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Cartesian trajectory tracking for manipulators
using optimal control theory{
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A Cartesian trajectory tracking system for manipulators is developed using
optimal control theory. By including the Cartesian position in the state vector,
transformation of the trajectory from Cartesian space to manipulator joint space
is avoided, and the Jacobian matrix need not be inverted. The tracking system
may also be applied to kinematically redundant manipulators. For this type of
manipulator, singularities are avoided by choosing a suitable performance index
in the optimal control problem. Simulation using a simple kinematically
redundant manipulator shows that a small tracking error can be achieved with
low motor torques.

1. Introduction

In certain applications such as seam welding, the robot hand is required to track
a trajectory specified in terms of velocity and position referred to the Cartesian
non-moving base system. In other applications, feedback from vision systems or
proximity sensors may be used to obtain a desired position and rotation of the hand
relative to an object in the environment. Here the position of the hand is conve-
niently expressed in Cartesian coordinates, while the rotation may be given in terms
of Euler angles.

The conventional solution to the problem of tracking a trajectory specified in
Cartesian coordinates is to transform the trajectory to joint coordinates and then
track this reference (Luh 1983, Saridis 1983, Paul 1979, Taylor 1979, Whitney 1972).

The transformation from Cartesian to joint coordinates is relatively complex,
but as a rule it may be carried out for commercially available robots with 5 or 6
degrees of freedom. For kinematically redundant manipulators, a transformation
from Cartesian to joint coordinates can only be carried out by specifying a suitable
criterion which is to be minimized.

Tarn, Bejczy, Isidori and Chen (1984) and Luh, Walker and Paul (1980a) formu-
late the tracking problem in the task space, and obtain a linear time invariant state
space model by means of exact compensation of system nonlinearities. However,
these techniques require the inverse Jacobian matrix which does not exist for kine-
matically redundant manipulators.

In applications where there are obstacles in the working area, extra joints may
be required to carry out the task. By mounting a small and fast manipulator on a
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large and slow positioning arm, high bandwidth and a large working area may be
obtained. This makes the use of kinematically redundant manipulators interesting.

In this paper a robot control system for Cartesian trajectory tracking is devel-
oped using optimal control theory. The problems introduced by the transformation
of the trajectory to joint coordinates are avoided by an appropriate choice of the
state vector. This optimal control system may also be used for kinematically
redundant manipulators. For this type of manipulator, singularities are avoided by
choosing a suitable performance index in the optimal control problem. A state space
model is first developed. Then this model is modified by means of non-linear feed-
back into a model which is suitable for the well-known optimal tracking problem
with a linear model and a quadratic performance index. Application to kine-
matically redundant manipulators is then discussed. Finally, the tracking system is
simulated for a simple planar kinematically redundant manipulator.

2. The state space model

The equations of motion for a general manipulator can be found from Newton—
Euler’s equation (Luh, Walker and Paul 1980b, Symon 1971). We consider a manip-
ulator with » joints. We have:

M(g)g + Vg +nig q) rglq=- (1)
where
q vector representing the actual displacements of the n joints
M(q) inertia matrix
Vv viscous friction matrix

n(g, §)  vector defining Coriolis and centrifugal terms
£(g) vector defining the gravity terms
T vector of input generalized forces

Actuator models are given in the form:
Ja&+ca@+t=Ba"n (2)

where J,, C, and B, are constant diagonal matrices, u, is the actuator control
vector, and

[ug, | < ugi*.

The position and orientation of the hand is given by p = [x,y, 2 ¢, 6, ¢]"
where x, y, z are the Cartesian coordinates of the hand, while ¢, 0 and  are the
Euler angles.

The relationship between the velocity p, in Cartesian space and the velocity, g, in
joint space is given by (Whitney, 1972)

p=Jg) (3)

where J(g) is the Jacobian matrix defined by Ji; = 0p;/0q;. The three first lines of
J(g) are easily found, while the three last lines which are associated with the orienta-
tion part of p, are found in two steps. First the angular velocity of the hand is
expressed by

® = J (PP
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where p; = [¢, 0, ¥]". @ is also given by

o=J,,9q
The three last lines of J(g) is then found from

pe=1J .;z? (PE)JW{Q)@

When the classical Euler angles are used, J, g will be singular when 6 = 0. This
problem can be solved by switching to the roll, pitch and yaw type of Euler angles
in the neighbourhood of such a singularity.

For Cartesian trajectory tracking, we choose the state vector x = [x], x3]7
where x, = p, which is the position of the hand in Cartesian coordinates, and x, =
¢, which is the joint space velocity.

