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Survey of existing systems for the dynamic simulation
of industrial processest

J. D. PERKINS}

Keywords: Dynamic simulation, mathematical software, CSSLs, flowsheeting.

Dynamic simulation has the reputation of being a costly exercise. Tools to help
reduce the development costs of dynamic models are discussed in this paper.
Mathematical software libraries and CSSLs are briefly discussed from a user’s
point of view. Dynamic flowsheeting packages are classified, and one particular
equation oriented package, SPEEDUP (Sargent, Perkins and Thomas (1982)) is
discussed in detail.

1. Intreduction

Several papers in this conference have sought to establish the importance of
dynamic simulation in the engineering of large processes (Perkins, Howell and
Wong. (1985), Womack (1985), Divakaruni (1985)). Nevertheless, progress in the
consideration of process dynamics in industry seems rather slow. One reason for
this is the high cost associated with the performance of a typical industrial dynamic
simulation study. In this paper, some of the software tools available to help reduce
the costs of development of plant simulations will be reviewed.

It is helpful to begin with a discussion of the attributes of process simulation
problems. This discussion will provide a context within which to discuss the various
software solutions available. A list of key attributes is shown in Table 1. Most simu-
lation problems are described by mixed systems of non-linear differential and alge-
braic equations, and typically somewhere between one hundred and ten thousand
equations and variables are involved. The problem is highly structured, in that each
equation contains only a few of the problem variables, but the structure is not
regular. Many problems are stiff, that is they involve widely differing time constants
(see Norsett (1985)), and therefore require special integration algorithms to be used.
Distributed parameter phenomena are quite common, as are pure time delays. Dis-
continuities of two kinds can occur: explicit, where the change occurs at a known
time in the simulation: and implicit, where a change may occur depending on the
state of the system.

Each of these attributes requires special precautions in order to achieve a solu-
tion. Their combined effect is to make process simulation problems rather difficult
to solve.

The tools available to help engineers in the solution of simulation problems fall
into three categories. First, there are libraries of mathematical software, implement-
ing the algorithms discussed by Norsett (1985) at this conference. Second, there are
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Differential and algebraic equations
Non-linear

Large (100s—1000s of equations and variables)
Structured

Stiff

Time delays, and distributed parameters
Discontinuities

Table 1. Attributes of process simulation problems.

the Continuous System Simulation Languages (CSSLs) which have been excellently
reviewed by Rimvall (1985). Third, there have been efforts to provide for process
engineers interested in dynamic simulation the kind of facility available for steady-
state simulation (i.e. Dynamic flowsheeting packages). This last category will be the
main subject of this paper, but before turning our attention to dynamic flowsheet
simulators, a few comments will be made about numerical software and CSSLs from
a user’s perspective.

2. Some remarks on mathematical software and CSSLs

There is no longer any excuse for engineers to program their own versions of
standard integration algorithms. High quality codes now exist implementing all the
standard algorithms, and recommended software has been listed by several authors
(see Carnathan and Wilkes (1980) and Norsett (1985)). The use of standard codes of
this type reduces the work necessary to develop a dynamic simulation. Nevertheless,
the user of such codes needs to pay close attention to a large number of issues, and
to be knowledgeable in high level language programming and in numerical methods
(in order to understand diagnostics generated by the codes).

The issues to be considered arise from the attributes of a typical problem listed
in Table 1. Many codes are for differential equations only: where such a code is all
that is available, the user must devise a procedure to solve the algebraic equations
for the algebraic variables. He must convert the model from the form

dx
@ = f(x,y) 1
0= g(xay } (2)
to the form
dx
= =1, 3 &)

by rearranging eqn. (2) into procedure to calculate y given x
y=yx) 4

This can represent a significant task, even for a model in the form of eqns. (1)
and (2). For some models (so called high index models, Norsett (1985)) obtaining
this form is non-trivial, involving not only algebraic manipulations but also differen-
tiations of the original equations.

Large, structured problems require the use of sparse matrix software, and it is
the user’s responsibility to set up the structure of his problem correctly for the
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sparse matrix codes. The presence of time delays requires special action. Either this
phenomenon can be represented as a distributed parameter system, in which case
the correct advection equation must be set up and discretized by the user, or the
delay may be dealt with by storage and retrieval of past values.

