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Variable quotas, irreversible investment and optimal capacity in the
fisheries
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We study the adaptation of a fishing fleet to a situation involving variable quotas
of catch and irreversible investment. The theoretical results obtained here are
applied to Norwegian industrial fisheries.

1. Introduction

The domain of fisheries management is beset with uncertain factors, many of
which are associated with the population dynamics of commercial stocks. Notably
the recruitment to the parent stock is highly variable and not easy to predict. As a
result, annual quotas of the allowable catch will fluctuate so that even a potential
equilibrium will take the form of a probabilistic distribution. In fact, the concept of
a stochastic steady state means that all random parameters are obtained by repeti-
tive sampling from a time-invariant distribution (Arrow, Bekermann and Karlin
1958).

This paper is concerned with how to adapt the catch capacity to such an equi-
librium situation. Here the quotas of catch are random and unveiled each year as
drawings from a permanent lottery.

This emphasis on a situation where the fish stock is in stochastic equilibrium is
certainly worthy of criticism. The only defence is our hunch that an attack on more
complex problems will be facilitated by a thorough understanding of simple models
like the one studied here.

Under this assumption, that the stock is in equilibrium, we shall study the best
path of capacity expansion as well as the problem of how to retract if excess capac-
ity is in store.

These issues reside in the domain of capital management (Mirman and Spulber
1982, Mirman and Zilcha 1975, or Reed 1974) and have been studied in a context
akin to ours by several authors (Charles 1981 or Clark et al. 1979). However, our
focus is as much on the comparative statics of the equilibrium as it i1s on capital
adjustment.

A primary aim is to explore how the economic parameters and the variability of
the annual quotas work together to affect the optimal long-term choice of catch
capacity. In this endeavour we are motivated by several questions:

If investment is irreversible, how does the path of capital expansion differ from
that of retraction?

— When is it prudent to ignore stochastic considerations?

— What are the effects of misspecifying a stochastic model?

— How will greater uncertainty affect the choice of capacity?
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Figure 1. The relation between catch and quota for given capacity.

In addressing these questions we shall deliberately steer away from much of the
complexity of the real world and concentrate on the following principal mechanism.

Suppose that planning is undertaken with no risk aversion. This means that the
utility function of money is linear and the relevant criterion for choosing between
lotteries is the expected present value of the associated flow of income. Moreover,
suppose that costs and revenues are linear functions of the intensity of productive
activities. Then it seems that the entire decision problem is linear throughout, and
consequently, uncertainty appears to be of no importance at all. This is only on the
surface of things, however. It takes only a moment’s reflection to acknowledge that
catch capacity might occasionally be constraining, and, most important, this intro-
duces an important nonlinearity into the problem. This is illustrated in Figure 1
above.

In Figure 1 note that if the quota allotted to the fleet is distributed as alternative
a or ¢, then uncertainty has no bearing in terms of expected catch. By contrast, if
uncertainty occurs in the region of ‘strict concavity’ (the kink point), as does alter-
native b, then it becomes mandatory to account for the resulting lack of symmetry,
namely, no addition to the quota above level b may compensate for the loss
incurred if the quota drops below this level. The upshot of all this is that even under
risk neutrality in terms of money income, the capacity constraint works its way
through the problem so as to render us risk averse with respect to variations in the
quota.

This paper explores how we ought to adapt to this kind of situation. Right at the
outset one should be aware of the dynamic feature of this planning problem. In fact,
it embodies two-stage optimization. In the first stage one chooses the desired level of
catch capacity. Then, in the second stage, being faced with a specific realization of
the quota, one may have to mitigate adverse effects of a tight capacity constraint. In
this respect there are several avenues to pursue. For example, one may, if need be,
extend the fishing season, increase the speed of the vessels, work overtime at the
processing factories, trade quotas and so on, cf. (Brekke and Wallace 1984 or Flam
1984). Here we shall simply ignore all of these possibilities and assume that the only
feasible second-stage action is to catch as much as possible of the quota in the usual
manner of operation. Admittedly this simplification misrepresents the flexibility of
the system, that is, the actual ability to cope with random variations is underesti-
mated. Therefore we shall end up providing one-sided estimates of the optimal catch
capacity, i.e. we shall systematically produce overestimates.

