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Stability of Pareto-optimal allocations of resources to activities

K. M. MJELDE{t}
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A concept of stability is introduced for the Pareto-optimal solutions of a vector-
valued problem of the allocation of resources to activities, and characterized by a
property which is independent of uncertainties in the efficiency matrix of the
allocations. Any feasible solution can be improved by cyclic shifts to give a stable
Pareto-optimal solution. The resource allocation problem of the maximization of
the sum of the utility returns from the activities and a problem with fuzzy
resources and activities are shown to have stable Pareto-optimal solutions.

1. Introduction

A multi-objective resource allocation problem, denoted by M, is defined as
follows:

M : Vector-maximize z(x) = (X5 «c.s Xg, 205 Xg) (1)
where
x = (x) is the J x K allocation matrix (2)
and
J
Xe= Y ouXy for k=1,...,K 3)
i=1

subject to the constraints:
K
Y xp=h; j=1..J 4)
k=1

and
x=0 (5)

J is the number of resources, K the number of activities, x; the amount of resource j
allocated to activity k, h; the available quantity of resource j, and ay the effec-
tiveness of resource j when allocated to activity k. Numerical values satisfy: J > 1,
K 22, h;> 0 for all j; a3 > 0 for all (j, k) and for any j there exists a k(j) such that
o k) > 0.

The matrix o = (o) is called the efficiency matrix.

A feasible solution x of P is Pareto-optimal if and only if there is no feasible
solution x” such that

2x’) = z(x)
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where ¢ > denotes * = but not =’ with = denoting weak componentwise inequal-
ity.

Clearly there is no restriction in generality by assuming that x; > 0 only if
oy > 0.

For a given feasible solution x = (x;) of the problem M, Danskin (1967) defined
a cycle of allocations to be a sequence given by:

Xjiky Xjkas === s Xjiki Xjikivy » === r Xjn tkn1 Xjn—1kn 6
where k, = k,, and Einbu (1978) defined the associated o-cycle by:

Oy ks -+ > Qg Ly s == s K yky— g Fjo— 1kn (7)
and the ratio p of the cycles (6, 7) by:

n—1
p= ‘rll (“j;k,/ ik + 1) (8)

An activity of the set {k, , k;,..., k,} is called an activity of the cycle (6).
Mjelde (1983) demonstrated the following result:

Theorem (1)

A feasible solution x of M is Pareto-optimal if and only if one of the following
two conditions is satisfied:

(1) There is no cycle (6) of positive allocations, or otherwise
(2) The ratio of all associated a-cycles (7) is equal to 1.

The purpose of this paper is to introduce the concept of stable Pareto-optimal solu-
tions of the problem M, and to describe the set of all such solutions by a simple
characterization which is independent of properties of the efficiency matrix o, and, in
particular, independent of the existence of o-cycles with ratio 1. It follows that stable
Pareto-optimal solutions contain at most (J + K — 1) non-zero allocations. It is
then shown how any feasible solution x = (xj) of M, not satisfying the property of
stable Pareto-optimality, can be used to derive associated feasible solutions of M
that satisfy this property, and without a decrease of the corresponding values of x,
given by eqn. (3). It is observed that there exists a stable Pareto-optimal solution
which is optimal for the resource allocation problem of the maximization of the
utility returns from several activities. This is also the case for the allocation problem
with fuzzy resources and fuzzy activities discussed by Mjelde (1986), when the h; in
eqn. (4) are replaced by the actual resource consumptions in the fuzzy problem.

2. Stable Pareto-optimality
Definition (1)

A Pareto-optimal solution x of the problem M is said to be stable if and only if
there exists a real number A > 0 such that x is still Pareto-optimal if (;) in eqn. (3)
is replaced by any (o) satisfying the following requirement:

O:'ﬁe[aﬁ—A,O{Jk+A] rOI' j=l,...,J;k=l,-—.,K (9)

Such a solution x is also said to be a stable Pareto-optimal solution.
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In a practical sense only Pareto-optimal solutions that are stable are of interest,
since there are always uncertainties associated with the efficiency-data oy, .

A stable-Pareto-optimal solution of M cannot contain a cycle (6) with ratio
p = 1, since if p = 1 the definition of (o) given by

Ly = Oy, +A; i=1,...,(n=1) (10)
Ot:,-‘,“” =a:jl.ﬁi”; i= l, ...,("_ l) (ll)
for a A > 0, demands that

n—1

p, = fl_ll (a:‘ih/a}ikﬁ-l) >1 (12)
By theorem (1) this demands that the cycle (6) is not Pareto-optimal when (o) is
replaced by («). The implication is that a stable Pareto-optimal solution of M
contains no cycle (6) of positive allocations; conversely, such a solution is still
Pareto-optimal if («;) is replaced by an (a;) satisfying the requirement (g), because x
remains unchanged by this replacement. The following result has been demon-
strated:

Theorem (2)

x is a stable Pareto-optimal solution of M if and only if there is no cycle (6) of
positive allocations.