Algorithms for integration assume smoothness of the solution trajectories. The
presence of a discontinuity may require special action (see Norsett (1985)). Essen-
tially, integration must be stopped and restarted at each discontinuity. This is
straightforward for explicit discontinuities, since the value of the independent vari-
able at the discontinuity is known. For implicit discontinuities, iteration may be
necessary to determine the time where the change occurs. Some codes include fea-
tures to deal with discontinuities routinely; most do not. In the latter case, the user
must deal with the situation himself.

In view of all these complications, it is not surprising that simulation has a
reputation for being difficult and expensive! The objective of CSSLs is to reduce the
complexity by removing many of these responsibilities from users. The user’s
responsibility is to present his problem to the CSSL essentially in algebraic terms.
All other issues are handled automatically. However, it is usually the case that alge-
braic equations must be presented in explicit form (i.e. like eqn. (4) rather than eqn.
(2)). Facilities for the automatic solution of sets of algebraic equations tend not to be
a part of CSSLs, so eqn. (2) is not too easy to deal with. In addition, it can be quite
difficult to establish initial conditions for the model. Many simulation problems are
set up as perturbations from an initial steady-state. Thus, in principle they may be
initialized by solving

flx, ) =0 (5)
gx, ») =0 ()

Some CSSLs contain automatic procedures to enable this kind of initialization; the
majority do not, implying that it is often almost as much effort to initialize a model
as to write the model itself.

3. Dynamic flowsheeting packages

Several workers have sought to provide for dynamic simulation facilities analo-
gous to those provided by steady-state flowsheeting packages. The important attri-
butes of these systems are shown in Table 2.

The Table lists those attributes common to all packages in this class. There are
also significant differences between the packages, most importantly in terms of the
way models are represented in the system and the implied solution strategy. In
steady-state packages, two distinct strategies have emerged. In the first (both histori-
cally and in terms of frequency of use), each process unit is represented as a pro-

Engineering—oriented input

Libraries—process models
physical properties
numerical methods

Process-oriented diagnostics

Table 2. Attributes of flow-
sheeting package.
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cedure which calculates output streams from the unit given input streams to the
unit, and various unit characteristics called equipment parameters. A process model
consisting of units connected together is solved by executing the procedures in
sequence using the results of one calculation as input to the next. Recycles in the
plant are handled by tearing of streams, i.e. guessing and iterating on their values.
Thus strategy is called sequential-modular.

The equation-oriented strategy represents units as sets of describing equations. A
process model is assembled from these unit equations and the equations are solved
simultaneously (exploiting the problem structure appropriately).

It should be noted that the two approaches have few implications in terms of the
way problems are described by users. Both have equally ‘modular’ input languages.
Also, today’s steady-state simulation packages tend to contain features from both
approaches blended in various ways (see Biegler (1983), Perkins (1983)).

The development of dynamic flowsheeting packages has mirrored to some extent
that of steady-state simulations, although as we shall see the classification is not
quite as straightforward. The equation-oriented category is analogous to the steady-
state case: models are represented as sets of (differential and algebraic) equations
and integration is by simultaneous solution of all model equations. However, even
within this category there are differences in the way algebraic equations are rep-
resented and handled. The early attempts were based on the CSSL approach, and
thus required the algebraic equations to be written explicitly in the algebraic vari-
ables (cf. eqn. (4)). DPS (1974) is one example of this type of system. Later packages
e.g. ASCEND (Kuru (1981)) and SPEEDUP (Sargent et al. (1982)) allow arbitrarily
complex algebraic equations with no implication of calculation strategy.

Within the sequential-modular category, there are also two types of simulation
strategy. The different architectures are shown in Fig. 1. The first architecture is
truly sequential-modular, since all calculations associated with a unit are performed
within the unit module, including integration of any differential equations associated
with the unit. This is the class of simulator discussed by Brosilow elsewhere in this
conference (Brosilow (1985)). The second class of modular system has many features
in common with the equation-oriented approach in that all differential equations in
a process model are integrated simultaneously by one global algorithm. The func-
tion of the modules is, given values for the input streams, equipment parameters
(which may now be time-varying) and also the current values of the state variables
for the unit model, to calculate the current output streams, and values of the right-
hand sides of the state equations (1) for the model. An example of a package in this
category is DYNSYL (Patterson and Rozsa (1980)).

