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Diversifying the risk associated with exploration

SJUR D. FLAM#+ and SVERRE STOROYE
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This paper is concerned with the allocation of exploratory efforts under the limi-
tation of a fixed budget. A chance constrained problem is formulated. To solve
this problem an algorithm is developed which is based on the entropic penalty
approach recently presented by Ben-Tal.

1 Introduction

This paper is concerned with the allocation of exploratory effort under the limi-
tation of a fixed budget. The budget constraint could reflect attitudes of the capital
markets that providing additional funds for exploration would increase the risk of
bankruptcy so much that a feasible interest rate would not give adequate com-
pensation. By contrast the expenditure limit on exploration may be self-imposed in
order to preserve corporate control or to avoid increasing the organization’s size so
fast that inefficiences would result.

In any case, managers are faced with a portfolio problem. How should scarce
capital resources be allocated to explore various risky prospects? The standard
portfolio problem in the financial literature takes on the following form:

(PS) maximize Eu(wo Y & x;)
i=1
subject to

n
le'=l, xl,...x,,ZO
i=1

Here x; is the proportion of the budget w, invested in prospect i. The return
distribution & = (£, ,... £,) is most often assumed to be multinormal with known
mean vector and covariance matrix. As formulated here the decision vector x and
the return ¢ have the same dimension. This does not exclude, of course, that €& is
generated by fewer genuinely independent variables. A salient feature of (PS) is the
concavity and the monotonicity of the utility function u. These two properties reflect
the risk aversion and the desire for end-of-period wealth. Finally the non-negativity
constraints prohibit short sales. For an analysis of (PS) and references see Kallberg
and Ziemba (1984), Pulley (1983). This paper is prompted partly by two objections
to the problem formulation (PS).

First, what is the right choice of u? Second, the observed data on economic
returns often refute the assumption about normality. Notably this is so in the
important case of petroleum exploration.

Received 15 November 1985.

1 Chr. Michelsen Institute, Dept. of Science and Technology, N-5035 Fantoft, Bergen,
Norway.

1 University of Bergen, Dept. of Informatics, Allegt. 55, N-5000 Bergen, Norway.




84 S. D. Flam and S. Storey

We have responded to these objections in the following manner. First, risk aver-
sion is excluded from the criterion and rather taken care of by means of a chance
constraint. Specifically, we shall maximize expected revenues in place of expected
utility. Yet we acknowledge the preference for safety by requiring that the portfolio
should furnish a minimal profit with a certain probability p. The exact figure p now
accounts for the attitude towards risk, with p = 1 meaning full emphasis on secure
returns, and p = 0 reflecting the preference of an active risk seecker. We shall find it
particularly interesting to explore how the optimal portfolio depends on p.

Secondly, we shall adapt the distributional assumptions of the portfolio problem
more to the reality of petroleum exploration by allowing for returns to follow any
statistical distribution which has a density. As already mentioned the normal
density does not describe reality very well. Several other distributions have been
used to model oil and gas field-size; among the more frequent ones are the log-
normal, dating back to Allais (1957), and the gamma (including the exponential). In
this paper we shall not specify the class to which the probability distribution belong.
The alternative problem formulation which is to replace (PS) and the associated
algorithm will both tolerate rather general continuous distributions. Only when we
come to computations shall we resort to the convenient and realistic log-normal
specification.

2 The model

This section introduces a formal version of the decision problem. In order to fix
ideas we shall henceforth speek about petroleum exploration. This will, however,
not limit the range of possible applications. As already mentioned we choose to
replace the portfolio selection problem (PS) with a chance constrained problem (CC).
The objective is to maximize expected revenues subject to a probabilistic constraint
on the profitability of the portfolio, In formal terms we seek to

n

(CC) maximize x = Y, 7,x;
i=1

subject to
Py [n(R)x > = min] > p, M)
Ax =b, (2)
and
x min < x < x max, x, 7{R), # € R":x column, n(R) and & rows. 3)

Here,fori=1,...,n,
X; = the proportion of prospect i bought by the company, this proportion being
directly constrained by (3), that is

0 < x min; < x; <xmax; <1, foreveryi;

m{R) = after tax present value of prospect i contingent on the recoverable reserves
R being revealed there. In expectation this present value equals

m; = En(R);

7 min = minimal level of desired profit;

jd = lower bound on the probability of achieving at least the minimal profit
7 min,

P;, = the probability distribution induced by the density f,.