The observation that (x;) must contain a cycle if it contains at least (J + K)
positive allocations x , gives:

Theorem (3)

Stable Pareto-optimal solutions of M contain at most (J + K — 1) non-zero
allocations.

Einbu (1981) improved solutions of a return-maximization problem by a pro-
cedure based on cyclic shifts of the allocations; it will be demonstrated that a similar
procedure is applicable to the vector-maximization problem M.

A shift along a cycle (6) of positive allocations is defined by the replacement of
(x;) = 0 by (x}) = 0 where:

X}Ik‘:xﬁtf—ﬁi; i= l,...,("— 1) (13)
x};h_;. = xj;k;-a-] + Al; j= 19 ey (n _ l) {14]
Ay = B %y =05 i=1,..,(n—2) (15)

Xp=Xp if U, k) & {U:, k) Gis kigy)} for i=1,...,(n—1) (16)

for selected values of A;fori=1,...,(n —1).
The eqns. (13, 14) imply that (x,) is a feasible solution of M with x; of equation
(3) satisfying:

xp=x, for k#*k (17)
Xy — Xay = Aq 05, [(1/p) — 1] (18)

demanding that x; = x,, if p =1 and x;, > x,, if A, is chosen such that A, <0 if
p>1and A, > 0if p < 1. Furthermore, A, can be chosen such that the cycle (6) is
removed by making at least one of its allocations equal to zero, as follows:
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Define:
i—1

fi—l = l_l (aj'+1kq+1faj‘&q+l) (19}
g=1

Then:
Xk, =0 if p<l and Ay =X 50, Em—1 = Min [x;, 441

for me{l,...,(n—1)} i=1,....,(n—1) (20)
Xijkmes =0 if p>1 and Ay = =X bme1 = Max [ =5, & 1]

for me{l,...,(n—1} i=1...,(m—1) (21)

Given a feasible solution x of M, the process defined above can be repeated until all
cycles (6) of x has been removed. According to theorem (2) this produces a stable
Pareto-optimal solution of M, and the following result has been demonstrated:

Theorem (4)

Any feasible solution x of M can be improved to give a stable Pareto-optimal
solution x' of M such that x, > x, for k=1, ..., K, by a finite number of shifts
along cycles (6) defined by the egns. (13-16) and (19-21). For a cycle (6) with p 4 1
there is shift which makes x; > x, for any selected activity k of the cycle.

3. Return maximization and fuzzy resource allocation

Consider the problem, denoted by R, of the maximization of the total return

from several activities as follows:
K
R: maximize z = ) r(x,)
k=1

subject to the constraints (2, 3, 4, 5) of M, where r, are non-decreasing and concave
functions with r,(0) = 0 describing the results from the activities k.

Since Einbu (1981) demonstrated that cycles may be removed in an optimal
solution of R by the previously given transformations (13-16) and (19-20) satisfying
the properties (17, 18), theorem (2) gives the result of:

Theorem (5)

There is a stable Pareto-optimal solution of M which is optimal for the return
maximization problem R.

Mijelde (1986) derived results applicable to the following problem F of the allo-
cation of fuzzy resources to fuzzy activities:

K J
F: Maximize z = Min { Min pl ¥ xju Min rk( Y aﬁxﬁ)}
i=1,...17 =1 k=1,..K \j=1
subject to the single constraint (x;) = 0.
In this formulation each y; is a strictly decreasing function with p40) > 0 and
u{y)=0if y;> H, for H;> 0; and each r, is a strictly increasing function with
r{0) = 0.
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Since, for given values of
K
yi= 2 X j
k=1

for j=1,...,J, the previously given transformations (13-16) and (19-20) may
be used to remove any cycles of a feasible solution of F, keeping the values of y;
unchanged for j = 1, ..., J and without a decrease of any of the x, given by eqn. (3),
it follows that the following theorem is valid:

Theorem (6)

There is an optimal solution of the fuzzy resource allocation problem F, which is
also a stable Pareto-optimal solution of the problem M with h; in the constraint (4)
replaced by the values of y; corresponding to an optimal solution of F.
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