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The planning of straight line trajectory in robotics
using interactive computer graphics
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The planning of straight line trajectory using the interactive computer graphics
simulation of robot manipulator movement is discussed. This new approach to
straight line motion planning improves the ‘bound deviation joint paths’ devel-
oped by R. M. Taylor (1979). The new approach has three characteristics: (1)
linear interpolation in joint space; (2) unequal intervals for interpolating knot
points; (3) using interactive computer graphics to assure that the maximum devi-
ation in the whole segment is less than the pre-specified values. The structure and
mathematical basis of a computer program developed for this purpose are pre-
sented.

1. Introduction

In robotic applications it is often necessary for the manipulator to move along a
planned path between goal points to carry out specific tasks or avoid obstacles, such
as assembly, parts handling, welding and many other cases.

The development of manipulators requires both the provision of suitable formal-
isms to describe the motions to be made and the implementation of control stra-
tegies for carrying them out. The simplest approach is to recode the values of the
joint variables which place the hand at particular desired points and then move the
joints independently from one set of variables to the next. More sophisticated
motion execution schemes frequently include an open loop trajectory component
that generates intermediate target values for the joints. These schemes are often
accompanied by more sophisticated means of describing the desired motion to be
made. The development of programming languages in which the manipulator target
points are described by transformations relating the coordinate system of the hand
or tool to the coordinate system of the work station has been of particular interest.
Motions in these languages are specified as a sequence of knot points which the
controlled frame is to pass through. The joint variables corresponding to each carte-
sian knot point are computed by solving the inverse equations for the manipulator,
which are then used by the motion execution programs. One drawback to this
scheme is that it leaves the precise path taken by the manipulator between the knot
points undefincd. This makes programming more difficult since it is hard to predict
just how many intermediate points should be added to a motion statement and
complicates the development of model-based program automation tools.

One obvious motion strategy is to cause the hand or tool to move along a
straight line path between the knot points. Whitney (1969) achieved differential
straight line motion by multiplying the inverse Jacobean of the manipulator’s joint
to cartesian space transformation by a desired motion increment vector. By repeat-
ed evaluation of the inverse Jacobean, this technique can be used to produce long

Received 2 February 1987.
1 Production Engineering Laboratory, SINTEF-NTH, N-7034 Trondheim, Norway




126 K. Wang and T. K. Lien

straight line motions. Paul (1975) implemented a more straightforward technique, in
which intermediate cartesian space goals are evaluated every 100 ms during motion
execution. The manipulator inverse equations are then solved to produce interme-
diate joint goals. It is obvious that the computation time is extensive and the value
of deviation cannot be predicted. Taylor (1979) proposed a ‘bounded deviation joint
paths’ approach which relies on a planning phase to interpolate enough interme-
diate points so that the manipulator can be driven in joint space without deviating
more than a pre-specified amount from the desired path.

Taylor’s algorithm rests upon a number of assumptions that are discussed only
briefly. It is implicitly assumed that bounding the deviation between the joint mid-
point and the cartesian midpoint guarantees that the deviation between the knot
points will not be unacceptably large. The basis for the assumption is his claim that
‘for many manipulator geometries . . . the maximum deviations occur at or near the
segment midpoint’. The claim is not generally true (Brady 1982). In this paper we
discuss a new approach which is based on Taylor’s ‘bounded deviation’. However,
some refinements are presented which can ensure that the whole path of the hand of
the manipulator will not deviate more than a pre-specified amount from a straight
line cartesian path using the interactive computer graphics technique.

2. Straight line trajectory

Manipulator control language which has been recently developed typically
specifies a sequence of points through which a tool affixed to the end effector of the
manipulator is to pass. The effectiveness of such motion specification formalism is
greatly increased if the tool moves in a straight line between the points specified by
the user. The typical straight line motion path of the manipulator and the configu-
ration of the manipulator is shown in Fig. 1. In this paper, we discuss the planning
and execution of the cartesian straight line trajectory.

Figure 1. Straight line path of manipulator.

The reasons why a programmer or special planning system choose a cartesian
straight line path for the end effector of the manipulator are basically

— In many applications for a manipulator, for example, inserting a pin, welding
a seam on a rectangular plate, tracking a conveyor belt, we can see that most
motion paths are either a single straight line segment or consist of several
straight line segments.

— Straight line paths are relatively predictable and easily visnalized.

They give the shortest path, though not necessarily the fastest, between a
starting point and an end point.

— Uniform motion along straight line paths minimizes inertial forces on the end
effector of the manipulator and any object it may be carrying.
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— The techniques for achieving trajectories that follow straight lines form a
basis for which trajectories for achieving other space curves, such as circles,
cones, and cycloids, can be developed.

