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On the problem of optimal timing of
slaughtering in fish farming

J. LILLEST@LY

Keywords: Optimization, stochastic systems, control theory, optimal stopping rules.

Various issues concerning optimal feeding and optimal slaughtering are studied,
following different formulations of the problem. We discuss separate and joint
modeling, ‘one-step look-ahead” and global procedures, deterministic and sto-
chastic models. The price functions involved typically have jumps going from one
weight category to the next. Special emphasis is given to two models, one with
simplifying assumptions on the weight distribution, the other with a linear price
approximation.

1. Introduction

The optimal management of a fish farm may be looked upon as the choice of a
combined policy of (i) gathering information, (i) feeding, and (iii) timing the slaugh-
tering. The problem is of a sequential nature, at each stage projections of fish
weights at future points in time are needed. The projections will depend on the
sampling done, and the (sometimes limited) knowledge of the relationship between
feeding and growth. Growth is also affected by outside factors, the main factor being
sea temperature. This dependence is highly non-linear, in the sense that the intake of
feed is low at both low and high temperatures. The combined policy is affected by
various cost factors: feed costs, feeding costs, sampling costs and interest rates, and
is also affected by the (uncertain) market price of the fish.

The main challenge for the decision analyst is to provide models, and estimates
for parameters therein, which may be put to work in a prospective decision-making
context. This means that explanatory growth models with many variables and even
good explanatory power (in retrospect), must be foregone for the use of simpler
models, preferably with some adaptive features and possibility of user interaction.
An extensive literature exists, for growth curves in general, and for refined models
involving the bioenergetics. However such models are not necessarily suitable for
decision-making purposes, and a fresh look is needed. In this paper we focus on (ii)
feeding and (iii) timing of slaughtering, with main emphasis on the latter. Some
details which are left out here may be found in Lillestel (1984), where also questions
concerning (i) the gathering of information are discussed, and in Lillestol (1985)
where control-theoretic aspects are in focus.

Our investigations are mainly concerned with farming the Atlantic salmon
(salmo salar) in enclosures with typical population sizes of 5000 and upwards. Since
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the market price of the fish will typically differ for different weight categories, a
proper decision model will have to account for the distribution of weights at any
instant when slaughtering is considered. We have analysed data from five enclosures
provided by the Aquaculture Research Station at Austevoll, Norway. Extensive
weighings at ten different times revealed weight distributions close to the normal,
with a nearly constant coefficient of variation (standard deviation divided by mean)
of about 0-20. This may be utilized in decision models, and free the decision maker
(i.e. the fish farmer) from thinking about standard deviations. However, the coeffi-
cient of variation may, to some extent, vary with heredity, sorting of the smolt,
environment and feeding procedures. In another experiment, the coefficient of varia-
tion was again fairly constant over time, but at a higher level, close to 0-30, a
possible reason being less well sorted smolt at the outset.

The problems of optimal feeding and optimal slaughtering can be studied, fol-
lowing different formulations. We have choices between separate and joint model-
ing, ‘one-step look-ahead’ and global procedures, deterministic and stochastic
models. The most ambitious formulation is joint, global, stochastic models requiring
optimal control theory. However we have found it fairly difficult to model the
dynamics of such models properly, even in the deterministic case. Moreover they
may be hard to implement in practice, since the solutions are heavily dependent on
practice, since the solutions are heavily dependent on precise parameter estimates.
Consequently we prefer (possibly suboptimal) * one-step look-ahead’ procedures to
global optimization models. Simple models of this type should be preferred to the
sophisticated ones, both for statistical reasons and user-friendliness. Models with
many variables may lead to worse predictions, because of the estimation of many
parameters which may change over time.

2. Optimal slaughtering

Consider a population of fish in an enclosure, where g, is their average weight at
time ¢, and g, is the corresponding standard deviation. The weight X, of a random
fish at time ¢ is taken as a random variable with probability distribution expressed
by a density f(x; t). We may then write

M =EX, = J.w xf(x; t) dx

[+4]
o = var X, =J (x — p)*f(x; t) dx
Let p(x; t) be the price per kilo for fish of weight x at time . The expected pay for a
random fish at time ¢ will then be

V(e) = _[ plx; Oxf(x; 1) dx (1)
Consider the problem of deciding whether to slaughter (all) the fish now at time ¢, or
postpone slaughtering till time ¢ + h, where expected pay is V(t + h). In the latter
case we incur extra feeding costs R, . C, . h. Here R, is a feed-rate at time t, defined
as the fed amount (in kilo) per unit of time per fish and C, is the price per kilo feed
at time t. The decision whether to slaughter at time ¢ or postpone it to time ¢t + h
may be judged from the inequalities

