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Robustness analysis of a class of decentralized
control systemst
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The paper presents a method for analysing the robustness properties of a class of
decentralized control systems. Perturbations both in local and in interconnection
parameters are dealt with. The method is based on the use of singular values.
Several numerical examples are presented to illustrate the method.

1. Introduction

The paper deals with decentralized control of interconnected dynamic systems.
We assume that the total system consists of N sub-systems described by
N
J'C‘=A“x,+B,-u,-+ z Aux}, i-—'l,z\,...,N (l)
T
where x; is an n-dimensional state vector (} /-, n, = n) and w an r-dimensional
control vector (3, r, = r). We note that each sub-system has its own control input
and that the inter-connections are through the states of the other sub-systems.
The total system may be expressed as

X = Ax + Hx 2
where A = diag {4} and the inter-connection matrix H is equal to
0 A, ... An
H=| 4, 0 ... A
Any 0
In the present paper we consider decentralized control laws of the form
U= Gpx; 3

There may be several reasons for choosing this structure. In the first place, each
control station uses information from, and transmits control signals to, its own
sub-system only. This simplifies the signal transmission and also reduces the com-
plexity of the controller. In the second place, the system can be made more robust.
In the third place, the computation of the control laws is usually less complex for
decentralized schemes.
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On the other hand, there are some drawbacks concerning overall performance.
If, for example, optimal control is considered, the performance of a system with
decentralized control will in general be inferior to a system with centralized control.
The most serious problem connected to a decentralized control structure is,
however, the question of stability of the overall system.

Assuming that the local control systems have been designed with sufficient sta-
bility, then it will depend on the inter-connections whether the total system is suffi-
ciently stable or not. A robustness analysis of a decentralized control system will
therefore in the first place be concerned with the influence of the inter-connections.
In the second place comes the analysis of parameter variations in the local systems.
In the present paper both these aspects will be considered.

Based on an LQR (Linear Quadratic Regulator) with a-stability (all eigenvalues
with real parts less than —o) a robustness analysis as to the inter-connections is
carried out by Sundareshan (1977) and by Darwish, Soliman and Fantin (1979). An
analysis based on more general local control systems is presented by Solheim (1980)
using the block Gershgorin theorem.

The present paper will be concerned with variations in the inter-connections as
well as in the local systems. No specific design of the local controllers is required.
We shall, however, for the sake of simplicity, assume real (and of course stable)
eigenvalues in the local systems. This may be achieved by a pure modal design or, if
a more economic performance is desired, by a combined modal/optimal design
(Solheim, 1972). This method will be referred to in the sequel.

The robustness analysis in this paper is based on the singular value concept. A
short introduction to the use of singular values in this context is given in § 2.

Section 3 deals with robustness analysis of the local systems, and § 4 with the
total system. Simple numerical examples are presented in §§ 3 and 4.

2. Singular values

Given a complex matrix A. The maximum singular value of this matrix is
defined as

o(4) = max JLA* A) @

and the minimum singular value as

o(4) = min /(4" 4) )

where 1{-) denotes an eigenvalue of the argument matrix, and A* is the conjugate
transpose of A.

Singular values have proved to be of great importance in the analysis and design
of robust control systems (MacFarlane (1981), Doyle and Stein (1981), Lehtomaki,
Sandell and Athans (1981), Lehtomaki et al. (1981), Lee et al. (1982)). It can, for
example, be shown (Lee et al. (1982)) that in a stable feedback system F, stability
will be maintained as perturbations 8F are added, provided that

a[ jol — F] > 6(6F) (6)

In general this expression has to be developed as function of the frequency . We
may, however, simplify the situation considerably if we assume that the feedback
system F has real eigenvalues only.
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Assuming real eigenvalues in F, we have the relation
o(F) < o(jol — F) for all @ 7

One way to see this is to look at the eigenvalue matrix A = M ~'FM where M is an
eigenvector matrix of F. With A we get

o(jwl — A) = min \/(}? + ©?) (8)
i

and thus
o(A) < a(jwl — A) for all w. ()]

Since F and A are similar matrices, we conclude from (9) that (7) also must be valid.
Combining (6) and (7) yields the condition for stability (assuming real eigen-
values in F)

9(F) > G(3F) (10)

This is a very useful condition as it permits the study of a large variety of pertur-
bations without too much computational effort. The drawback with this analysis, as
with all analysis involving singular values, is the inherent conservatism of the
method.

