MODELING, IDENTIFICATION AND CONTROL, 1986, VOL. 7, NO. 3, 129-144
d0i:10.4173/mic.1986.3.2

Man-machine interface design for modeling and simulation software
ARNSTEIN J. BORSTAD+

Keywords: computer aided design, interactive software, man—machine interaction,
software prototyping, modeling, simulation.

Computer aided design (CAD) systems, or more generally interactive software,
are today being developed for various application areas like VLSI-design,
mechanical structure design, avionics design, cartographic design, architectual
design, office automation, publishing, etc. Such tools are becoming more and
more important in order to be productive and to be able to design quality pro-
ducts. One important part of CAD-software development is the man-machine
interface (MMI) design.

A more non-typical CAD application, which is currently addressed by
Statoil’s R&D Division, is modeling and simulation. The use of simulation as a
tool for studying complex dynamical systems has become increasingly important
during the last decade. Several systems have been developed in the past to
accomplish this task. Unfortunately, these systems are not particularly *user-
friendly’. To be able to apply modeling and simulation effectively as a design
tool, the quality of the user interface of the simulation systems has to be
improved.

In this paper the importance of a careful man-machine interface (MMI)
design in CAD software is stressed. A general characterization of the MMI issue
is given, along with some general MMI design principles. The prototyping
approach to MMI specification, which involves user participation, is advocated.
Finally, some details on a prototype developed at Statoil on MMI for advanced
simulation systems are described.

1. Imtroduction

Today’s computer systems are not very good at communicating with their users.
They often fail to understand what their users want them to do and they are unable
to explain the nature of the misunderstanding to the user. In fact, it is the common
experience of users of interactive systems, whether novice or experienced, infrequent
or regular, that communication with their machine is a time-consuming and frus-
trating experience. (Foley et al. 1984, Kantowitz et al. 1983, Sime et al. 1983.)

One important contributing factor to this man—-machine communication barrier,
is that the man—machine interaction problem is often underestimated among com-
puter system developers. Many of the principles applied to MMI design may seem
obvious. However, when the time comes to design a user interface, the principles are
all too often forgotten. Presentations, procedures, terminology, etc, that are obvious
and clear to the computer specialist, can be difficult and even impossible to under-
stand for the user (Fig. 1). The computer expert is easily fascinated by sophistication
in programming tools, and the MMI could, from the user’s point of view, be nega-
tively influenced by this appreciation. Moreover, there is often pressure to get the
system running as soon as possible, which leaves insufficient time for a thoughtful
design to be developed. Thus, the user interface is consequently designed for ease of
implementation rather than ease of use.

Received 11 February 1986.
+ Statoil A/S, Research & Development, N-7000 Trondheim, Norway.

130 A. J. Borstad

COMMAND
ERROR

FORMAT

Figure 1. The Man-machine communication barrier. (Gaines et al. 1984.)

One way to enforce the development of quality MMI is to pay more systematic
attention to MMI in the specification phase of a computer system project, as
opposed to adding the MMI after the system has been developed.

2. General characterization of MMI

Traditionally, not only the development of computer systems, but also the use of
computer systems, has been restricted to computer systems’ specialists. Today, this
is not so. Computer systems have become an important tool in various application
areas, and it must be possible to interact effectively with such systems, without being
a computer expert. Thus, the design of man-machine interfaces has become an
important issue in the design of computer systems. (Gaines et al. 1984.)

A majority of the computer systems developed in the past tend to have a
sequential- or batch-oriented structure. A set of program modules is accessed in a
sequential and predetermined order. One easily ends up with this structure when the
system development is focused on the computational or internal software itself, and
its performance. The inputting and outputting formats are added at the end, because
they have to be there. No efficient dialogue with the computer system is possible
with this structure, since the information flows go in one direction. We say that the
user has only serial access to the system.