Yet we think that the simple approach adopted here has its own merits. In the
first place it easily provides approximations to the optimal capacity. Secondly, these
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approximations have a built-in safety margin because second-stage recourse actions
have been neglected. Such actions would, if needed, occasionally increase the capac-
ity to the effect of producing a higher long-term profit.

The paper is organized as follows. Section 2 introduces the model of optimal
investment under conditions of irreversibility. The best investment strategy is
described in Section 3, theorems 1 and 2. It will be seen that the irreversibility of
investment induces a glaring lack of symmetry in the path of capital adjustment.
Specifically, if there is an initial shortage of capacity, then an immediate expansion
up to the long-term level is justified. By contrast, if capacity is in excess supply, then
only some part of it should potentially be sold (or scrapped) at once. Afterwards the
long-term target level is to be approached only by the attractive force of depreci-
ation.

We then, in Section 4, continue to investigate how this target level, the golden
equilibrium, depends on the given data. Finally Section 5 sets the obtained results to
work on a practical application. The example discussed there is the capelin fisheries
in the Barents Sea. We demonstrate that existing capacity should be reduced, and
we also suggest how the path of capacity retraction should look.

2. The model

This section introduces the elements of the decision problem. The overall objec-
tive is to maximize the present value of the flow of profits. In order to state the
specific form of this criterion, we first need to specify the dynamics and the eco-
nomics of the problem.

Dynamics

Denote by @, the catch capacity of the fleet at the very beginning of year 1. This
capacity is immediately changed to Q, + I, as a result of investing I, > —Q,. The
capacity in the subsequent year is given by

Q1 =Px Q.+ 1) (1)
where the initial capacity Qg = 0 is specified at the outset and f§ € (0, 1) is a factor
representing annual depreciation.

The sequence of catches (i.e. the quotas) g, g, 45 - . . is assumed to be a realiza-
tion of a stochastic process with independent, identically distributed elements. This
assumption is a stringent one and requires some justification. Towards this we
discuss here a particular model of fishery management which is adapted to the
example that follows in Section 5. Consider a commercial fishery exploiting only the
mature fraction of a stock that migrates to spawn. After spawning the parent stock
dies. Suppose that the operating principle of the managment is to allow for a con-
stant escapement of fish to spawn in order to secure a stable recruitment to the
stock. If this regulatory scheme is effective, and the environment supporting the
stock is stable in a probabilistic sense, then it is realistic to conceive of the annual
quotas as a stochastic residual being sampled from a time-invariant distribution
(Flam 1981). In fact, we shall do so. We regard the probability distribution of the
quotas as data of the problem.! We now turn to the economic parameters of the
problem.

! The example above points to the fact that the distribution itself will be affected by the
regulatory scheme. Thus the choice of this distribution is also a task for constrained opti-
mization.
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Economics

Let n(Q, + I,, q,) denote the single-period profit net of investment costs. This
profit may arise by implementing, in the short term, the most effective activity to
catch as much as possible of the quota g, given the capacity Q, + I,. By way of
example, n(Q, + I,, q,) might equal the optimal value of activity analysis stated and
solved as a linear programming problem (Flam and Storey 1982). We shall invari-
ably assume that = is concave in the first argument.

It remains to account for the cost c(I,) of investment. Note that we allow for
both proper investment (I, > 0) and disinvestment (0 > I, > —Q,). The strategic
response to fluctuations in the quota is likely to be constrained by irreversibility of
capital and costs of adjustment. These inflexibilities imply that the current level of
capacity will often represent a commitment to a particular strategy.

We shall represent the complications of irreversible investment in a simplified
but still realistic manner, namely, let

ctl, if I,>0
dm_{c‘l, if 1,<0

where 0 <c¢™ < c*.