Whilst there has been research into the properties of the different approaches to
dynamic simulation, very few dynamic flowsheeting packages have been developed
to a commercial standard. Some exceptions are referenced in the discussion above.
In the remainder of this paper, a project is discussed the aim of which is to develop
a dynamic flowsheeting package for industrial use.

4. SPEEDUP: an equation-based dynamic flowsheeting package

The SPEEDUP project began in the early 1960s at Imperial College. It rep-
resents an attempt to provide an integrated framework for process simulation, so
that process engineers may perform steady-state and dynamic simulation and opti-
mization calculations using the same package. In addition, facilities exist for control
system analysis based on linearizations of the non-linear SPEEDUP model. (See
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INTEGRATION IN MODULES INTEGRATION IN EXECUTIVE
UNIT MODULE INTEGRATOR
CALLER
UNIT MODULE
CALLER
MODULES
MODULES
INTEGRATORS PHYSICAL
PROPERTIES

PHYSICAL PROPERTIES

Figure 1. Sequential modular architectures.

Sargent et al. (1982) for a description of SPEEDUP and its history, and Perkins and
Wong (1985) for a description of the control system analysis facilities.) The latest
version was developed with financial support from Science and Engineering
Research Council and British Technology Group.

The core of the SPEEDUP system is a data-base representing the current state
of the design. Input information and commands for carrying out the various phases
of the design are expressed in a special engineering-oriented language. The system
interfaces with a data-bank which contains design data (plant models, physical
properties, costs) and a library of FORTRAN sub-routines (physical property cor-
relations, numerical procedures) used by the executive.

The information representing the current state of the design is of several distinct
kinds, each of which is stored in its own section of the database. The sections we
shall consider here are those used to specify the simulation problem:

FLOWSHEET The flow diagram of the process, indicating the connections
between the various units

MODEL The describing equations for each of the unit-type occurring in
the process
UNIT The design specifications for each unit

OPERATION The operating policy to be followed during the simulation.
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Figure 2. A continuous stirred-tank reactor system.

A brief description of some of the statements used to define the information is given
below. The statements are illustrated by reference to a simple example; the start-up
of a continuous stirred-tank reactor system. The flow-diagram of the system is
shown in Fig. 2.

Flowsheet. The first step in the specification of problems to SPEEDUP is to
define the process flow-diagram. Each unit in the flowsheet is named, and the con-
nections between units are specified using link statements. The FLOWSHEET
section for the reactor system is shown in Fig. 3.

Model. Each unit type has a MODEL section which gives the describing equa-
tions relating the input and output stream variables and the unit design parameters.
An example of a MODEL section, specifying the reactors in our problem, is shown
in Fig. 4. All text enclosed by the symbols #...# is treated as commentary by
SPEEDUP. As with a FORTRAN sub-routine, the variables used in defining the
model are specific to the model, and can be simple variables or members of arrays.
As well as the describing equations themselves, we must also define the variables
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FLOWSHEET
FEED IS INPUT TO REACTOR 1
OUTPUT OF REACTOR 1 IS INPUT TO REACTOR 2
OUTPUT OF REACTOR 2 IS PRODUCT

Figure 3. The flowsheet section for the reactor system.