In order to achieve a quality MMI, a more dialogue- or interactive-oriented
structure is preferable. (Gates 1984.) Here, the user has the initiative, and can inter-
act with the computer system on his own terms. The computer system becomes an
effective tool where the user has access to the system in a variety of ways, dependent
on what the user needs. Hence, the repertoire of program modules can be accessed
in the order chosen by the user. We say that the user has orthogonal access to the
system. To be able to successfully design a computer system with orthogonal user
access, considerable emphasis has to be put on the MMI design at an early stage of
the development process. (Alavi 1984.)

Our objective is to design quality MMI. To be able to do that professionally,
some attributes have to be associated with the term ‘quality’. There are currently
no standards by which to measure the quality of MMI. In the MMI-literature the
term ‘user-friendliness’ is frequently used as a quality attribute. The term entered
the language of computer advertising before it entered the language of computer

Man—machine interface design for modeling and simulation software 131

engineering. User-friendliness certainly gives us a flavour of what quality of MMI
means, but the term is too imprecise for our purposes. We need a more formal
definition of quality.

The term man-machine-interaction (MMI) can be defined as information or
data exchange between a human and a computer system and its software. The infor-
mation exchange, or rather the dialogue between man and machine, conceptually
consists of two parts. One is the formalization (input) part, and the other the presen-
tation (output) part. The quality of the user interface is reflected by the degree of
coherence in the information exchange or the dialogue.

A dialogue is said to be coherent when,

(1) it is possible for the user to formalize his input in a way which is understood
and used correctly by the machine

(ii} the presentation gives the user the best possible understanding of the current
state of the system

A definition based on psychology and physiology (Foley et al. 1984) can also
provide some insight into the problem of designing quality user interfaces, as indi-
cated in Fig. 2. Interaction with a computer involves three types of human processes
or activities: perception, cognition and interaction. Perception is the process for
receiving and transmitting information from the computer to the human brain. Cog-
nition is the process by which the user assigns meanings to the perceived informa-
tion, and makes decisions based on those and previously accumulated information
already stored in his mind. The interaction comes into play when the user, having
received, recognized and decided how to respond to the presented information, per-
forms an input action. A quality user interface minimizes the time spent on percep-
tion, cognition and interaction, To design quality user interfaces is not a trivial
matter. In the design process it could be useful to think of interpersonal communi-
cation as an analogy, because there are various desirable attributes of interpersonal
conversation and language which should be preserved in a user-computer dialogue.
Another useful analogy if you are designing a graphical screen interface, is to char-
acterize how documents and tools, or more generally, how various pieces of infor-
mation are arranged and manipulated on a person’s desk.

Computer o
i
_—Teeee.ll. ;
........... ,:- S
= e Perception
e
I
-
1
1
1
1
: Cognition
1
1
1
1
1
I
i I
C& h , Interaction
]]
]

Figure 2. The MMI human processes.

132 A. J. Borstad

To summarize, a quality user interface is one through which the user carries out
the intended work with minimum conscious attention to his ‘tools’ and maximum
task effectiveness.

3. General MMI design principles

General MMI design principles, which are independent of the application, can
be extracted from relevant literature on the subject. The literature on MMI is vast,
but diverse, fragmented and multidisciplinary. (Burch 1984.) Since computer tech-
nology is rapidly changing, literature from recent years is of major relevance. The
guidelines embedded in the literature have been derived from a combination of
human factors and ergonomics research and experimentation, and on practical
MMI-design experience from different projects. However, a considerable part of the
MMI designs reported seems to be based on ‘ad-hoc’ reasoning and ‘common
sense’ thinking, and seems to lack a scientific basis. Nevertheless, a set of MMI
design principles should be established for the project. These principles should be
kept as a framework for the design. A set of such principles is given below (Foley et
al. 1984, Vershel 1984):

Consistency

A man-machine interface is consistent when the display and the inputting
formats are uniform and lack exceptions and special conditions. The purpose of
consistency is to allow the user to generalize knowledge about one aspect of the user
interface to other aspects. Consistency reduces the user’s need for memorization and
the possibilities for misunderstandings.

