g, + ¢, increases to 60°, r increases to
9-0 (Fig. 4).

We see that even the large error Anm = n has little influence on the eigenvalue

location except when ¢, = 90° and ¢, + g5 approaches 60°, but even here the eigen-
values are in the left half plane.

We now consider an inaccurate M. when # = 0 and examine the eigenvalue
location when g, = 60° and g; = —60°. A diagonal M is investigated first. We let
x21-7 0 0
Mc=| 0 3277 p10-7
0 p107 67
which is equal to M when « = 1 and f = 1. We then get

100(x — 1) 0 0
A, — G, = 0 210 — 1108 67(8 — 1)
0 3208 — 1) 200 — 1008

=GO LT
|

20.0
+ t + |
G2*43
Figure 4. Radius of inclusion region when = §;| <1 rad/s,i=1, 2, 3, and link 2 is vertical
(g2 = 90°).

4
T
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2000 — 1) 0 0
A, — Gy = 0 2(1—p) 1348 —1)
0 64p—1 18

When o = 1, the condition that guarantees stability, r; < 10, i = 1, 2, 3 is satisfied for
085 < B < 1-15. For f=1, we have r; <10, i=1, 2, 3 when 0-5 <o < 2. This
means that even small changes in M may result in instability, while relatively large
An is tolerated.

6. Conclusion

It has been demonstrated that the block Gerschgorin theorem is suited for
robustness analysis of the computed torque technique. The theorem has been
applied to the positioning part of an industrial manipulator. The results indicate
that errors as large as the correct compensation may be tolerated in the non-linear
feedback compensation of system non-linearities. However, the eigenvalue location
seems to be very sensitive to errors in the computed inertia matrix.

This result is reasonable as the M. matrix enters multiplicatively in the
M~ *MG term in (14), while An enters only in the M~ 'dAn/dx term. This means
that M enters multiplicatively in the feedback gain, while #An/0x only enters addi-
tively as a small term in the feedback gain.
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