Though there is a lot to be gained from adopting cartesian straight line trajectory,
there are some difficulties in achieving this type of trajectory.

3. Cartesian motion and joint motion

The planning and execution of straight line motion trajectory of the manipula-
tor, involves two different approaches: cartesian motion and joint motion (Paul
1979, 1981). Cartesian motion is a form of motion which is natural to cartesian
coordinates with the end effector of the manipulator moving along straight lines and
rotating about fixed axes in space. Joint motion is a form of motion which is linear
in joint coordinates with the end effector of the manipulator neither moving along a
straight line nor any other simple, well-defined path.

3.1 The characteristics of cartesian motion

(a) Advantages
— The motion between the trajectory segment end points is well and easily
defined and thus is particularly suited to the initial and final trajectory
segments.
— Smooth motion characteristics can be obtained which have constant
velocity and constant acceleration without jerk or vibration.
(b) Disadvantages
— The cartesian motion does not consider the effect of joint motion when
the trajectory is being planned.
— Cartesian motion breaks down whenever the manipulator becomes
degenerate.
— The calculations involved may be too time-consuming.

3.2 The characteristics of joint motion

(a) Advantages
— From the point of view of the control system and the formulation of
kinematics and dynamics, the most convenient description of the con-
figuration is as a vector of joint variables.
— In joint motion, a large number of calculations is direct kinematic solu-
tion which is simple and easy.
(b) Disadvantages
— While the joint 1s interpolated linearly, it is not along the desired path of
motion, such as, along a straight line or other simple well-defined paths.
— In joint motion, we can ensure that the movement of joints is smooth,
but we can’t ensure that the movement of the end effector of the manipu-
lator is smooth.

To sum up, both cartesian motion and joint motion offer advantages as well as
disadvantages. We should optimally produce a new strategy for motion planning
which can combine the advantages of both forms of motion.
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4. Motion between positions

We know that a motion to change from one point to another can be decom-
posed into a straight line translation and a rotation about a fixed axis in space. If we
can find such a line and an axis, we can produce a controlled linear and angular
velocity and also calculate the position and orientation of the end effector of manip-
ulator at every interpolation knot point in a cartesian straight line path.

4.1. Intermediate transformation matrix Ty

The end effector of the manipulator is to move from point S (the starting point)
to point E (the end point) along the straight line SE with a constant linear velocity,
and rotate an angle ¢ about an axis with a constant angular velocity where the axis
is a unit vector, we are given the position and orientation transformation matrix of
point S and point E, with respect to the base coordinate system OXYZ (see Fig. 2)
as the following:

E, E, E, E,]
TE= Eﬂ}' ES)' Eﬂ)’ E”‘ (1)
Enz Esz Eaz Epz
0O 0 0 1 |
Swx Sec Sax Spx)
S S, S, hY
T — ny sy ay Py 2
s Snz Ssz Saz Srz ()
0O 0 0 1]

Figure 2. The position and orientation transformation matrix Ty, Tp and Tg.

We can choose an intermediate transformation matrix T}, representing a translation
and a rotation. The motion represented by T}, will correspond to a constant linear
velocity and a constant angular velocity.

In the base coordinate system, we can get the value of T;, from the matrix T
and Tg.
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The matrix Ty can be expressed as
e=TTp 3)
Premultiplying T !, we obtain

T,=T5'T;

S.E, S,E, S,E, S(E,—
S.E, S.E, S.E, S(E,—S)| |D D,, D, @
S,E, S,E, S,E, S{E,—S)| |Dw D& Du. D,
0o o0 o0 1 0 o0 1]

Equation (4) can also be changed into the following
Ry, = Rg'Rg (5

4.2. Evaluation of the rotation axis r and angle ¢ of the transformation matrix
We can get the rotation matrix about an arbitrary axis r (Lee 1983)

1205+ €4 Tl Up — 1Sy Tel U+ TSy
R.o=|rer,vy +1.8, Fvg+cy 10, — 1S, (6)
T Uy —TFySy FyFUy+ TSy  FiU,+ ¢,
where
vy=1—cos ¢ Cy =COS ¢ 54 =sIn ¢

Because the rotation matrix R is equal to R, ,, we can get the solution for r and ¢
as

? — 2 — 2912
b = tan™? [[{Dw — D)? + (D — DY + (D = D)’ !] o

D..+ D, +D,, — 1
D, —-D

_ YT Yay 8

T 2 sin ¢ ®

Dax _ Dns

"= 2sng ©

y, = Do — Dsx (10)
2sin ¢

4.3. Evaluation of the position and orientation of a given knot point

As described above, we wish to move the end effector of the manipulator along a
straight line path from point S to point E in time 7. We consider this path as
consisting of the translation of the end effector of the manipulator from SP to EP,
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coupled with the rotation of the end effector of the manipulator orientation part
from SR to ER. If we suppose that the time of motion is ¢ at a given knot point P
for the uniform motion, the displacement and rotation parts of the end effector at
time ¢ are given by