Context-preserving interface

A man-machine interface is context-preserving when the context in which the
user operates is reflected in the interface design, i.e. the state of operation of the
system is apparent from the actual information available to the user. A context-
preserving dialogue helps to maintain clarity in the user’s working session, reducing
the need for memorization, and increasing the user’s efficiency. As a consequence of
this, a computer display should never be blank, but always indicate what is going
on.

Application-oriented terminology

The user interface terminology should be based on the user application and not
on specialized terminology related to software development disciplines, which is
irrelevant to the user. Obviously, a computer system is most easily operated when
the computer is able to speak the language of the user.

Revelant information presentation

The dialogue or the information presented to the user should always be relevant
to what the user’s needs actually are, ie. the user should not be distracted by
occurrences that are not related to the current state of operation, or by internal
program changes or whatever it might be that appears irrelevant to the user.

Man-machine interface design for modeling and simulation software 133

Natural grouping of information

A man-machine interface is conceptually an organization of the exchange of a
larger set of more or less related pieces of information between the user and the
computer software. Obviously, the different pieces of information should be grouped
or ordered in a manner which appears natural and logical to the user.

Flexibility

To be able to operate the system effectively, it should be possible for the user to
invoke the various parts of the computer system in a non-sequential and non-
predetermined order, ie. it should not be necessary to go through sequences of
operations which are irrelevant to the user’s particular choice of operation.

Feedback

The computer system should give an immediate feedback in response to the user
inputting action, i.e. if the input has been accepted, by reporting the effect of the
action, and indicating the state of operation. Ideally, the user should have the feeling
that he is conversing with the machine.

Robustness

The man-machine interface should be robust in the sense that it should not
‘crash’, i.e. become involved in endless computer loops, fail, produce nonsense, or
get wound up in the system software, as a result of an incorrect input. Moreover, the
computer should not erase a whole sequence of valid results if the user makes an
error,

‘User-skill -adaptive

The man-machine interface should adapt to the user’s skill level, allowing more
options and choices for the experienced user, and more automatic features for the
novice or casual users. In this way the range of users can fully realize its capability
within the framework of the system.

User-controlled HELP-facility

The user interface should be equipped with some on-line and user-controlled
HELP-facility, which the user can invoke if he needs any assistance. It should be
possible to use the HELP-facility concurrently with other operations, without losing
data or leaving the current environment or context. It should also be possible for
the user to choose the level of detail in the HELP-info.

System developers are likely to claim that the principles listed here are obvious.
Nevertheless, when it comes to MMI design they are often forgotten. One way to
ensure that they are not forgotten, is to ask continuously during the MMI prototyp-
ing if the current design satisfies the principles.

134 A. J. Borstad

4. MMI prototyping fundamentals

Detailed design guidelines are difficult to develop without actually trying out
different concepts of the application involving people like those who will be using
the system. Hence, during the specification phase of a computer system project, a
software prototype for the user interface should be developed and experimented
with.

Prototyping is a well-established method of designing complex hardware
systems. It is also becoming more common in software engineering these days, as a
supplement to traditional software development. (Adamski 1985, Alavi 1985, Rama-
moorthy et al. 1984.) Prototyping means building or designing with a new tech-
nology or for a new application while the feasibility of the design is questioned.
Therefore, prototyping is basically a feasibility study that aims at demonstrating
system aspects which are critical to the user. One such important aspect is the user
interface. The traditional approach to software development permits little feedback
from the users until the coding stage, i.e. very late in the development project. Pro-
totyping, however, is a practical way to cultivate and achieve user participation and
commitment to the project from its earliest stage.

MMI prototyping seems to add an extra dimension to the creative process of
MMI design, since it appears easier to explore and try out different concepts. MMI
prototyping is an iterative and incremental activity where important aspects of the
user interface are experimented with. The prototype usually undergoes various
experimental stages, with user participation and feedback at each stage, which are
taken into consideration in the next and improved version of the prototype. To
obtain representative feedback, user participation should include a number of
persons and different categories of users, since human reactions and preferences are
diverse and not easily predictable. The different stages in the prototyping process
are illustrated in Fig. 3.