If we instead of considering absolute stability, consider a-stability (all eigen-
values to left of —o on the real axis), condition (10) is changed to

O(F + al) > 6(6F) (11)
This may also be written

a(F) > 6(0F) + « (12)
or

6(0F) < a(F) — & (13)

Using (12) or (13) gives, however, a more conservative result than (11).

3. Robustness analysis of the local systems

Consider a local system without interconnections
i" = A"x' -+ B U,
i i ( 1 4)
Vi =D;x;
where x;, u; and y; are n-dimensional state, r-dimensional control and
m-dimensional measurement vectors, respectively.
We use the usual quadratic performance index

Ji= % Lw[x?Q, x; + ufP,u;] dt (15)

where Q; is a symmetric non-negative definite matrix and P; is a symmetric positive
definite matrix.

Let us in the first place assume that all state variables are directly accessible. We
therefore set y; = x;, that is, the measurement matrix D; = I. In addition to that the




148 0. A. Solheim

controller shall minimize the performance index, we also require that the closed-
loop system

%; =(Au+ B;G;D)x; = Fix; (16)
based on the control law
u;=G,;y;= G D;x; (17

attains prescribed eigenvalues.

In order to achieve this, the weighting matrix Q;, for the state, cannot be freely
chosen, but must be determined so that the prescribed cigenvalues are obtained
(Solheim, 1972; 1979).

Let us consider the following perturbations:

(i) Change 8A,; in the process matrix A4; due to process parameter variations.

(ii) Change &B; in the control matrix B; due to variations in process and actu-
ator parameters.

(i) Change 8D; in the measurement mattix D; due to sensor parameter varia-
tions.

The total change 8F; in the closed-loop matrix F; becomes (with D; = I)
8F; = 8A;; + B, G, + B,G;4D; (18)

In the present paper we shall consider additive perturbations only.

The purpose of the robustness analysis is now to determine the size of the per-
turbations that can be tolerated without endangering the stability of the system. Or,
in other words, how a given change in the parameters influences the eigenvalues of
the system.

Before we go into a detailed discussion of this problem let us also consider the
case where all states are not directly measurable. In this case a state estimator has to
be included in the controller.

Let %, represent the estimated state. With the control law

u = G; % (19)
we get the total closed-loop system

X; Ai | B.G; X; £ X;
==, = = — = 20
[5‘.] [Ki D;\ Az + B;G; — K;D;:":i, 1z (20)

where K is the estimator gain.
Assuming changes in A, B; and D; of the process (no changes in the model used
in the estimator), the changes in F; becomes

SF = [_ééﬁ_-:._a_Bi(_;f.:I @

The feedback system and the estimator may be designed separately. In the same way
as we may design an optimal feedback system with prescribed cigenvalues, we may
also design an optimal estimator with prescribed eigenvalues (Solheim, 1972).

We present now two examples to illustrate the use of singular values in the
robustness analysis of the local systems. We use the same process for both examples,
but in Example 2 a state estimator is included.
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Example 1
Given the system

-2 0 10 10 10
Sl B F I FH A A

The cigenvalues of the closed-loop system are specified as —5, —8. Using an LQR
this is obtained with

0= 622 156 G - —637 —26
1156 1090 | Tl —052 —363

o(F)) = o(Ay; + B;G) = 453

We compute

The eigenvalues of F; are —5 and —8. Specifying o = 4, we would like to know how
large variations in the element of A;; that can be tolerated. We choose

5Aﬁ=[s“ 0]
€21 €22

0(0F) = 6(0A;) <&y + le2s | + €221
With o = 4 we get
o(F; + 4I) = 0-79
Using (11) we get the bounds on the variations
[€11 | + [€25] + |£22] < 0-79

For the analysis of a system with state estimator we use eqns. (20) and (21) and
condition (10)

o(F) > &(6F) 22)

Example 2
We use the same process as in Example 1, but change the measurement matrix
D;to

D;=[0 1]

We now need a state estimator. We specify the eigenvalues of the estimator: — 10,
— 12. This is obtained with the estimator gain

[

The feedback matrix G; is the same as in Example 1.
With the same 54, as in Example 1 we get

G(6F) = 5(64:) < leyg| + leay | + leaz |
With o« = 4
ofF;, +4) =023
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giving the bounds on the variations in this case
[€11 ]+ l&21 ] + | &22| <0-23

We note that smaller variations are allowed in this case as compared to the case
without estimator.

4. Robustness analysis of the total system
Consider the total system with local controllers

x=(F+ H)x 23)
where
F = diag {F;}

Let us consider two types of perturbations: Perturbations of the local parameters
around their nominal values and perturbations of inter-connection parameters
around zero.