[1]
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The constraint Ax = b of (CC) comprise at least one important restriction, namely
the limit on expenses imposed by the fixed budget. Specifically, the first row of
Ax = b takes on the form

cx = Wg, € R" (row),
where

¢; = the cost of exploring prospect i alone, and
w, = the total budget for exploration.

In addition to ¢x = w,, several other constraints may be in force to account for
ties between different prospects or to reflect concerns about the geographical dis-
tribution of the portfolio. We shall not elaborate more on these additional con-
straints here. Their precise nature will certainly depend on the practical case at
hand. The constraint cx = wg, will never be neglected, however. The joint probabil-
ity distribution of R = (R, ... ,R,) is assumed to be known and to have a joint
density f,, (R). Note that the dimension of R does not need to coincide with that of x.
In fact, the return on different prospect may in reality be determined by a small set
of common factors. Also note that so far we have imposed no assumptions on the
probability distribution apart from the existence of the density f;, . The notation P,
in (CC) is meant to convey that the right tail probability has been calculated by
means of the known density f,. We acknowledge that the precise identification of f;
is a demanding task, see Barouch, Kaufman (1977), Schuenemeyer, Drew (1983).
Here the distribution is simply taken as data.

3 Solution procedure

In this section we outline a procedure for actually solving the chance con-
strained program (CC). In practice we shall have to contend ourselves with approx-
imate solutions. The main approach is designed by Ben-Tal (1985), and we call it the
entropic penalty method.

The main strategy is to relax the troublesome profitability constraint (1) of (CC)
by penalizing solutions that violate it. The precise nature of the penalty function will
soon be given. First it is appropriate to review highlights of the computational
method of exterior penalization as it applies to our problem.

In place of solving (CC) we shall consider the relaxed chance constrained
problem

(RCCy) min P(x, 0) = — 7ix + 6Pg(x)

over all x € R" such that (2) and (3) are satisfied.
Here 6 > 0 plays the role of a parameter and Pg is a penalty function to be
defined. It has the following property:

0 if p(x) = P [#(R)x 2 = min] = p
Pg(x) = .
> 0 otherwise
We note that the profitability constraint (1) of (CC) is now removed and is
included in the criterion by means of the term 6Pg(x). Thus (RCCy) is linearly
constrained and therefore the remaining constraints are relatively easy to handle.
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In principle the penalty method (see e.g. Luenberger (1984)) proceeds by increas-
ing 0 until we are satisfied with the resulting optimal solution x(#). The justification
for this approach lies partly in the fact that with

0, > 0,,
the following inequalities hold:
Pg(x(02)) < Pg(x(6,)). 4)
nx(6,) < nx(8,), %)

P(x(0,),0:) < P(x(0,), 6,)

(4) and (5) tell that as 6 is increased, x(f) becomes ‘more feasible’ at the expense
of lowering the value of the criterion. In the limit as § —» + oc, we obtain

lim 6P (x(6)) =0 (6)
f—++a
and
lim #x(6) = sup (CC) (7)
B—+eo

(6) and (7) suggest that asymptotically x(f) becomes feasible and solves the problem.
In fact, if 6, — + occ and x is an accumulation point of

{x(gl‘. )};O: 1»
then Pg(x) = 0 and
7ix = sup (CC).

For a proof of these results we refer to Mangasarian (1984).

We also want to emphasize that in order to obtain an approximate solution
within a desired feasibility tolerance & > 0 we need only solve (RCC,) for two values
of . Namely, let x be feasible for (CC) and x(6,) an optimal solution of (RCCs,).