During the design the prototype should be checked against general MMI design
principles established for the project. The idea is that the MMI prototype should
evolve into a basis for a quality MMI design of the application at hand. The proto-
type does not need to be implemented with the same hardware and software as the
final system. On the contrary, it could be beneficial to choose some special hardware
and/or software to speed up prototyping productivity. The ultimate objective is to
be able to extract a detailed and complete MMI specification as a result of the
prototyping process.

General Desig
Guidelines g
Detailed
Proposed MMI
M“’P_y Design Specification

Figure 3. The prototyping process.

Man-machine interface design for modeling and simulation software 135

5. CAD in modeling and simulation

5.1. Perspective on simulation software

The use of simulation as a tool for studying complex dynamical systems has
become increasingly important during the last decade. (Spriet et al. 1982, Tysse
1985.) Several software systems have been designed to accomplish this task. (Rimvall
et al. 1985.) Unfortunately, these systems are not particularly ‘user-friendly’. Most
of them tend to have a batch-oriented structure where the user has to access a set of
separate program modules in a sequential or predetermined order, in order to com-
plete a simulation study, as illustrated in Fig. 4, i.e. separate programs for modeling,
simulation and analysis of results, and where intermediate data are stored on files.
Tools which include data-assisted documentation and reporting are scarcely avail-
able, which means that the user has to do a lot of manual work to produce a
simulation report. Each program module often has its own, specific user interface,
which means that the user has to learn how to operate a set of programs, rather
than one program.

To be able to apply modeling and simulation effectively as a design tool, the
quality of the user interface of simulation systems has to be improved. (King et al.
1984, Symons 1985, Tysse 1985.) In an advanced simulation system all the typical
simulation activities: modeling, data specification, presentation, analysis and report-
ing, should be integrated via one common user interface, as indicated in Fig. 5. The
user interface should be user-driven, interactive and flexible, in such a way that the
user can carry out the intended work with minimum conscious attention to the
‘tools” and maximum task effectiveness.

i G
Sl = ¢

PARAMETER Simulation _._((
¥

i

COMPILING i
LOADING Presentation
RUN
I S
LISTINGS .
PLOTTING Analysis | —pq |
PACKAGES A Y - AY .
! . i
STATISTICAL .
PACKAGES ! Reporting :
- * - ol

Figure 4. Typical structure of existing simulation software.

5.2. MM I-prototype developed at Statoil

Statoil's R&D division in cooperation with A/S Veritec and A/S Computas
Expert Systems, has developed an MMI prototype for advanced simulation systems,
where the MMI-design philosophy advocated in this paper has been adopted.

136 A. J. Borstad

INTEGRATED

USER
INTERFACE ’

Figure 5. The integrated user interface of an advanced simulation system.

Emphasis has been put on the user interface itself, and minor effort has been put in
to the background software. The purpose of developing the prototype has been
twofold:

(@) To demonstrate today’s possibilities with repect to quality user interface
design

(b) An experimental basis for specifying a user interface of a simulation system
to be developed.

The prototype has been developed on a Xerox 1108 workstation, a 16 bit computer
with 1-5 Mb memory, 42 Mb rigid disk, a bit-mapped high resolution screen
(1000 x 800 pixels), and a ‘mouse’ as the main interaction device. The basic prog-
ramming language is Interlisp-D, a major dialect of the LISP language. In addition,
a high level extension to Interlisp-D named LOOPS is used. LOOPS offers object-
oriented, data-oriented and rulebased programming in addition to procedure-
oriented programming which is available through Interlisp-D. Interlisp-D/LOOPS
is integrated in an interactive development environment. The equipment is suited to
experimental programming, i.e. rapid prototyping, since frequent structural changes
of programs can be undertaken with minimum effort.