MODEL FIRST ORDER_REACTOR
# MODEL OF 1ST ORDER EXOTHERMIC REACTOR A—B #
SET NOCOMP, KEY
TYPE
TEMP_IN, TEMP_OUT, TEMP_COOLING WATER AS TEMPERATURE
PRESS_IN, PRESS_OUT, PRESS DROP AS PRESSURE
MOLE_FLOW_IN,MOLE_FLOW_OUT AS ARRAY (NOCOMP OF
MOLEFLOWRATE
T_MOLE_FLOW AS MOLEFLOWRATE
X _OUT AS ARRAY (NO COMP) OF MOLEFRACTION
BULK_DENS AS DENSITY
NU AS ARRAY (NOCOMP) OF NOTYPE
AREA, HEAT TRANSFER COEFFICIENT AS NOTYPE
RATE_CONSTANT, GAS_CONSTANT,RATE AS NOTYPE
HOLDUP AS NOTYPE
REACTOR VOLUME AS VOLUME
ACTIVATION ENERGY, DELTA_H AS ENERGY
CP AS HEATCAPACITY
STREAM
INPUT PRESS IN. TEMP IN, MOLE FLOW IN
OUTPUT PRESS OUT, TEMP OUT, MOLE FLOW OUT
EQUATION B - B
PRESS_IN
T MOLE FLOW
X OUT *T_MOLE_FLOW

PRESS OUT + PRESS_DROP;
SIGMA(MOLE_FLOW _IN);
MOLE _FLOW OUT;

RATE EXP(_ACT IVATION | ENERGY/GAS_
CONSTANT/TEMP_OUT)
* RATE CONSTANT X . OUT(KEY);
HOLDUP = BULK DENS=x REACTOR_ VOLUME'
# DYNAMIC EQUATIONS FOLLOW #
HOLDUP+EX OUT = MOLE FLOW IN—-T MOLE FLOW
* X ouT
+ NU*RATE & HOLDUP;
HOLDUP = CP
« TEMPOUT = T MOLE IN—T MOLE FLOW
+X OUT
: + NU*RATE+* HOLDUP
HOLDUP » CP
* TEMP OUT = T MOLE FLOW xCP *(TEMP _IN -

TEMP_OUT)
~ RATExHOLDUP » DELTA H
- AREA »HEAT TRANSFER
COEFFICIENT
*(TEMP OUT — TEMP_COOLING
WATER) ;

Figure 4 A MODEL of a continuous stirred-tank reactor.
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associated with each input and output stream, and as in FORTRAN we must define
the dimensions of any arrays of variables so that the appropriate storage can be
allocated. The MODEL section therefore has various subsections:

SET. This section is used to declare those variables (e.g. array dimensions) which
must be set in order for the model to be defined. In addition the SET section may be
used to give values to physical constants appearing in the model.

TYPE. In this section, the variables used in the model are declared and arrays
are dimensioned. Note that we may use parameters declared in the SET section as
dimensions. The type associates a physical unit to the variable, together with default
initial values and upper and lower bounds on the variable.

STREAMS. Here the variables associated with inputs and outputs to the unit
are declared. Note that input and output streams do not have a fixed format, but
can be defined to be any collection of variables in the model. Thus a model need not
represent a plant unit, but is simply a collection of equations relating sets of vari-
ables. Furthermore, since the model is not a procedure, there is no directionality
implied by the definitions of ‘input’ and ‘output’ streams. Therefore SPEEDUP can
be used to handle any type of network, or interrelated system of equations. The
nomenclature employed is simply to conform with the usual way of describing
process flowsheets.

EQUATIONS. Equations are written in the form

(arithmetic expression) = (arithmetic expression)

where the expressions follow FORTRAN conventions. Some extra facilities provid-
ed by SPEEDUP are illustrated in Fig. 4. The $ symbol implies a derivative with
respect to time. Equations can be defined using vector arithmetic. For example, the
equation

X OUT*T_MOLE_FLOW = MOLE _FLOW_OUT ;

defines the relationship between the total molar flow, the molar flows of each com-
ponent and the mole fraction of each component in the output stream from the
reactor.

Thus, to provide a new model to the simulator, it is only necessary to provide
describing equations. Since it is quite likely that it will be necessary to write one-off
models for some units in almost all dynamic simulation studies, it is important that
model writing be made as simple as possible.

The MODEL section describe the models which can be used in the simulation.
The UNIT section is used to define which models will be used to simulate particular
units, and also gives dimensioning information. An example of a UNIT section
taken from our example is shown in Fig. 5.

Operation In this section, values are given to all known design parameters in the
simulation. Also, initial conditions may be set for variables, or initial guesses for
unknowns in steady-state problems. The OPERATION section for our example is
shown in Fig. 6. The SET section is used to specify design parameters. The PRESET
section may be used to specify initial conditions. Alternatively, the initial conditions
may be established by a steady-state solution of the model.