=T (11
R(®) = SR . ROT(r, 7 . ¢) (12)
P)=SP+q.Ap (13)
where
Ap = EP — SP (14)
and ROT(r, ¢)is a rotation by ¢ about r required to reorient SR into ER
ROT(r, ¢) = SR ! . ER (15)

5. Transition between path segments in joint coordinate

If we assume that we have computed a set of joint variables 6; from the cartesian
knot points P;. Then we can use 6, as the point for a joint motion interpolation
strategy shown in Fig. 3. If linear interpolation is made between successive knot
points, this will give constant velocities in the joints. But it must be noted that there
is a difference in velocity between successive segments. In order to avoid the discon-
tinuity of velocity, we should make a smooth transition between path segments.
Here the linear function with parabolic transition is used for the path with knot
points. There is a linear function connecting the knot points, and parabolic tran-
sition regions are added around each knot point. The notions are used as follows:
6, is the constant velocity during the linear portion; §; is the acceleration during the
transition at point i; ¢ is the duration of the transition region at knot point i; t;; is
the duration of the linear portion between points i and j; T;; is the overall duration
of the segment connecting points i and j.

Joint
Displacement
oh

8y ; ejnu-1l !
th-1 tn-1)n tn

Time

Ti2 Tij "~ T(n-1)n
Figure 3. Multisegment linear path with smooth transition.

In general, given all the knot points 6;, i =1, 2, ..., n, and the desired duration
T;;, and the magnitude of acceleration to use at each path point 6;. We can compute
the transition time. There are three sets of equations namely (Craig 1986):
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For the interior path points,

6. — 6,
_ i
0:; _;T.{; (16)
; = SGN (6, — 6,)16;1, 17
sj=J"—49‘ gg'" (18)
I
t;=T;— i1, — %‘j (19)

For the first segment, we solve for ¢, by equating two expressions for the velocity
during the linear phase of the segment:

92 - 61 . -

Ty — 3t Ot o

Then 6,, and t,, can easily be computed:
6, =SGN (6, — 6,6, 1, 1)

6, —0
ty =T, — \/(sz - '2(29—1)), (22)
1
0, -6,
=11 (23)
tia =T, —t, — 31, (24)
For the last segment,
9 -1 - 6 =
n n__ 9“ t, (25}
T:n—l}n - %tn
0,=SGN (6, , — 6,))16,1, (26)
—-0,_
L= T]n—l)u_\/(T(%,-lh'l'M)a (27)
6 -0 _
0 .t = "—ﬂ'l’ (28)
¢ e T(.Il— 1n %‘tu

Lot = Ton— 1y — tp — 3ta1- (29)
The above can be used to solve for the transition times and velocities for the multi-

segment path.

In this linear function with parabolic transition strategy, note that the knot
points are not reached unless the manipulator comes to a step. Often, when acceler-
ation capability is sufficiently high, the paths will come quite close to the desired
knot point. If we wish to pass through a point by coming to a stop, the knot point is
simply repeated in the path specification.

6. Point interpolation method

Linear interpolation in joint coordinates between the start and end configu-
rations is very efficient in implementation. However, as we have noted, it does not
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achieve a cartesian straight line path. Another feature is that if the start and end
configurations correspond to nearby points in space, linear interpolation in joint
coordinate may depart from a cartesian straight line path by an acceptably smail
amount, see Fig. 4.

SE_
°sc 1

S C E

Figure 4. A comparison of dg, with dg.. SE: cartesian straight line path motion. Curve 1:
joint coordinate motion corresponding to 8 and 8,; curve 2: joint coordinate motion
corresponding to 65 and 6.

A

From this figure it is obvious that since knot point C is much nearer point S
than point E, the deviation dy is less than dgg. Using this principle, we only need to
choose enough knot points which can be interpolated in a cartesian straight line
motion path, to enable the end effector of the manipulator to approximately move
along a straight line with an acceptable deviation. Considering an arbitrary motion
segment, S — E we have specified the maximum acceptable deviations:

Op(t) < OF™*; Og(t) < O™

where Jp(t) and dg(t) express the deviations corresponding to the position and orien-
tation of the end effector of the manipulator, and

oplt) = | PA1) — P(1)|
dx(t) = angle part of |R(t)" " . R{(1)|
where

P {0)R (1) express the position and orientation of the joint space motion
P (t)R_ (#) express the position and orientation of the cartesian space motion.

In order to reduce the computation time, we should take the minimum numbers of
knot points.