The MMI prototype is highly graphical-oriented with various objects coded as
iconic symbols. The screen is organized with multiple windows, representing differ-

Man-machine interface design for modeling and simulation software 137

ent parts of the user interface, and this makes it possible for the user to interact with
different aspects of the user interface simultaneously. The user interface is ‘mouse’-
driven, i.e. operations are selected and activated by pointing at icons or at menu
selections.

5.3. Elements of the user interface

User activities with functions. The user interface is operated via a finite set of
User Activities, which are accessed via a menu, Fig. 6(a). Each User Activity consists
of a set of User Functions, which is implemented as a submenu, see Fig. 6(b) for the
Modeling Functions menu. Both User Activities and their Functions are selected
with the mouse. The menu selection currently being active is displayed on a black
background. The User Activities are defined as follows.

Modeling is defined as the User Activity for building a model of linked com-
ponents. The user can fetch a relevant set of components from a Component
Library. Each component is symbolized with an icon, and the components are
linked by drawing connections between the terminals of the component icons. The
model is denoted the Active Model.

Data Specification is defined as the User Activity for specifying data to the com-
ponent variables. The data are entered in a component data window. The complete
set of data for all components in the Active Model, is denoted the Active Dataset.

Simulation is defined as the User Activity for simulating an Active Model, with
an Active Dataset, over a specified time horizon, resulting in a set of Active Results.
A user-selected subset of the Active Results can be displayed during simulation.

| Aodelling

Store

Delete

Link

Fetch

Move

Copy
Modelling Mirror image
Data Specification Data Specification
Simulation Simulation
Presentation |Presentation
Analyses Analyses
Reporting Reporting

(a) (b)
Figure 6. (a) User Activity menu. (b} Modeling Functions menu.

Presentation is defined as the User Activity for selecting a subset of Active
Results to be displayed during simulation. Active Results can also be replayed here
after simulation.

Analysis is defined as the User Activity for analysing Active Results. (Not imple-
mented in the current version of the prototype).

Reporting is defined as the User Activity for documentation and reporting of a
simulation experiment. (Not implemented in the current version of the prototype).

Information objects. The User Activities with Functions operate on various
Information Objects. The Information Objects are: Active Components, Active
Model, Active Dataset, and Active Results, Fig. 7.

138

A. J. Borstad

Component Tank {12}
Vakse

[Paramater Unit
Tank srca 1000.0 M2
jDenziny of flwid 1000.0 KGSMT
Initial imput flow 200.0 Miss
Inivial Level 2.0 L

10 x Walva Flaw
10, 5

. B8Z2 840000818 121416, 1830,
Thae (o)

Figure 7.

Active Components

A relevant set of components currently in use
for modeling. The components are fetched
from the Component Library by the user and
displayed in a separate window labeled Active
Components.

Active Model

The model currently under consideration. The
model is represented as a flowsheet of linked
components and is displayed in a separate
window labeled Active Model. The visual part
of the flowsheet can be changed by scrolling
the window. Models can be stored and fetched
from a Model Library.

Active Dataset

The dataset currently under consideration.
Data is displayed in a separate window
labeled Active Dataset for one component at a
time. Datasets can be stored and fetched from
a Dataset Library.

Active Results

The results generated by simulating the Active
Model with the Active Dataset over a specified
time horizon. A user-selected subset of the
results is displayed in a separate window
labeled Active Results. Results can be stored
and fetched from the Results Library.

Information Objects.

General Functions. A set of General Functions has been included, which can be
invoked independently of the context in which the user is working. These functions
are, Help, Print, and Text, and are implemented as icons, which can be activated by
the mouse, Fig. 8. The function currently active will be displayed on a black back-

ground.

General Functions

Figure 8. General Functions.

Man—machine interface design for modeling and simulation software 139

Help

By pointing at this icon the user will get a textual description of how to operate
the system, “detailed’ or ‘summary’, displayed in a separate window labeled Help.
This Help function comes in addition to the context-dependent Help-information
presented in the Messages window.