If x = mx(6,),
then % is optimal, else for
T
0,>6,0,> m

it follows that
Pe(x(8,)) < o

(see Mangasarian (1984)). It remains to provide a precise definition of the penalty
function Pg(x). It is given in terms of the relative entropy functional, and is accord-
ingly called entropic penalty. It is defined as:

Pg(x) = inf I(f, fo)

where

IS, fy) = f (R) log%% dR
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is the entropic penalty, and where the infimum is taken over all probability densities
fsuch that P, (a(R)x = n min) > p.

A few words about the intuition behind this approach is warranted. For a given
allocation x it may happen that the profitability constraint

p(x) = Py [n(R)x = m min] = p
is satisfied.

If so, we incur no penalty. By contrast, if this constraint is violated, we face a
certain additional cost. This cost is proportional to the “distance’ I(f, f, ) from f; to
the closest density f for which the profitability constraint is again satisfied.

So far the complexity of the formula for Py gives the impression that nothing is
gained. However a dual representation of Py is available which enables us to
compute Py rather easily. For the general chance constrained program

inf {g,(x) : Eg(x,R) > a}
the dual representation of the entropic penalty is given by
PHx) = sup {ya — log| f, (R)e"***'dR},
y=0
g, a,y € R'; y row and g, a columns,

see Ben-Tal (1985).
Now I = 1 in the following.

In our case,

—7x if Ax = b, x min<x < x max

golx) = .

+ oo otherwise,

a=p, and
1 if 7"(R)x > = min
,R) = .
g0 R) {0 otherwise

Recall that

p(x) = P; [®(R)x = n min].
Now introduce

gx)=1—px)and g=1—p.
Then
Pg(x) = sup {py — log[e*p(x) + g(x)1}

y=0

zO if p(x) > p, and

- p log (;—J / %) — log {q(x\(l + ﬁ)} otherwise.

The upshot of all this is that instead of solving (CC) we shall prefer to solve
(RCCy) min — 7x + 6{py — log [€’p(x) + q(x)1}

_ P [px)
y = max (0, log (q / q(x}))'

Ax = b,

s.t
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and
x min < x < x max

for appropriate values of 6.

To actually solve practical instances of (RCC,) involving several linear con-
straints we suggest the reduced gradient method, or variants of it, see Luenberger
(1984). Here we proceed to study the simple case with only one linear constraint,
namely the limitation

CX = W
imposed by the budget. Already at this level it will be seen that computation 1s

fraught with some difficulties. One reason is that usually no closed expression
obtains for

plx) = P [a(R)x > m min]

or its gradient. Therefore one must contend with approximate values produced by
Monte Carlo simulation. The next section will exemplify this.

Another cause of troubles is that the criterion of (RCCy) need not be convex.
Thus we face the possibility of producing only local optima in each iteration of the
method. For a discussion of this see Flim, Pinter (1985).

4. The case with only one linear constraint imposed by the budget
This section sets the solution procedure of section 3 to work on the case where
Ax = b amounts to the single budget constraint
X = Wy
and the reserves
R=(Ry, ..., Ry)

are multi-log normally distributed.
The parameters of this distribution are known, specifically (log Ry, ..., log R,) is
multi-normally distributed with specified mean vector p = (i) = (E log R;) and
covariance matrix

Y. = (o) = (E(log R; — p)log R; — )
i,j=1,... k, see Ferguson (1967).

We shall invoke the nondegeneracy assumption that c; # 0 for all i. According to
the classical Cholesky-factorisation (see e.g. Golub and van Loan (1983)), there
exists a unique lower triangular matrix

€11 0
C=|lca c22
Cr1 G2 Ok
such that
Y =cch.

In fact, it is given, recursively for
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by
j-i
Oij — Z CisCjs
=1
Cy = -1 1/2
s=1
where

Now the procedure for generating a lognormal (R, ..., R;)is as follows:

L. If k is even, generate k independent variables U, , ..., U, from the standard
uniform distribution over the interval [0, 1]. (This might be done by a
random number generator). If k is odd, generate an additional independent
standard uniform variate U, , ,.