The pathological case ¢~ > ¢ is excluded from further consideration because in
this case one would become infinitely rich just buying and selling capacity. Note
that ¢~ < c¢* implies that ¢ is a convex function. The important specification
¢~ <c*' represents the case where capital is non-malleable (Clark, Clarke and
Munro 1979). Generally this case is represented by ¢(-) being strictly convex at zero.
This happens if the productive equipment is highly specialized and cannot be fully
utilized in any alternative activity.

The criterion

We now collect terms with the objective to maximize the expected present value
of the flow of pure profit, that is, we want to solve problem

o

(P): maximize E ), o{n(Q, + I,, q) — c(I)} ()
=0
with respect to Ig, I, ... subject to Q,,, =8 x (Q,+ I,) with Q, given and
e € (0, 1) being a discount factor.
In the next section we shall give the general form of the solution of problem (P)
the focus being there on the best path of capacity adjustment.

3. Capacity adjustment
3.1. Introduction

The aim of this section is to characterize the solution of (P). We shall be con-
cerned with the transient part of the optimal path and also identify the golden
equilibrium. It will be seen that the case of capacity retraction differs significantly
from that of expansion. In the latter case an immediate adjustment to the equi-
librium level is optimal, whereas if capacity is excessive, the best choice has less of a
bang-bang nature. In fact, capacity should be reduced from very high levels with no
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delay, only to a certain level above the golden equilibrium. From this level we
approach the equilibrium by the force of depreciation.

In particular, it will be seen that the optimal strategy is myopic in nature. This
feature seems to hinge on the linearity of adjustment cost, see capital adjustment
models in (Arrow, Bekermann and Karlin 1958) and inventory models in (Heyman
and Sobel 1984). We find it interesting to note that ‘one-sided linearity” in the
function () suffices to preserve the myopic nature of the solution. This point has
not been fully made in the theory of sequential decisions.

3.3. Analysis

Introduce n(Q):= En(Q, q), x,:= @, + I, and note that I, = x, — fx, , for t > 1.
Then (2) becomes

Qo + Io) — cllo) + ;1 of{mlx,) — cx, — Bx,—,)} &)

We shall find it instructive first to identify the optimal strategy in a heuristic
manner. Later on optimality will be demonstrated by more formal arguments. We
start with discussing the case where the initial capacity Q, is very small. Then it
seems reasonable to assume that investment must be undertaken in each and every
period, ie. I, > Ofor all ¢ > 0. Under this assumption (3) reads

n(xo) — ¢t Ig + afc™ xo + i o'[7lx) — (1 — ef)c* x,] @
t=1

Note that (4) is completely decomposed with respect to time. Thus we may and
should optimize in each single period without any concern for dynamic effects. In
order to maximize (4) introduce

P(x)=mn(x) — (1 — af)c*x 5

Note that P is a concave function. We shall safely assume that P(0) = 0, P(x) > 0
for some x > 0, and P(c0) = — co.

Recall that n(Q, g) is supposed to be concave in the first variable. Then m(Q) is
also concave, and the one-sided derivatives ', (Q), n’_(Q) exist for all Q > 0 with

v (Q) =7 (Q)

Denote the interval [#',(Q), n_(Q)] by én(Q). In the terminology of convex
analysis 0n(Q) is the set of supergradients of = at Q. In general, the assumption that
n(Q) is differentiable is not quite realistic. This motivates the introduction of én{Q).

The standard Fermat’s rule of setting the derivative equal to zero, yields that Q*
maximizes (4) if and only if

(1 —af)c* € on(@Q*) (©)

In the special case where = is differentiable at Q*, the optimality condition (6)
would read

(1 —of)c’ = m(Q*%) (M

Later on we shall see that (6) characterizes a long-term equilibrium. In fact, it is
optimal eventually to reach a Q* solving (6) irrespective of the starting point Q. We
therefore pause to comment briefly upon the meaning of (6).