Print

By pointing at this icon and a window on the screen, a hardcopy print of the
chosen window will be generated. If the user points at the background of the screen,
a hardcopy print of the total screen is generated.

Text

By pointing at this icon the user can write a text (comment or annotation), and
place it anywhere in the Active Model window or the Active Results window.

Library Icons. Access to the four Libraries, Component Library, Model Library,
Dataset Library and Results Library, are made via a set of Library Icons (Fig. 9),
which are activated by using the mouse. A list of the content of a Library is shown
in a window which opens when pointing at a particular Library Icon with the
mouse. The user functions fetch, store and delete are applicable on all Libraries
apart from the Component Library, which has read-only access via the fetch func-
tion. The content of the Libraries is organized in a hierarchical way, Fig. 10. A
model can have several Datasets, and several Results can have been generated from
a Model and a Dataset.

Figure 9. Library Icons.

Component
Library

M1 M2 Maodel

Py

D11 D1.2 Dataset

Ri11||Rrit2]||Rr113 Results
Library

Figure 10. Organization of libraries.

140 A. J. Borstad

Status Information

The user interface also includes various kinds of Status Information, which mon-
itors the current use of the system, and hence has a context-preserving function. The
Status Information includes: Login/Logoff-icons, System- and User Identification
Icon, Clock Icon, Calendar Icon, Flowsheet Overview Window, and Messages
Window, Fig. 11.

Login/Logoff Icons
LOG The user logs in and out of the system by
IN pointing at these arrows with the mouse.
LOG
out
Version: Dec 19, B6 System-and User Identification Icon

Displays the system’s name and the current
version, and the user currently being logged
on.

Clock Icon
Displays current time.

Calendar Icon
Displays current month and day.

Flowsheet Overview Window

Shows which part of the Active Model that is
currently displayed in the Active Model
window. The window is updated on invoking
the scroll icons.

Messages Window

Displays mouse button help texts, and status
messages from the system. Old messages are
displayed on shaded background.

Point at a window or The background to Qe
the sntire ECresh, and prese Tert souss

butron

Hardcopy of window 13 sent to printer
[From printus:

Status: Spooler busy; will retryl

¥indow Image on printus: —— Cospleted
Window Image on printus: —- InProgress
¥indow Image on printus: -- Comwpleted

Figure 11. Status Information.

5.4 MMI conceptual model

The various user interface elements can be summarized in a conceptual model,
as depicted in Fig. 12. The user interface is operated via a set of User Activities.

M an-machine interface design for modeling and simulation software

MMI Human
Elements Processes

r == STATUS INFORMATION
! :
1 -
]
]
= — 1 :
! LIBRARIES - : =
] — - .
! :
' \ :
! :
! : PERCEPTION
<d_] USERACTIVITIES - .

WITH FUNCTIONS : COGNITION

y INTERACTION

|_.’ WORKING AREA

]

[]

[]

]

I

]

]

1

]

1 WITH

] - —— .
I

e] INFORMATION

1 OBJECTS

]

:

1 A

1

]

1 : _
'=—-1 GENERALFUNCTIONS [. >

Figure 12. MMI conceptual model.

141

Each User Activity consists of a set of Functions. Various Information Objects can
be inspected and interacted with by these Functions. The Information Objects can
be stored in and retrieved from a set of Libraries. In addition to the User Activities
with Functions, a set of General Functions, which are generally available, has been
included, ie. they do not belong to a particular user activity. To preserve the
context of the operation of the user interface, a set of Status Information objects,
which monitors the current use of the system, has been included. The user interface
has been organized in a way which tends to minimize the human processes involved,

i.e. perception, cognition and interaction.

Status Information and Library lcons

General
Working Area Functions
with and
various User
Information Activities
Objects with

Functions

Figure 13. Principal screen organization.