V(t + h) — R,C,h Z (1 + p, V()
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where p, is a (continuous) discount factor which may both reflect current interest
rates and various risk factors at time t (death, escape, maturity etc.). Reshuffling
terms, division by h and letting & tend to zero gives

V,(‘) - Rl . Cr — Pt V(t) % 0 (2)

The decision rule is then to postpone slaughtering as long as the expression stays
positive, but slaughter as soon as the expression becomes negative. This rule is
derived by one-step (or infinitesimal) look-ahead considerations. It is well known
that myopic rules are not generally globally optimal. It may happen that a negative
sign occurs at an early stage because of temporarily slow weight gain compared to
feeding and capital costs. However if the rule is followed only after slaughtering is
regarded as a possible action, this is not likely to happen for a proper specification
of the parameters involved.

In order to use formula (2) we have to compute F(t) and its derivative V(t) from
(1) under reasonable assumptions on the price function p(x; £) and the weight dis-
tribution f(x; t). We will provide two solutions here, one which makes a restrictive
assumption on p but not on f and another which makes a restrictive assumption on
f. and not on p.

The price function p(x; t) is, for each t, an increasing step function in x, ie.
constant over weight intervals. Our analysis of actual price data shows that these
step functions are reasonably well approximated by linear functions of x, that is

plx; )= a(t) + b(t) . x

for suitably chosen a(t) and b(t). With this assumption we get the expected price of a
random fish as

V(t) = f plx; Oxf (x: 1) dx

= a(t) J'm 06 1) dx + (o) r X2 (x; 1) dx

=a(t) . 4+ b(t) . (7 + 1)

=a(t) . p, + bR (1 + x7)
where k, = o,/4, is the coefficient of variation at time ¢. This result is not dependent
on any assumptions on the weight distribution, say of normality. The distribution
may even be skew, but the skewness does not affect the expected price. If we had
used a quadratic assumption

plx: 1) = alt) + b(t) . x + c(t) . x?

we get instead

V() = alt) . p, + b(t) . 21 + &2) + clt) . (1 + 367 + 15 . 4

where 4, is the usual measure of skewness of a distribution, i.e. the third central
moment divided by ¢? . For symmetric distributions (among them the normal) 4, =
0, and the expected price depends only on y, and x, (or o).

Assuming that a linear price function is sufficient, we will now look at the com-
putation of V'(t). The general expression is fairly complicated, and some simplifying
assumptions may be needed. In the case of zero price-time derivative and constant
coefficient of variation k, = k, we get

V()= alt) . gy + b(e) . 21 + K)py . g




202 J. Lillestol

In order to exercise the rule (2), we have to specify the feed-rate R,, the weight g,
and its derivative y; in addition to the economic parameters. Fish farmers often
express themselves in terms of feeding per kilo biomass and feed-factors. This may
be formalized by the identities

Ro=r,. i @)
R, = (b! Ny 4

Here r, is the fed amount (in kilo) per unit of time, per kilo fish at time t, and ¢, is
the (local) feed-factor at time ¢, i.e. the amount of feed required to produce a one
unit weight increase. One possibility is to let ¢, and r, determine the parameters in
(2). As an approximation they may be taken as constant over time for the given feed,
possibly corrected by specific information available at time ¢ (e.g. temperature) or
the history up to time ¢ (e.g. diseases and medication). With an estimate of yu, we
now obtain R, by (3) and then g, from (4).

Some additional comments on parameter specifications are the costs of slaugh-
tering a fish S(t) may be taken into account by replacing V(t) by V(t) — S(t) and V'(r)
by V'(t) — §(¢) in (2). In the common case of constant S(t) = S when (1) = 0, this
may also be taken into account by downgrading the price function p. Typically
interest rates are constant so that p, = p. However if we want to include the risk of
loss by escape or death in the analysis, we may replace p, by p," = p, + 8, where é, is
the loss-rate at time t. The risk of maturity may also be included here.

Example

The Fish Farmers Sales Organization in Norway offered on 07.07.83 the follow-
ing prices for a certain quality

Weight (in kilo) <2 2-3 34 4-5 5-6
Price in N.kr. — 30-50 34-50 38-50 42-50

Weight (in kilo) 67 7-8 89  >9
Price in N. kr. 4650 5050 5450 @ —

If we identify the prices in each weight group by the midpoint in the interval, we get
exactly the relationship

p=205+40.x

Let us assume that currently g, = 4-0 and x, = 02 while y, = 0.025 with week as
time unit, for example using a feed-rate of 0-1 kilo feed per week per fish, and
assuming a feed-factor of 4-0. We then get

V(t)=20-5.4 x 0+ 40 x 40%(1 + 0:2%) = 1486 (148-56)
V(t) = 20-5 x 0025 + 40 x 2 x (1 + 0:2%) x 4-0 x 0-025 = 1-342 (1.345)

Here the numbers in parenthesis are found by the alternative theory below. Using a
constant discount rate of 20 per cent per year we get p = 0-003506, and for C, = 8-2
the left hand side of (2) becomes zero. If the current price of feed is greater than
N.kr. 820 it will be profitable to slaughter at once.