In equilibrium the left-hand side of (6) equals marginal cost of increasing capac-
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ity in one single period. By temporarily expanding capacity, we incur an immediate
outlay ¢* per unit and we are relieved of the expense fic* associated with replace-
ment one period ahead. (6) says that the resulting marginal cost ‘equals’ marginal
revenues.

We also emphasize that the golden equilibrium is totally unaffected by the
parameter ¢~ as intuition would indicate. Namely, in equilibrium only replacement
with new equipment will take place.

We now summarize our findings so far: If I, > 0 is optimal for all ¢t = O, then (6)
is both necessary and sufficient for optimality. This result is not quite satisfying
since it is conditional upon I, = 0 for all t = 0. In the following theorem we partly
mitigate this situation by taking a first step towards a full identification of the
optimal strategy.

THEOREM 1. Suppose Q, < Q* where Q* solves the inclusion (the generalized
equation)

(1 —ap)* € on(Q*)
Then it is optimal to invest up to the level Q* immediately and to maintain capacity at
this level forever dfter.
Proof

(i) The proof is in two steps. We first identify a sufficient condition for opti-
mality and then verify that the proposed strategy is indeed optimal. It is
convenient to introduce

u(xr - 1» JC,)== ﬂ:{xt) - c(x, - ﬁxr—l)
with x_, = 87 'Q, and x, = Q, + I,. Then (3) becomes

o0
Z e'u(x, 1, X}
=0

Suppose for some sequences x,, p,,t = —1, we have

(pl— 1» —Oﬁp,) € au(xr— 1» xt) (*)
forallt > 0.
Clearly, we may assume that any such sequence (x);Z, is bounded.
It follows that (p)= _, is also bounded. Then we claim that the trajectory x,, t >
—1 is optimal In order to see this, consider any feasible bounded
trajectory y,, t = — 1 starting at y_, = x_,. Then by the concavity of u,
(Y- 15 V) < (X 15 X)) + P (V-1 — Xe—1) — opdly, — X))
Multiply this last equation by of and sum from t = 0 to t = T to obtain

T T
Z a'u(x,._  E) xr) ; Z “’”UG- 1 yl) + aT"-lpT{yT - xT)‘
1=0 =0
Since afpdyr — xr)— 0, we let T tend to infinity and conclude that
X, t = —1 is indeed optimal.
(i) Now consider the trajectory

x_, =p10,,x,=Q*forall t =0.
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Observe that in general
au‘x! 1 X)) = (B 8clx, — Bx, 1), Onl(x,) — ac{xl‘ = Bx, )

Then du(Q*, 0*) = (Bc*, dn(Q*) — c*) because Q* > 0. Thus, it suffices
by the results of (i), namely the inclusion (%), to show that

—afct € on(Q*) — ¢*
but this is the same inclusion as (6). This completes the proof. Q.E.D.

We then turn to the more intricate question: What is the best action if 0, > Q*?
Again we shall be guided by economic heuristics.

Trivially if ¢~ = 0, all of excess capacity should be kept in store to depreciate
until it crosses the level Q*. By contrast, if ¢~ > 0, then there are some holding costs
implicitly associated with excess capaciy, namely the opportunity cost of capital. If
the initial holding of capacity is very high, this opportunity cost will dominate over
the benefits furnished by capacity with low marginal productivity.

Thus it seems that an optimal trajectory should start by selling capacity, if any
at all. Thereafter we embark on an interim path of depreciation until we cross the
level Q* for the purpose of settling there permanently. We now intend to formalize
this argument and state it more precisely. Thereafter comes the best time to prove
that this strategy is in fact optimal.