A. J. Borstad

142

‘Juiopo A “inoAe] usdIds pajeidg 1 2ndig

21038

sRew| IOl
80Py

EAEIET el

497
Adop

L0

wo3Ing
ssed pue ‘UselIs BJLIUG Y3
400G Y3 JO AOPULA @ e Juldd

Man—machine interface design for modeling and simulation software 143

The various information elements have been organized on the screen as indi-
cated in Fig. 13. The Status Information and Library Icons are located at the upper
part of the screen, General Functions and User Activities with Functions are at the
rightmost part of the screen, whereas the various Information Objects cover the
largest part of the screen which we call the working area. The content of the
working area is dependent on the user activity currently being active. As an
example, the detailed screen layout during Modeling is shown in Fig. 14.

6. Concluding remarks

An outcome of the current expansion in the use of computers, is the growing
number of users without formal training in programming or computer technology.
Such users wish simply to apply the computer as a useful tool in their daily work,
and are not interested in becoming computer professionals or in understanding
details of the application system. Today, poor usability in a myriad of forms is one
of the main complaints of computer users. In order to design software systems
which permit an effective relationship between people and computers, it is necessary
to focus on the MMI design. Modelling and Simulation is a typical application
where a lot can be achieved by enhancing the quality of the user interface. The main
elements of the user interface for this application have been elaborated in this paper.

ACKNOWLEDGMENT

The preparation of the paper was supported by Statoil. The author is thankful
to Magne Fjeld at Statoil, who suggested publication of the paper, and who contrib-
uted with valuable comments on the organization of the paper.

REFERENCES

Apamskl, L. (1985). The prototyping process, Systems International, June issue, Vol. 13, No. 6,
91-92.

ALavi, M. (1984). An assessment of the prototyping approach to information systems devel-
opment, Communications of ACM, June issue, Vol. 27, No. 6, 556-563.

BURCH, J. L. (1984). Computers: The Non-Technological (Human) Factors. A recommended
reading list on computer ergonomics and user friendly design (The report Store).
Fotey, J. D, and van Dam, A. (1984). Fundamentals of Interactive Computer Graphics

(Addison-Wesley).

GAINES, B. R, and SHAW, M. L. G. (1984). The art of computer conversation (Prentice Hall).

GATES, B. (1984). The efficient user interface. Systems International, Nov issue, Vol. 12, No. 11,
131-132

Kantowirz, B. H., and SorkN, R. D. (1983). Human Factors: Understanding People—system
Relationships (John Wiley & Sons).

KING, R. A, and GRay, J. O. (1984). A graphical man—machine interface for CAD and simu-
lation of dynamic systems, Presented at the 6th European Conference on Electrotech-
niques EUROCON 84—Computers in Communications and Control.

RAMAMOORTHY, C. V., PRAKASH, A, Tsal, W.-T., and Usupa, Y. (1984). Software engineering,
problems and perspectives, IEEE Computer Magazine, Oct issue, Vol. 17, No. 10, 191
209.

Rmmvarr, M., and CeLLier, F. (1985). Evolution and perspectives of simulto nuae oloig-
teCSSLsadad, Modeig, Idenfcato otrol, Vol. 6, No. 4, 181-199

Sime, M. E., and Coomss, M. J. (1983). Designing for H uman—computer Communication
(Academic Press Inc.).

144 A. J. Borstad

SeRIET, J. A, and VANSTEENKISTE, G. C. (1982). Computer-aided modelling and simulation
{Academic Press Inc.

Symons, A. (1985). What is user friendliness in modelling and simulation? Proceedings of the
Summer Computer Simulation Conference 1985. pp. 69-73.

Twsse, A. (1985). Simulation as a tool in operational safety, reliability and control, Modelling,
Identification and Control, Vol. 17, No. 13, 127-140.

VERsHEL, M. (1984). Designing user interfaces for engineering design systems, Proc. Int. Con-
ference on Computer-Aided Design, ICC AD-84, pp. 218-220.