Let us take an alternative approach with exact prices, but with simplifying dis-
tributional assumptions: Define | + 1 weight groups by separating points a, , a,,
..-» @ so that weight group no. i is given by the interval (a;, a;,,) fori =0, 1,2, ..., 1
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(set ap = — oo and a,,; = + o). The fraction of fish in group no. i at time ¢ is

ai+1
g{t) = Sx; 1) dx i=01,2,...,1

Suppose that the price per kilo in group no. i at time ¢ is p{t). The expected price of
a random fish now becomes

i=0

i ajr1 i
V) = A)_Zo pd) _[ Xf(x; 1) dx = ). ploym{1)

where we have introduced

m{t) = am.\;f{x; t) dx

ap

which is the contribution to the average weight from the fish in group no. i. (Note
that mg(t) + my(t) + - - + my(t) = p,.) It follows that

] i
Vi) = =Z pAOM(D) + 3. PiOIMAD)

In the case of a normal weight distribution we have
1 (x—u
SO 9 =f(x; py, ) =— 9(—‘)
g, a,
where g is the standard-normal density. In this case

‘Il{t) = o x5 1, 09 dx = G(ah'l — ‘“‘) _ G(al - Ju'f)

. o, g,

where G is the cumulative standard-normal distribution, Introduce the functions
H{(‘) = a{+1 . f(a‘;’:+1; t)—a;. fla;t) forj=0,1,2
By partial integration in the defining formula we get

o2
m{1) = A(Qe(l) e ?(t))
He
We need expressions for the derivatives. Neglecting higher order terms we have

N ai+1 g ﬂt'_, g %
qm"’j (6;1,'dt+6o,'dt)dx

It is easy to check that

¥_x-u 1 F_((x=aY )1
u o 'a'f 36_(( o ) _1)'0"[

If we assume that k, = 6,/u, = constant, we get the following expressions

Uy
W)= —=HNt
q@ e ®

i) = f (md6) — H2(1)
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Although these expressions look unpleasant, they are easy to program, and require
only standard-normal density and cumulative probability evaluations. In the
example above, we found that the two routes of approximate reasoning led to
almost identical results.

3. Global modeling

In this section we discuss some of the problems encountered by global opti-
mization. The problem of optimal timing of slaughtering is to determine

i
max {V(t) exp (—p.t) — J R,C, exp(—p, - u) du}
ostsT o
where T is an upper time limit for keeping the fish. If F(z) is a differentiable function
of t, a necessary condition for an external peint is

V() — R.C, — (o, + tp)V() = 0 )

which may occur for several ts corresponding local extrema. This is identical to the
left hand side of (2) in two cases, for p, = p (constant) and for t = 0 regardless of p, .
In the case that we have kept the fish till time t, without slaughtering, we are
tempted to take this as a new origin, i.e. take t =0 in a renewed global opti-
mization. The new optimal t will then be pushed slightly ahead of the true optimal ¢.
If we want to take into account the risk of loss by death and escape we have to
replace p, by

1 T
p:=p,+;L6,,du

where §, is the loss-rate at time w. In this case p, + tp; have to be replaced by
é, + p, + tp; in the condition (5).
In order to compute F(t) in (5) we may specify

(i) R,and g, independently
(ii) R, as a response to attained weight g,
(iii) g as a response to the feed-rate R,
(iv) R, and g, consistent with some feed-back model.

Alternative (i) is the simplest, but may be claimed to be too naive. For (ii) we make
assumptions on r, and use (3), where the result should be consistent with expected
feed-factors ¢, given by (4). For (iii} we make assumptions on ¢, and use (4), where
the result should be consistent with expected weight and formula (3), which can
alternatively be written

M= po + J;(R../t.’o..) du = i . exp {L /o) du}

Of course (iv) is the most realistic case, but may be difficult to model. The choice of
specification will be a compromise between our ambitions concerning realism, and
simplicity and ease of implementation, It is clear that the possibilities of obtaining
reliable estimates of the unknowns should affect our choice of specification. More-
over the interpretation of available data may differ according to our choice among
(i)iv). Let us consider a simple example of type (i).
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Example
Consider year as time unit, and the weight function

p, = 45t — 1-5¢°

displayed below. We see that it is increasing up to t = 2, and decreasing afterwards.
It may seem odd to use a weight function with this feature, but we feel no need to
have good approximation to real growth in the region where slaughtering is
unfeasible anyway, i.e. after extensive maturation.