The generation of an ‘optimal’ set of intermediate knot points requires a good
characterization of the path deviation functions §§** and 5§**. These functions
depend on the particular manipulator being used and can be quite complicated. We
should adopt an approximate midpoint method to compare the deviation in order
to simplify the calculating procedure. As the maximum deviations do not always
occur at or near the midpoint of the segment, after we obtain an approximation of
the knot point, it is necessary to use computer graphics technology to check all the
deviations along the segment.

The algorithm for calculating the interpolation knot points is as follows:

Step 1 Calculate the joint variables Jg and Jg, corresponding to the starting
point S and the end point E, respectively.
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Step 2 Calculate the joint coordinate midpoint, J,, = J5 + 4{(Jz — Jg), use Jy,
to calculate M (M is in the joint space motion path)

Step 3 Calculate the midpoint X of the cartesian straight line motion path.
XP =SP + IJYEP — SP)
XR = SR .Rot (r, ¢/2)

Step 4 Calculate the deviation between M and X
8p=|MP — XP|
dg = angle part of | XR™'. MR|

Step 5 1If 8, < p™; dx < 0%, then proceed to step 6 otherwise we can reduce
the segment, that is, make the midpoint X as the end point E, and apply
steps 1-5 for segment SE (SX).

Step 6 The interpolation knot point is obtained. In the remaining segment
repeat steps 1-6 in order to find another interpolation knot point until
all the interpolation knot points are found for the whole segment SE.

Step 7 Use computer graphics technology to display the joint space motion
and the cartesian straight line motion. If the condition is satisfied, then
the task is finished.

Otherwise, interpolate additional knot points in a straight line until condition &, <
Smax. §p < O is satisfied.

7. Interactive computer graphics simulation
The interactive computer graphics simulation system is shown in Fig. 5.

graphics
torage tube terminal
driver

plotter
driver

trajectory GPGS - F
programming routines

» plotter

Figure 5. Computer graphics simulation system.

The GPGS-F is a general purpose graphic system which is developed by
NORSIGD (Norwegian Association for Computer Graphics). The system is made
up of sub-routines which can be called from FORTRAN. The program is run for
straight line trajectory planning on storage tube Tektronix 4014, using the inter-
active way to communicate with the computer to display different perspective view
of the straight line traces. If the deviation is greater than the prespecified values,
then another knot needs to be interpolated (Newman and Sproll 1983). The example
is given as follows:
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The positions and orientations of the starting point S and the end point E:

T-'E=

0-00000
0-00000

— 1-00000
0

0-00000
0-00000

—1-00000
0
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—1-00000
0-00000
0-00000
0

0-00000

—1-00000
0-00000
0

0-00000
1-00000
0-00000
0

— 1-00000
0-00000
0-00000
0

—0-10000 |
0-90000
0-00000
1

—0-20000 |

0-80000
0-20000
1

The maximum deviation of position: §§** = 0-001 (meter)
The maximum deviation of orientation: §§** = 0-05 (radian)

Then we need to interpolate only six knot points, these are:

Xy

0-00000
0-00000

—1-00000
0

0-00000
0-00000

—1-00000
0

0-00000
0-00000

— 1-00000
0

0-00000
0-00000
— 1-00000

0-00000
0-00000
— 1-00000

0-00000
0-00000

—1-00000
0

—0:99518

—0-09802
0-00000
0

—0-96043

—0-27852
0-00000
0

—0-90333

—0-42894
0-00000
0

—0-74837

—066328
0-00000
0

—0-59254

—0-80554
0-00000
0

—0-31181

—0-95014
0-00000
0

—0-09802
0-99518
0-00000
0

—0-27852
0-96043
0-00000
0

—0-42894
0-90333
0-00000
0

—0-66328
0-74837
0-00000
0

—0-80554
0-59254
0-00000
0

—0-95014
0-31181
0-00000
0

—0-10625 |
0-89375
0-01250
]' =

—0-11792 |
0-88203
003594
1 ]

—0-12822 |
0-87178
0-05645
1

-4

—0-14617 |
0-85383
009233
1

-

—0-15963 |
0-84037
0-11925
1

—0-17981 |
0-82019
0-15963
1
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8. Conclusions

This paper has discussed an approach to straight line motion, which will
improve the ‘Bounded deviation joint paths’ method. This new approach has four
characteristics:

(1) Linear interpolation in joint space is very efficient to implement.

(2) We take unequal intervals for the interpolation knot points so that we can
avoid the resonant vibration which is caused when the interpolation rate is
equal to or close to the resonant frequency of the manipulator.

(3) We only use the deviation of the midpoint for precomputation and take the
last check to assure that the maximum deviation in the whole segment is less
than the specified values.

(4) The trajectory planning can be done off-line and executed on-line.
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