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Finite-state approximations for countable-state infinite
horizon discounted Markov decision processes
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[t is proved that the optimal policy of a Markov decision process where the state
space is truncated. will approximate the policy in case of no truncation.

1. Introduction

Many finite horizon problems of economic control can be formulated as
Markov Decision Processes (MDP). Moreover, for a discounted homogeneous
MDP one may theoretically solve for an optimal strategy using the method of suc-
cessive approximations, policy improvement, or linear programming (Bertsekas and
Shreve 1978, Denardo 1987, Ross 1983).

In many practical cases, however, the computational burden becomes excessive
and we are forced to take steps to ease it. One avenue is to implement acceleration
techniques by including standard Gauss-Seidel procedures (Denardo 1982) or tests
to eliminate sub-optimal strategies (MacQueen 1967).

Having done this, the well known curse of dimensionality is likely to remain a
major deterrent for efficient computation. To mitigate this hindrance we usually
have to content ourselves with good approximations, i.e. the original problem must
be replaced by a simpler one. We have several options available. We may

discretize the state or action space (Bertsekas 1976),

concentrate the probability distributions governing the system dynamics (Flam
1987, Norman and White 1968, Kall 1987),

decompose large programs into independent modules,
aggregate states, actions or revenues (Mendelssohn 1980),
or finally, we may ignore parts of the state space (Fox 1971, White 1980).

However, with any of these approximation schemes we face two problems:

If it is assumed that as the integer n increases towards infinity, the optimization
problem p, provides an improving approximation to the more difficult original
problem p, then, we must first demonstrate that the optimal values of p, converge to
the optimal value of p. Secondly, and equally important, it must be shown that
optimal solutions of p, cluster to those of p in some sense as n moves towards
infinity. For general information on this see (Kall 1986), and for results on MDP
consult (Whitt 1978, 1979).

This paper is concerned with these two problems for the last scheme of approx-
imation mentioned above, namely the procedure of truncating the state space. In the
literature we have received on this procedure, we do not find any argument support-
ing the statement that optimal solutions of the approximate problems cluster to

Received 16 October 1986.
Institute of Economics, University of Bergen, Jonas Reinsgate 19, 5008 Bergen, Norway.




118 S. D. Flam

those of the original problem. We regard this statement to be crucial. Therefore the
objective of this paper is to give a short proof for its validity.

The paper is organized as follows. Section 2 briefly recalls the MDP and the
associated optimization problem. Section 3 introduces the scheme of approximation
and furnishes the result concerning the convergence of optimal solutions.

2. Preliminaries

Let x4, x;, Xx,, ... denote the trajectory in the state space X of a discrete time
stochastic process.

The sequence (x,);°, is controlled by a decision maker who at each time ¢ = 0,
1, ... . after observing x, chooses a control u, € U. When doing so a cost ¢(x,, u,) is
immediately incurred, and the system moves on to the next state x,, , according to
the probability distribution P(x,, x,, ; u,). The initial state x,, has the distribution p.
Future costs are discounted by a constant factord € (0, 1).The overall objective is to
minimize the expected present value of the flow of costs. Gihman and Skorohod
(1979) prove that for this minimization problem only stationary Markovian and
non-randomized policies need be considered. Such a policy amounts to a rule
n: X — U for picking a definite control n(x) at any stage which only depends upon
the current state.

The expected present value of such a policy is denoted by v(r). Our goal is to
give approximate solutions to the following problem

p: Find n* such that v(n*) = inf {v(n)|n € IT}.

In order to simplify and to make problem p well defined we shall impose the
assumption in 2.1.

2.1. Assumptions

The state space X is countable.

The control space U is compact.

The transition probability preserves continuity in the sense that for any bounded
J: X — R, the expectation

Y. S(WP(x, y; u)

depends continuously on u.
The cost function c(x, u) is lower semi-continuous in u and bounded.

Under these assumptions which will be used throughout this paper, the following
theorem is a consequence of a more general result in (Gihman and Skorohod 1979,
Theorem 1.13).

2.2 Theorem

Under assumptions 2.1 an optimal policy n*: X — U exists where n*(x) is obtainable
from the equation

V(x) = clx, *(x)) + & Y. V(3)P(x, y; n*(x)).
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Here the optimal value function V: X — R is the unique solution of the functional
equation

V(x) = inf [c(x, u+3d ) V(P y; ul]

Moreover, v(n*) = Y V(x)p(x).

3. The scheme of approximation (Fox 1971), (White 1980).
Let X, € X, —... © X be a tower of finite subsets of the state space X

so that UX,=X.
=1

ne=
For each n > 1, define the data of an approximate MDP, in the following fashion:
Let
_ Jelx,w) if xe X,
el ) = {0 otherwise

Furthermore, let P,(x, y; u) = P(x, y; u) if x € X, otherwise define P,(x, y; u) to
equal the unit measure concentrated at x.

Thus instead of controlling the original MDP having data (y, é, ¢, P) we propose

to control another approximate MDP, with data (y, 4, ¢,, P,). v,(n) denotes the
value function of this approximate MDP, when we implement the policy n. We now

agree that
¥ € argmin v,

denotes the fact that =¥ is an optimal solution to the following minimization
problem:

p,: Find =¥ such that v, (7¥) = inf v,(%)

The expression
n* € argmin v

is similarly defined with reference to the original problem p.

According to Theorem 2.2., argmin v,, n = 1 and argmin v are nonempty sets. In
order to obtain the results on the convergence results we will impose an additional
assumption, 3.1.

3.1. Assumption

The control space U is metrizable.