UNIT REACTOR 2 IS FIRST ORDER_REACTOR
SET NOCOMP = 3,KEY =1 -

Figure 5. An example of a UNIT section.
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OPERATION
SET
WITHIN REACTOR 1

REACTOR_VOLUME = 1, PRESS_DROP = 0.5, PRESS _IN = 1.65
TEMP IN = 300.0,

MOLE_FLOW _IN(I) = 05

MOLE_FLOW IN(2) =

MOLE_FLOW IN(3) = 2278

RATE CONSTANT = 1.7654E15,
ACTIVATION_ENERGY = 1.0ES,

DELTA H = —5957E4,

GAS_CONSTANT = 8314,

NU(D) = —1,

NUQ) = 1,

NU(3) = 0,

CP = 75.24,

AREA = 100,

HEAT TRANSFER COEFFICIENT = 62.705,
TEMP COOLING WATER = 300.0,

BULK DENS = 556

WITHIN REACTOR 2

REACTOR_VOLUME = (.1, PRESS DROP = 02,
RATE CONSTANT = 1.7654E15,

ACTIVATION ENERGY — 1.0ES,

DELTA _H = —5957E4, GAS CONSTANT = 8314,
NU(1) = —1, NU@2) = 1, NU(J) =

CP = 75.24, AREA = 10.0,

HEAT TRANSFER COEFFICIENT = 0.0
TEMP_COOLING WATER = 300, BULK_DENS = 55.6
PRESET

WITHIN REACTOR 1

X OUT(1) = 0.0,

X_OUT(2) = 00,

X_OUT(3) = 1.0,

TEMP_OUT = 300.0

WITHIN REACTOR 2

X_OUT() = 00

X OUT() =

X OUT(3) = 10

TEMP_OUT = 300

Figure 6. The OPERATION section for the reactors simulation problem.

The SPEEDUP system is programmed in PASCAL for ease of production,
maintenance and portability and produces a FORTRAN program to perform the
numerical calculations. The user interacts with a controlling executive, known as
SPEEDIT, which allows entry and editing of the data and initiation of a run.
SPEEDIT manages the files associated with SPEEDUP and controls the sequence
of the simulation. The interfaces with machine dependent parameters are dealt with
here and are well defined.

Supported by SPEEDIT the translator takes the SPEEDUP description of the
problem and produces FORTRAN code which is compiled and then linked with
libraries of physical property and numerical routines to perform the simulation.
Facilities are provided to halt the execution after a specified time, when control
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returns to the user, who may examine the results in graphical or tabular form and
then restart the simulation, possibly having changed the values of some variables.

Great care has been taken to provide efficient and robust numerical techniques
for the mathematical problems involved, viz the solution of large sets of non-linear
algebraic equations, and of mixed systems of differential and algebraic equations.
Recent developments include the automatic generation of analytical derivatives, and
their use in all the numerical algorithms (see Pantelides (1985) for a review of the
latest numerical techniques; Perkins (1983) gives a summary of earlier research on
numerical methods).

An evaluation of the steady-state capabilities of a development version of
SPEEDUP has recently been published by EXXON (Gupta, Lavoie and Radcliffe
(1984)). Industrial evaluations of the dynamic capabilities of the package are cur-
rently in progress.

5. Conclusion

Tools available to aid in the development of dynamic simulations of industrial
processes have been reviewed. They are of three kinds, each seeking to reduce the
amount of work necessary to develop a simulation by removing some responsibility
from the user. Use of numerical software libraries removes the need to develop one’s
own implementation of standard algorithms. This is the lowest level of support.
CSSLs remove responsibility for detailed programming skills by permitting model
definition in algebraic terms. The greatest level of support is provided by flow-
sheeting packages, where a library of standard models is provided in addition to the
earlier features.

One development of importance is the effort to provide a unified framework for
all large-scale continuous simulation, both steady-state and dynamic. One example
of such a system has been described in some detail in this paper. By providing one
package for all an engineer’s simulation needs, it is hoped to break down the artifi-
cial barriers between different categories of simulator.
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