Combining (1), (2) and (3), we get the state space model

E(@)x = f(x, u,) @
where

L, o0
Ha) = [’6:'M(q) ¥ Ja]

I is the identity matrix and

flx, u) = [ J(g)x, ]

—n(g, x3) — (V + C))x, — glg) + B,u,

3. Controller design

If the reference is known in advance, optimal control theory may be applied
off-line to compute the optimal control history. However, due to imperfect models
and noise, there will be deviations from the optimal trajectory. These deviations
must be compensated for by means of feedback control. In applications where the
manipulator tracks a measured reference, the reference is not known in advance,
and feedback control must be applied.

Optimal feedback control (Athans and Falb 1966, Bryson and Ho 1969) is only
possible in certain cases. Here we will consider systems with a linear state space
model and a quadratic performance index. The problem is then to formulate the
manipulator tracking problem as a linear quadratic problem.

The state space model given by (4) is nonlinear and contains a large number of
terms. We therefore choose the control vector

u, = B, '[n(g, x;) + (V + Cx;, + glg)] +u (5)
This gives the simpler model
¥ = Alg)x + Blg)u ©®)
where
ap=| o H 2
and

0
Ba) = [’[M(q)' Y IT fé.f]
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The inertia matrix M(g) + J,, is positive definite and therefore non-singular for all g.
The model (6) is discretized by the Euler method. The discrete-time model is

x(k + 1) = OLq(k)]1x(k) + Tq(k)]u(k) Q)

We want to track a trajectory given by r = [r], r3]" where r, is the Cartesian space
position reference and r; is the Cartesian space velocity reference, without excessive
use of energy. The control vector u(k) is therefore chosen to minimize the per-
formance index

l N—-1
J = lim = Y. e (k)Qe(k) + u"(k)Pu(k)] ®)
N-ao k=0

where Q and P are diagonal matrices and e(k) = y(k) — r(k). p(k) is the measurement
given by

HK) = Dig)x(k) ©®

where

We see from (9) that e(k) can be written as

Ax,(k) ]
k) = 10
w [xz(k) — Jgr s (10
where Ax, (k) is the position control deviation Ax, (k) = x,(k) — ry(k).
The optimal control is then given by
u(k) = G(k)[ix;’(:;)] — P 'TTI + TGK)® 1"h(k + 1) (1)
2
where
G(k) =[P + T'"R(k + )I'] TRk + 1)® (12)
and R(k) is the solution of the discrete matrix Ricatti equation
R(k) = ®TR(k + 1)[® + ['G(k)] + DTQD (13)

with boundary value R(N) = 0. The last term in (11) gives an optimal feedforward
from the velocity reference. (k) is found from

0
hk) =(® + TG)"h{k + 1) — [JT @022 r,(k)] (14)

with boundary value A(N) = 0. Q,, is part of Q:
_ 01 . 0
Q—[_f)_ ----] (15)

This is derived by assuming the costate to be A(k) = R(k)x(k) + A(k) in analogy with
the continuous case (Athans and Falb, 1966).

We see from (13) and (14) that to generate the optimal control vector given by
(12), we have to know future values of ®(g), I'(g) and r,. In most cases, these future
values will be unknown. A solution to this problem is to assume for the purpose of
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Figure |. Control system.

+

computation that @, I" and r, will remain constant. We then compute the stationary
solution R(k) of the discrete Ricatti equation (13) with ® = ®d[g(k)] and
I' = I'[g(k)]. This is done by iterating (13) with Rk — 1) as a starting value. This
iteration will converge in 1-3 iterations if @ and I' are slowly changing. G(k) is then
given by (12) with R(k + 1) = R(k).

The stationary solution hgk) of (14) is found by iterating (14) with & = ®[g¢(k)]
and I' = I'[g(k)] with A(k — 1) as a starting value. u(k) is then given by (11) with
hk + 1) = h(k).

This results in a relatively simple control system which is shown in Fig. 1. The
control system can also be used for kinematically redundant manipulators.

In the case of kinematically redundant manipulators, the number of joint vari-
ables is higher than the number of variables specifying the position of the hand. As a
consequence of this, a state vector x = [x], x3]7 where x, is the position of hand,
and x, is the joint space velocity, will not specify the joint coordinates of the manip-
ulator.

We therefore augment x, to x,, where dim (x,,) = n, which is the number of
joints. The new states in x,, which will be denoted as X,, are positions that are
chosen in such a way that x;, specifies all joint coordinates. The state space model
(6) is now augmented with

i1 = f(ﬁ')-’-’z (16)
where
j'ij = 0%, /0,

We consider a redundant manipulator with a small and fast manipulator mounted
on a large and slow arm. Small, high frequency movements should then be taken
care of by the small manipulator, while large, low frequency movements should be
attended to by the large arm. It is important that the small manipulator remains
relatively close to the centre of its working area except for high frequency motion,
even in the presence of a large control deviation.