We shall need some notation. Let

T(Q) = min {t: fQ < 0}

be the minimal time needed to cross the level Q* defined by (6). By theorem 1, if
ever Q, < Q% then it is optimal to restore the level Q* immediately and stay put.
Thus at time T(Q) we should invest the amount

10)=0* — FTQ

at the unit cost ¢*. Observe that T(Q) is an increasing step function which is differ-
entiable everywhere from the right. Thus

ri(Q) = — 7@

Consider two alternative actions at the level Q + AQ: Either sell the amount
AQ > 0 immediately to obtain the value ¢~ AQ, or keep it. Suppose AQ is so small
that T(Q) = T(Q + AQ). Recall that no replacement takes place before time T(Q).
Then the difference between these two projects is

g -1

Y. onBQ + AQ) — r(fQ)] — a"[rQ + AQ) — r(Q)lc* —c"AQ ()
=0

Divide (i) by AQ and let AQ | O.
Then we see that it is profitable to sell marginal capacity immediately if
Q) —1
> Y of W(fQF + o OpTOc (i)
(=0
This inequality should be interpreted as follows: ¢~ is greater than any element
on the right-hand side of (ii). If the converse of inequality (ii) holds, then marginal
capacity should be retained. It follows that we are indifferent between the two alter-
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natives provided
Q-1
c € o In(B'Q)B + o TQRTAH (iii)
=0

To guarantee the existence of a solution @ to (iii) observe that the right-hand
side is a monotone decreasing function of Q. Consequently the two conditions
c¢” < ¢’ and 7'y (o0) < (1 — xf)e” suffice to guarantee that (iii) has a solution.

The condition ¢~ <c*has already been imposed, and the inequalities
7'(00) €0 < ¢~ implying no loss of realism, would take care of the rest. After this
preparation we state forthwith

THEOREM 2. Suppose ¢~ € 39" (af) en(f'Q) + (2f)™@c* for some Q =0
where

T(Q) = min {t: f'Q < 0%}

If Qo > Q, then it is optimal to sell Q, — Q immediately, not invest before time
T(Q) and then to remain at the level Q* theredfter. If Q = Qg > Q*, then no capacity
should be sold or bought before time T(Q,) and one should remain at level Q* from this
time on.

Proof. We start by discussing the latter case when 0 = Q,. Since

T -1

¥(Q)= 3 (@p) on(fQ)+ (f)"@c”

=0

is a monotone decreasing correspondence and ¢~ € ¥(Q), we get ¢~ < ¢ for some

b € W(Qo).

Thus, it is not optimal to sell immediately. However, in the next period Q, =
BQo < 0.

Thus the same type of situation arises once more and again it is not optimal to
sell etc., etc. Now turn to the case Q, > Q. Then ¢~ > ¢ for some ¢ € W(Q,). Thus if
one faces the choice ‘sell now or never,’ then one incurs no loss by selling the
amount @, — Q immediately.

It remains to be argued that the restricted choice ‘sell now or never’ entails no
loss. To see this, suppose that we sold some capacity first at time T > 0. Then
T < T(Q,), because evidently T = T(Q,) would be suboptimal by theorem 1,
However, by selling at time T, the marginal capacity will have produced a marginal
revenue

T-1
Y @By (B'Qo) + () c™
t=0
which of course is dominated by
T—1
c + ;0 @By’ (B'Qo)

Thus the sale should be advanced to time t = 0. This completes the proof.
QE.D.
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4. The optimal long-term capacity

In this section we explore how the optimal steady state capacity Q* depends on
the data of the problem. Recall that 0* solves the problem:

maximize P(Q) = n(Q) — (1 — af)c T Q subject to @ = 0
Since (0) = 0, P(Q) > 0 for some Q > 0 and P(c0) < 0, the inclusion
(1 —ap)c’ e an(Q*)

is both necessary and sufficient for optimality as a result of the concavity of n(Q).

The following proposition records that there is reason to increase Q* if capital
costs are reduced (c* decreases, o or f§ increases) or if the stochastic environment
becomes more favourable. The latter means that the variation is less or that prob-
ability is shifted towards high quotas.