My

l

¢ t } t
0 1 2 3

Figure 1. A third degree growth function.

Assume a constant feed-rate per kilo fish, of r, = 2-0 kg (per year), so that R, =
2u,. Furthermore assume a constant coefficient of variation x, = 0-2, and the
approximate price function of the previous example. The optimal time of slaugh-
tering for some combinations of feed prices and interest rates are given in table 1
(number of months in parenthesis).

Interest rate in per cent per year

Feed price

per kilo 15 20 25
5 1-832 (22:0) 1-812 (21-7) 1-790 (21-5)
10 1-716 (20-6) 1-692 (20-3) 1-670 (20-0)
15 1-586 (19-0) 1-560 (18-7) 1:536 (18-4)

Table 1. The optimal time of slaughtering.

We claim no realism in the particular specification given, but third degree poly-
nomials pick up essential features of actual growth, and are easily estimated from
real data.

4. Joint global modeling

In this final section we give a brief survey of our efforts to develop global models
for the joint optimization of feeding and timing of slaughtering. Only deterministic
models are mentioned, but the general comments affect stochastic models as well.
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Let x(t) be the weight of the fish at time ¢ and u(t) be the fed amount per time
unit per fish at time t. The price paid per kilo of a fish of weight x is taken to be of
form p(x; t) = ay + a, . x, and the cost of feed per kilo is taken to be ¢ (constant).
Our objective is to determine the feed-function u(t) and the time of slaughtering T
by maximizing the net present value,

T
NPV = x(T)ao + a, x (T)) . exp (—pT)—CJ u(t) exp (—pT) dt ©)

subject to some growth model, which may involve weight, feeding and time ¢ (the
latter may reflect both age and time of the year):

2O _ gtx, ut),
We have tried numerous choices for g, among these are
dx(t) _ by u(r)
@ = et u
® B0 byt byu) — btut?
dx(r,) b, ult)
© ""“( bo +b2+u(t))
x(f)

(d) = X(t)(—bo + by u(t) — by(u(t))*)
where the b;s are positive constants, or suitable positive functions of t.

In the cases (c) and (d) we have also considered the optimization problem for u(t)
being fed amount per time unit per kilo fish, and where u(t) is replaced by u(t) . x(t)
in (6). We have obtained analytical solutions by control theoretic methods (the
maximum principle), and studied their properties, in general, and by computational
examples, see Lillestol (1985).

Our experience may be summarized as follows: It is difficult to establish simple
models for the dynamics, with solution close to observed growth and feed-functions.
More realistic models will involve more parameters, but realistic values may be hard
to determine or estimate from real data. Small changes in parameter values, possibly
within the error limits of estimation, may give substantial change in the optimal
feed-function and optimal time of slaughtering. This means that joint global model-
ing may lead to models which are (i) fairly complicated (ii) not easily identifiable (iii)
non-robust against specification errors and (iv) not easily adaptable to changing
conditions. Even if joint global models which remedy (i}«iv) are found, we may still
dismiss them because of their limited value within an interactive environment, where
we want to make use of the history to date and prognosis for the immediate future.

5. Final comments

The theory above suffers the limitation that all fishes are supposed to be slaugh-
tered at the same instant. For various reasons this might be an unrealistic assump-
tion in practice. One reason may be that the fish farmer has no spot market at
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hand, and have to rely on a limited number of buyers, maybe a single one, who
might ask for supply at regular or random times. Another reason may be due to the
cycling of several generations within limited available space. Having specific oxygen
requirements, it might be profitable to operate close to the limit which can sustain
the current stock, and slaughter parts of the oldest generation when growth exceeds
the sustainable limit. It is possible to formulate more general models where some
density measure is included as a state variable. The theory will be more complicated,
but an optimal solution may in principle be obtained using dynamic programming
ideas. This is an area for further research.

In order to implement optimal solutions in practice discrete time versions of the
theory may be needed. Moreover it is useful to have a framework for the updating
of estimates. For these (and other) reasons one may prefer to formulate state space
models and make use of Kalman filtering ideas. This is another area for further
research,

This research is carried out at the Center for Applied Research (SAF) at the
Norwegian School of Economics and Business Administration (NHH) with financial
support from the Norwegian Fishery Research Council (NFFR).
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