2. Let X, =(—21InU,)"2 cos 27U,.
X, =(=2InUy)"? sin 27U,.
X3 =(—2In U3)"? cos 2rU,,
X,=(=2in U3)"* sin 27U,
and so on. In general,
Xe—1 =(—21n Uy_y)"? cos 2nU,,
Xos=(—21n U,,_)"? sin 22U,

k
3 if k is even

fors=1,..., here m =
or s m Wher k+]

2

Then X, ..., X, are independent standard normal variables. This approach

is due to Box and Muller, see Rubinstein (1981) and the references therein.
3. LetY = XC" + 4,

if k is odd

where C is “ the square root” of ) and
= (s eeny i)

Then Y is multinormally distributed with mean vector p and covariance
matrix .

4. LetR = (", ..., e')
Now being furnished with the ability to generate lognormal variates we turn
to the simple version of

(RCCy) min f (x): = —7x+0{py — log [’p(x) + q(x)]}

_ P p(x)
y = max (O, log (q / q(x)))

CX = Wo

s.t.

x min < x < X max
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To solve (RCC,) we shall need to produce surrogate values for f and its gra-
dient
&'Vp(x) + Vg(x)

V)= =8 ) + )

by estimating, p(x) and Vp(x).

The estimate for p(x) (and g(x)) we obtain by Monte Carlo simulation. At the
same time we estimate Vp(x)(and Vg(x)) as finite differences. The estimation of
p(x) may be done as follows:

Let @ be a sufficient large positive integer. Then generate @ versions of R (by
the procedure described):

R®M, ... R@

Then for a given x we estimate p(x) as:
1 .
plx): = 0 (#R%Yx > 7 min)

The algorithm below for solving (RCCy) is an adaption of the reduced gra-
dient method (see e.g. Luenberger (1984)). The notation used is the following:
Let x be such that

cx = wg and x min < x < x max (8)

Pick any non-zero (basic) coordinate xp of x and call it the dependent vari-
able. Denote the remaining (nonbasic) independent part of x by xy.
Then

xp= ¢z w,—cg lenxy, )
and the gradient of f{x) with respect to x is
- eVap(x) + Vyglx)

—_ o =1
r= — iy P + 200 + 7igey ey
Vg p(x) + Vgg(x) .
”( op) +q) )P N (10

Now the algorithm is as follows:

0. Initialization : Given/find x such that (8) is satisfied.
1. Compute directions : Find (9) and an estimate of (10) by using estimates of

p(x), Vp(x), g(x) and Vg(x).

Set
—r;if x min; < x; <Xx max;
. or (x; =x min; and r; <0
(Axy)i: = (; H i )
or (x; = x max; and r; > 0
0 otherwise

2. Use directions : If Ax, = 0 stop, x is a solution to (RCCy)
else let Axy = —cg 'enAxy, Ax = (Axy, Axy)
Find a minimal & min and a maximal « max such that

for all & € [« min, &« max] we have x min < x + aAx < x max
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3. Line search : minimize f(x + «Ax) over o € [« min, o max],
let & be the solution

set
xX:=x + alAx

4. Test: If « min < & < o max then go to 1, else declare the vanishing variable
independent and declare a strictly positive variable in the independent set
dependent. Go to 1.

The computational experience with this algorithm so far is rather limited.
However, some problems with both artificial and real life data have been solved
successfully. Some notes are to be made:

The convergence of the algorithm seems to be rather slow (O(n®) to O(n%)
iterations).

If 6 is selected to be great (i.e. we want to come close to a solution to (CC) at
once), the classical jamming property with this type of method becomes apparent
(see Luenberger (1984)).

The need for using great values of 8 is rather himited since we only need to apply
the (RCC,) algorithm with two different values of 6 in order to get a solution within
a given feasibility tolerance, provided this tolerance is not set too restrictive.

Neither the convergence nor the solution itself seems to be sensitive on varia-
tions in the sample size Q. In our experiments so far we have tried different values of
Q varying from 10 to 10°.
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