PROPOSITION 1. The optimal steady state capacity Q* will increase in any of the
cases:

@) c* decreases,
(i) o or fincreases,
(iti) Oy n(Q*, q) is increasing in q and the distribution F of q is replaced with
another distribution G such that F = G (in this case the distribution G is
larger than F in terms of first-order stochastic dominance),

(iv) and finally if 8o n(Q*, q) is concave increasing in q and the distribution F of q
is replaced by a larger distribution G in terms of second-order stochastic
dominance.

Proof. In case (i) and (ii) the left-hand side of (6) will decrease. Recall that én(Q¥) is
monotone decreasing. Thus, @* must be increased to restore the inclusion (6).

In case (ii) and (iii) the right-hand side of (6) will increase and Q* must move in
the same direction to maintain (6).

Remark

The case (iv) prompts the following observation. Suppose that G is a degenerate
distribution concentrated at the mean of F. Then G dominates F in the mean
preserving second-order sense. Thus if 5 7(Q¥, g) is concave in g, the optimal capac-
ity under certainty is greater than under uncertainty. This tells that one should
carefully consider the effects of random variation before deciding upon the catch
capacity. The actual importance of uncertainty will of course depend on the data of
the actual problem at hand. We shall return to this issue later on. We now turn to
examples. These will all be of the type

m(Q, q) = wimin (Q, g)) ®)

where u is some strictly increasing concave function. Note that with this specifi-
cation 7(Q, g) is concave and increasing. Consequently, replacing the random quota
g with its mean, causes Q* to be overestimated by proposition 1.

Under specification (8),

0
Q) = L u(q)F(dg) + w(Q)1 — F(Q)).
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and
m(Q) = w'(QN1 — F(Q))

provided Q is a continuity point of F.
Thus at such points (6) becomes

Q* = V(1 —af)c™)
where V is the inverse of u' (@)1 — F(Q)), i.e.
V(y) = sup {Q: w(Q)1 — F(Q)) > y}
fory e [0, u'(0)].

©

The case u(Q) = yQ + J, with y > 0 is interesting. (Note that y > (1 — af)c* is a

minimal requirement to operate the fishery.)
Then

V() = sup {Q: FQ) <1 - y/y}

for y e [0, y].
In particular, if F is invertible,

V) =F'(1 = y/y)
We now give two specific examples applying (10).

Examples

(i) Suppose g is exponentially distributed with parameter u so that
FIQ) =1 —exp (—Q/w), F (@) = —pIn (1 — )

and therefore

(1 - of)c*
*— g ln [ ——
o=~ (5

(10)

(1)

In this case both the mean and the standard deviation of the quota equal
u. Increasing p implies that the distribution F becomes larger in first-order
sense (and also in the second order). Proposition 1(iii) predicts that in this

case Q* will increase. This is confirmed by formula (11).

(ii) Suppose now that g is uniformly distributed on the interval [a, b]. Then

0o (120

Observe that if the fishery is very profitable in the sense that the marginal
cost of investment (1 — ¢f)c” is much smaller than marginal revenue y, then
Q* is close to the maximal quota b. By contrast if (1 — aff)c* is close to p,
then Q* is close to the minimal quota a. Hence, in any case one could incur
significant loss by selecting the capacity (a + b)/2 representing the mean

quota.

5. An application

In this section we put the theoretical results of the preceding sections to work on
a practical instance of the problem. The issue at hand is to decide on the optimal
catch capacity of the Norwegian purse-seiner fleet. The capacity of this fleet could
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potentially be constrained during the capelin fisheries in the Barents Sea. These
fisheries are managed by Norway and USSR on a constant escapement basis.
Norway takes 60% of the catch. Mainly the mature part of the stock is exploited,
and after spawning the parent stock dies.

Thus, it is rather well adapted to the real situation to conceive of the quotas as
being independent and identically distributed.
— We assume that a vessel

— can catch approximately 25000 tons of capelin at the average price of
550 NOK /ton,

— is halfway depreciated after 15 years, i.e. f*° = 1/2 so that § = 0-9548,
costs ¢* = 30 million NOK,

— faces the variable costs 2.3 million NOK, comprising 1 million for fixed expenses
and the rest for wages.