Neglecting in the first place the local perturbations, we obtain from (10) the
condition for a stable system

ofF) > 3(H) (24)
Since
o(F) = min ofF)) (25)
i
condition (24) may be expressed as

min o(F) > 5(H) (26)

This condition reveals the important result that one should try to arrive at a design
where no o(F;) is much smaller than the others.
If a-stability of the total system is desired, condition (26) changes to

min o(F; + o) > 6(H) 27
i
Considering then local perturbations also, condition (24) becomes
o(F + 6F) > o(H) (28)
or

min o(F; + 8F) > &(H) (29)
i

If min; o(F,) and min; o(F; + 0F;) occur for the same value of the index i, then (29)
may be expressed as

min o(F,) > 6(3F) + 6(H) (30)
i

When a state estimator is included in the local controllers, we get the system matrix
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fl "‘TIZ ‘qlN
T F, ... Ay
F=|. .. =F+A (31)
":{NI. ﬁN
where
F, is given in (20)
A —
! [ 0 0]
F = diag {F}
0 "‘ilz AAIN
An 0 Agy
B=|..................
An 0
Because of the special form of 4;; we get
o(H) = 5(H) (32)

Stability of the system is secured if
min o(F; + 6F) > 6(H) (33)

And again, if min,; o(F,) and min, o(F; + 8F) occur for the same value of i, (33) may
be expressed as

miin o(F) > 6(6F) + &(H) (34)

To conclude this section let us discuss the special case with only two local systems,
thatis, N = 2.

We get
X = [ :2 ‘l ’;‘:]x =(F + H)x (35)
Thus
5(H) = max {5(4, ), 5(4,,)} (36)
Condition (24) becomes
min {o(F,), o(F,)} > max {G(4,,), 6(A4,,)} 37

It is interesting to compare this result with a corresponding result obtained via the
block Gerschgorin theorem (Solheim, 1980). In order to do this we diagonalize the
local system F; in (35)

Mrl_l 0 F, Anp||M, 0 _ Ay Ml_lAuMz 38)
0 M;'J4,, Fo |l 0 M, [M;'a,, M, A, (
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where M, and M, are eigenvector matrices of F; and F, respectively.
Using condition (37) on the system (38) yields

min {o(Ay), 6(A,)} > max {G(M; 'A;, M,), 5(M3 " Ay, M)} (39
Since A; and A, are diagonal matrices we have

min {E{Al)’ g(f\z)} = |A'Imin

where | |, indicates the absolute value of the eigenvalue of

A, O
0 A,
closest to the imaginary axis. We can thus write (39) as

max {6(M;'A,; M), 5(M; Ay M)} < |2 |min (40)

The block Gerschgorin theorem used on the system (38) states that the inclusive
regions for the eigenvalues of the system consist of circles with centres at the eigen-
values of the local systems and with radius equal to &(M['A,, M;) or
(M3 'A,, M,). To have a safe design the largest of these radii must be smaller than
the distance from the origin to the nearest eigenvalue. This is exactly the same
condition as (40).

We present two examples to illustrate the material presented in this section.

Example 3
Consider the interconnected system

1
]_ B B H+ 0_1lu
5] | 0 1202 0O]lx, 1 0|l u,
0 0. 1 -1 0 1
The local systems are the same as the system in Example 1. We also use the control-
ler in that example for the local systems. The eigenvalues of the closed-loop local
system are —5 and —8.
Assuming the same local perturbations as in Example 1, condition (27) together
with (30) yields, when we desire a-stability with o = 4:
olF; + 4I) > 6(6F) + a(H), i=1,2

With numerical values:

max {|y, |, [y21} + 1e0s | + | €21] + 18221 <079

This condition expresses the combination of perturbation in local and inter-
connection parameters that can be tolerated to have o-stability with & = 4.

Example 4

We use the same process as in Example 3, but include a state estimator in the
local controllers. These are the same as in Example 2.
With « = 4 we get from condition (34)

olF; + 41y < 6(0F) + 6(H), i=1,2
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With numerical values
max {|yy b [721} + legs | + 651 [ + 8521 <0-23

5. Concluding remarks

We have presented a method for analysing the robustness properties of a class of
decentralized control systems. In order to do this we have also discussed the robust-
ness of the local control systems.

The method is based on the use of singular values. To facilitate the analysis we
have assumed that the local closed-loop systems are designed so that they have real
(and of course stable) eigenvalues.
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