This can be done by choosing X, as the position of the hand relative to the base
of the small manipulator. We then specify the reference #, to be the centre of the




142 O. Egeland

y
q;

q, X

Figure 2. Four-link planar manipulator.

working area for the small manipulator. The performance index is then chosen as:

N_
J= lim + T 1T RQe(k) + FTOITEK) + wPu(] (17)

where & = ¥, — #, and { is a diagonal matrix.
The optimal control for this case is found as described above, using x,, instead
of x,.

4. Application to kinematically redundant manipulator

We consider the four-link planar manipulator in Fig. 2. The four joints have
their axes of rotation along the z-axis. The joint angles are denoted ¢,, ¢, g and
qa-

The manipulator has four joints, and we want the position of the end of link four
to track the reference. We therefore have a kinematically redundant system as the
positioning of the end only requires two degrees of freedom.

We choose the state vector x = [x],, xZ]7, where x,, =[x, 3, X%, ¥]". x and y
give the position of the end relative to the base, and % and y give the position of the
end relative to the end of link two, which is the base of the small manipulator.
x; = [0y, ©y, 03, ©4]7 where o, 0,, w3, and w, are the angular velocities of the
four links.

The choice of x, = @ gives a model with fewer terms than the model we get with
%, = [dy, 42, 43> 4s]". The model is given by

_Ilsn —12512 _133123 _!431234
LC, ICy, I3Cis  LiCiaaa
0 0 _!3 3123 -‘451234

0 0 13C23 14Cy23a

Xip= X3 (18)
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2 2 2
J1282x5 + J 13823 %5 + J 148234 %5
2
—J128:%5 + J 33837 4 J54 Say X3

Mig)x, =
: _J13313x§_12383-"%‘?-;34343‘23
—J143234x§ - Jzasux% —Ja Sax3
l "“1 0 0 ual
0 1 —1 O |ty
“ 19
0 0 0 1 Uy,
where
J1 Ji2Cy J13Cas J14Ciag
J,C J J,3C JyaC
M(q)z 12%2 22 23%-3 24 %34

J13Cas T3 G5 J33 J3.Cs |’
J1aCaaa J24Ciq J34C, Jaa

Iy, 12, I and I, are the link lengths and J;; are the appropriate moments of inertia.
Here C; ;=cos(g;+ - +¢)andS;, ;=(q+ - +q)

The four links are homogeneous beams. Links one and two are 1 m long, and
the mass of each of them is 20 kg. Links three and four are 0-1 m, and the mass of
each of them is 1 kg.

The weight matrices were chosen as

Q=diag (1 x 105, 1 x 105, 1 x 10% 1 x 10% 1 x 104 1 x 10%)
and
P = diag (0-01, 001, 1, 1)

With these weight matrices, a control deviation of 0-1 mm contributes as much to
the performance index as a velocity deviation of 10 mm/s, a position deviation for
the small manipulator of 10 mm, a torque of 10 Nm on the inner joints, or a torque
of 1 Nm on the outer joints.
The position reference 7, of the small manipulator was set to ¥, = [0-1414, 0]7.
In a simulation experiment, the end of link four tracked a reference given by

. [1-883 + 001 sin [(2r/0-2)t — n/Z]]
v 0-1¢

which is shown in Fig. 3. This reference has a high frequency motion in the x
direction and a low frequency motion in the y direction. The initial state was

x(0) = [1-873, 0, 0-1414, 0, 0, 0, 0, 07

which corresponds to g; = 30°, g, = —60°, g3 = 75°,and g, = —90°.

In Fig. 4, we see the reference and the position in the x direction. The control
deviation is less than 0-2 mm.

In Fig. 5 we see the position in the y direction together with the contribution to
the y direction from the two inner and outer joints. We see that the outer joints take
care of the initial movement, while the inner joints attend to the low frequency
movement.

In Fig. 6 the contribution to the x direction is shown for the two inner and outer
Jjoints. We see that the amplitude of the x position of the end of link two is 3 mm,
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while the small manipulator has an amplitude of 20 mm in the x direction. The joint
angles are shown in Fig. 7. The control variables are well-behaved. Here, we have
considered joint torques as our controls. We clearly see that the small manipulator
takes care of high frequency motion, while the two inner joints attend to slow and

large movements.
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Figure 5. Position in y direction, position y, , of the end of link two, and position y; , of
the end of link four relative to the end of link two.
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Figure 6. Position x, , of the end of link two and position x; , of the end of link four
relative to the end of link two.
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5. Conclusion

A Cartesian trajectory tracking system for manipulators has been developed
using optimal control theory. The tracking system can be applied to kinematically
redundant manipulators. Simulation of the system was carried out using a four-link
planar manipulator. A sinusoidal reference with an amplitude of 2 mm was tracked
at a distance of 1-8 m from the base. The control deviation was less than 0-2 mm
with moderate torques from the motors.
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