Finally, let the interest rate r = 0-07 p.a. Then off = (1/1 + r) f = 0-89 and the
left-hand side of (6) equals 3-23 million NOK. The revenue created by an addtional
vessel is

25,000 tons x 550 NOK/ton — 2-3 million NOK = 11-45 million NOK

if it is fully occupied throughout the fishery.
Now (6) reads

323 = 1145 (1 — F(Q*)

PROBARILITY
1.0

c.8 -

4N
: N

0.2 -

0.0 “es————— - u v
T 1404 1638 .72 2108

QUOTA

Figure 2. The broken line approximates the empirical distribution P(Q > Quota) in the

years 1971-1983. The dotted line is the exponential distribution

P(Q > Quota) — e—{Qum:—942]a’3-91‘
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Hence P(Q > Q¥) = 0.28. If we identify the unknown theoretical distribution of
the quotas with the empirical one as observed in the years 1971-1983 and displayed
in Figure 2, we find that Q* is close to 1,500,000 tons. This quantity corresponds to
60 vessels. Recall that we have ignored possible recourse actions to be implemented
if the quota is high. For this reason we have produced an overestimate. We also
think that the figures of fixed and variable costs employed above are very moderate.
Both of these reservations would tend to lower the size of the optimal fleet.

At any rate the fleet in 1982 comprised more than 130 vessels. Thus capacity is
in excess supply and less than half the fleet should remain permanently within the
industry. We acknowledge that the existing fleet is by no means a homogeneous
population. The economics of scale and technology indicate, however, that small
and old vessels ought to leave first. We believe that the necessary restructuring of
the industry could make a great leap forward by allowing a free domestic market for
licenses possibly constrained by objectives on regional development. Every trans-
action of licenses should imply an unmodified transfer of a share of the Norwegian
quota from seller to buyer. At present the market is not functioning properly, the
reason being that by adding another license to a vessel, one gets only a dwindling
fraction of the corresponding share. Thus the willingness to pay for an additional
license does not match the price demanded by the seller. Consequently few trans-
ations take place.

Since capacity is excessive, we now address the question of how far the fieet
should be reduced immediately. Towards this analysis we assume that

— the resale value of a vessel ¢~ = 2/3 ¢* = 20 million NOK,

— the marginal revenue d7(f'Q) mentioned in theorem 2 equals approximately
k = 1.1 million NOK for t =0, .. ., T(Q) — 1

(recall that 8n(8‘Q) < én(Q*) = 3-23 million NOK).
Then
1 — (ap)"@ T(Q) .+
= 1—uf k+ (of)'9e

so that T(Q) ~ 6 years and Q = 80 vessels.

This means that the existing fieet should be reduced by resale rather quickly to
about 80 vessels. Thereafter older and smaller vessels should wear out until one
reaches the goal level of 60 vessels.

Note that in the case where the quota is exponentially distributed (see Figure 2),
ie.

P(Quota > Q) = ¢ @9,

then the last part of our argument could easily be made more precise. Indeed. with
w(@) =yQ + 4,
on(f'Q) = yP(Quota > Q)
so that
T -1 T - 1

Zo py enlfQ) =7 ¥ (affe— #Q-ab
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The resulting nonlinear generalized equation
) -1

c € Zo @By en(B'Q) + (p)"@c*

must be solved numerically, however.

6. Summary

There is a well-established tradition within practical fisheries management to be
predominantly concerned with equilibria of the stocks. In this paper we have taken
such an equilibrium, although stochastic in nature, as a datum to which catch
capacity should be adapted. We have demonstrated that the path of capacity adjust-
ment is not the same from below the long-term capacity as from above. The reason
for this lack of symmetry is found in the irreversible nature of investment. We have
also explored how the long-term catch capacity depends on the data of the problem.
We have found (see Section 4, example ii) that one cannot in general predict whether
capacity will be over-estimated when uncertainty is ignored. A precise answer
requires that all parameters, economic and statistical, be considered as a whole.
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