Recall that U is already required to be compact. Hence it is also separable. We
are now in a position to state the chief result of this paper.
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3.2. Theorem
Assumptions 2.1 and 3.1 imply that:

(i) If o} € argmin v, — n* pointwise for some subsequence n,, then n* € argmin v,
and moreover, inf v, (n) — inf v(n) as k — co.
" m

(ii) Given any sequence m, € argmin v,, n = 1, we may then extract a subsequence
., k = 1,. which converges pointwise.

The proof of statements (i) and (ii) is organized so as to apply results from the
theory of epi-convergence (Attouch and Wets 1981, 1983),

3.3. Definition

The sequence f,: T1 — [ — o0, o0], n > 1 of extended real-valued functions defined on a
metric space I1 is said to epi-converge to f> Il - [ — o0, o] at m if’

(a) for any subsequence f, , k =1, 2, ... and any sequence n, € I1 converging to m,
lim inf f, (7, = f(7), and
koo
(b) there exist a sequence n,,n = 1,2, ... converging to © such that
lim sup f(7,) < f(n)
R=+an
If (a) and (b) are satisfied for every = € I, we say that f is the epi-limit of the sequence
Jfo»n = 1 or, alternatively, that f, epi-converges to f.
This concept, which emerged from the study of approximation schemes, is useful
as can be seen by the following statement.

3.4. Theorem (Attouch and Wets 1983)

Suppose f is the epi-limit of f,, n>1, and n} € argminf, , nt—n* Then
n* € argmin f and lim (inf f,) = inf f.
k—+oo

In our setting let IT = U* be the set of all functions n: X - U. Endow IT with
the product topology. The compactness of U implies that IT is also compact. More-
over, since X is countable and U is metrizable, IT is also metrizable,

If the sequence of the value functions v,, n> 1 epi-convergences to v, then
Theorem 3.4 immediately justifies statement (i) of Theorem 3.2. Thus it only remains
to prove the following auxiliary result.

3.5. Theorem

Under the assumptions in 2.1 and 3.1 the value functions v,, n > 1, epi-convergences to
.

Proof: Use [, to denote the Banach space of all bounded functions f: X — R under
the supremum norm. For each n > 1 and each policy 7, define the operator A,(n) on
I, in the following way:

A () = ¢{x, m{x)) + & ¥ f(WPx, y; n(x))
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The operator A(m) is defined similarly. It is straightforward to show that A4,(n), n > 1
and A(m) are contraction operators on [, . Moreover, the fixed points V,(r) and V(n),
respectively satisfy v,(n) = E, V|(n) and v(n) = E, V(n) where E, denotes the expecta-
tion with respect to the initial distribution .

Thus v,(n) = E,, lim A¥(x)f for any f € I,,,. The formula for A,(n) can be simplified.

k= oo
If we assume that f equals zero outside X,, then A (m)f evidently also vanishes
outside X, . Consequently we may redefine A,(n)f(x) to be equal to

x, mx)) + 8 Y. (P, y; n(x) *

yelXa

on X, and to equal zero otherwise.

Since the cost function c(x, u) is bounded we may assume, without loss of gener-
ality, that ¢(x, u) = Oforall x e X,ue U.

If (*) holds, it is evident that

A (M)f(x) < A, +1(Mg(x) < A(m)h(x)
for all x € X whenever f; g, h € I, satisfy 0 < f(x) < g(x) < h(x) for all x € X. Hence
V(n)(x) = lim AYm)0(x) < lim 4%, (7)0(x)

k— oo k—+ oo
= ¥,y (@) < Tim AHmO(x) = V(a)(x)
k=

where 0 € 1, is defined by 0(x) = 0.
It follows that for all n € I, v,(n) = E, V,(n) is an increasing sequence bounded
from above by v(n). In particular this takes care of condition (b) in Definition 3.3.
We now turn to condition (a) of that definition. Suppose n, —» 7 and let v,,,
k=1,... be a subsequence of v,, n > 1. For arbitrary ¢ > 0 choose an integer M
such that m > M implies

E, A™(n) 2 v(n) — &

Note that for any integer n, policy 7 and state x, the sequence Ay(m)0(x), m > 1 is
non-decreasing. Hence

lim inf v,(7,) = lim inf E, lim A5 (m,)0
k—+on k— o0 m—+ o0
> lim inf E, AX(,)0
k= oo

> E, lim inf 4}(m,)0

k=+en

> E, AM(#)0 > v(m) — ¢

For the second inequality we have applied Fatou’s lemma, for the third we needed
the lower semi-continuity of ¢ and lemma 1.5 of (Gihman and Skorohod 1979).

Specifically, let by convention A%n){x) = 0 for all x, and suppose inductively
that

lim inf A} (7 )0(x) > A'()0(x)

k—+
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for some integer ¢ > 0, and all x. Then

lim inf AL7 (7, )0(x) > lim inf [c,,*(x. T x))

k= a0 k=

+0) AL(m)O(P,.(x, y; m(x))]
= o(x, n(x)) + 8 Y, A(mNYP(x, y; m(x))
= A" Y (m)0(x).

This takes care of the crucial inequality
lim inf AM(7,)0 > A™(n)0

k—on

which was needed here above.

Since & >0 was arbitrary we obtain (a) of Definition 3.3. This completes the
proof.

The preceding proof also implies a further result on the mode of convergence.

3.6. Theorem

Under the assumptions in 2.1 and 3.1 the value functions v,, n > 1 converge pointwise
to v and the convergence is monotone non-decreasing.

We note the Theorem 3.6 suffices for v,, n > 1 to epi-converge to v. We can now
sum up the proof of Theorem, 3.2.

As mentioned, statement (i) follows directly from Theorems 3.4 and 3.5. State-
ment (ii) is a result of the compactness of 1.
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