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To obtain optimum operation of an alumina reduction cell, it is important to
keep the alumina concentration in the cell within a certain range. This will
reduce anode effect frequency and stabilize the cell operation. However, it is not
possible to measure this concentration directly. In the system presented here, the
characteristic nonlinear relation between the alumina concentration and the cell
resistance is modelled by an adaptive linear model where the estimated param-
eters give information about the concentration. This information is then used to
control the alumina supply to the cell. In addition, the system controls the
energy input to the cell by keeping the average resistance close to a reference
value.

The paper describes the methods used and some case studies done off-line,
and summarizes the overall results from nearly three years’ testing of the system
on-line.

1. Introduction

The development of adaptive control of alumina to reduction cells has been
carried out through a cooperation between A/S Ardal og Sunndal Verk (ASV) and
Institute for energy technology (IFE), Norway. The practical experiments have been
carried out on four test cells in line 1 in Ardal. These test cells were converted from
side break-and-feed to point feeding in 1981.

The adaptive controller is a part of ASV’s point feeder technology, and is today
in operation on three different types of cells in ASV. In addition to the test cells
where this control system was developed, there are 200 kA and 220 kA side-by-side
cells operated on the same control strategy.

ASV and IFE have been working with estimation and control of alumina
reduction cells for several years, and a multivariable control system based on a
relatively complex state-space representation of the cell, was developed in the late
seventies, Gran (1980). This system was run on one test cell for some time, but
mainly due to the fact that the process was not fully observable through the mea-
surements, the model had a tendency to drift off after a while. This work is now
suspended, while the much simpler system described in this paper has been devel-
oped for the cells with point feeders. This feeder technique causes much less dis-
turbance to the cell than the older side break-and-feed and centre-fed cells. This is
the reason why it was assumed that the simpler control system would be adequate.
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2. The control problem

The production of aluminium takes place in electrolytic cells where alumina is
dissolved in a bath of molten cryolite. The alumina is reduced to aluminium at
temperatures of 950-970°C. For a brief description of the process, see Gran (1980).

The current and the voltage of the cell are measured on-line and used to calcu-
late the resistance. These are in fact the only on-line measurements. Other important
states of the process, like the chemical composition and the temperature of the bath,
are (presently) impossible to measure on-line. This is because both adequate on-line
measurement techniques do not exist and because the cryolite will dissolve all
metal-made sensors after some time, even if the sensor is encapsulated in ceramics.

Control of an alumina reduction cell is difficult due to this lack of measure-
ments. The control system proposed here, includes an estimator part which extracts
information about the concentration of alumina in the bath from the measured
resistance. This information is then used to control the supply of alumina to the cell.
In this context we may regard the estimator as an advanced measurement system,
rather than an adaptive system in the usual sense.

In addition to controlling the alumina concentration, the controller should keep
the resistance of the cell close to a reference value. This is necessary to stabilize the
energy input to the cell.

The limits of the alumina concentration may be relatively broad without influ-
encing the process in a negative way. When the concentration is too low, the so-
called anode effect is introduced. This is characterized by a rapid and considerable
increase in resistance due to the formation of gas bubbles under the anode. This
phenomenon has been utilized in earlier control strategies to ‘measure’ the alumina
concentration about twice a day, but this causes an extra energy consumption and
also a major disturbance to the cell and should therefore be avoided as much as
possible.

A too high concentration of alumina is also unwanted, because saturation is
reached at about 7-5 to 8%, and the alumina will deposit as sludge on the bottom of
the cell. A favourable concentration band is therefore 2 to 5%.

The variation in alumina concentration will cause variations in the resistance of
the cell. These variations are intentional and should not cause frequent anode move-
ments by the controller. However, the resistance may differ from the reference value
for other reasons, for example because the interpolar distance has changed. To keep
the average energy input to the cell within certain limits, it is necessary to adjust the
anode position from time to time.

3 Process modelling and estimation algorithm

The theory of parameter estimation and adaptive control is well described in the
literature, e.g. Isermann (1981), Ljung and Soderstrom (1983). We will here just give
a brief summary relevant to our application.

The adaptive control algorithm consists of two parts; the parameter estimation
and the controller calculation, as illustrated in Fig. 1. The separation of these two
tasks usually follows the so-called certainty equivalence principle, which means that
the calculation of the controller assumes that the estimated process parameters are
the real ones. The controller calculation is therefore similar to conventional control
with constant and known process parameters, and various controllers could be used
dependent on the actual implementation.
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Figure 1. Structure of adaptive control systems.

Various parameter estimation techniques are reported in the literature. In this
work we have considered the ordinary and extended least squares methods (RLS
and RELS) and the recursive maximum likelihood method (RML).

To achieve reliable estimates, the process has to be persistently excited, which in
loose terms means that the input signal to the process must excite all modes of the
process, ie. it must be sufficiently rich. This is often in conflict with the control
purpose where one usually is interested in minimizing the deviations in output from
a (constant) reference.

The estimation is based on an ARMAX (autoregressive-moving-average-
exegenous-control) representation of the process, which for a single-input single-
output system has the general form:

Az ")yk) = z7'B(z” "Yulk) + Dz (k) 1)
where
Az Y =14+az "4+az 2+ az"
Bz Yy=biz " +byiz 24+ +b,z "
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! is the backward shift operator; y(k — 1) =z 'y(k)
is the process output (measurement)
is the process input (control variable)
is independent white noise with zero mean

J is deadtime (number of timesteps lag)
n, m, p are the polynomial orders
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Introducing a vector § containing previous outputs, inputs and noise and a
vector ¢ containing all parameters, the model (1) is written

yk) = YT (k)otk — 1) + v(k) @

where
Yk =[—pk—1)---—yk—nyutk —j—1)--
utk —j—m) vk — 1)---v(k — p)]
6"k —1)=L[a, - a,b, -~ b,d,...d,]

The one-step-ahead prediction error is defined as the difference between the real
measurement at time k 4 1 and the prediction at time k of the same measurement.

ek + 1) = ylk + 1) — 3k + 11k) = y(k + 1) — Tk + DO(k) 3)
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Here i is the estimate of the datavector i where the unknown noise signals
ok — i), are substituted by their estimates e(k — i), i = 1, p. The vector 8 contains the
parameter estimates.

The new parameter vector is estimated recursively using

Otk + 1) = O(k) + y(ke(k + 1)
where the gainvector y is given by
Pk + 1)
A+ YTk + DPRW(k + 1)

The matrix P is proportional to the covariance matrix of the parameter esti-
mates and is updated recursively by

Yk) = P(k + ik + 1) = @)

PO+ 1) = [ = 0"k + D1PR) 5 + 0 )

The 7 introduced in the above equations is a forgetting factor which makes it
possible to track time varying parameters. 4 equal to 1 means no forgetting, and
with 4 less than 1 the algorithm forgets the past exponentially. Linear forgetting is
also possible by adding a constant (diagonal) matrix Q to the P matrix as shown in
Eq. (5).

The algorithm described above is valid for the least squares estimation. The
recursive maximum likelihood algorithm has the same form, but the data vector j is
filtered through 1/D(z " !) before it is used in Egs. (4) and (5) above, Isermann (1981).

4. Adaptive control of an alumina reduction cell

Modelling and parameter estimation

As mentioned above, it is not yet possible in practice to measure the alumina con-
centration on-line. However, the concentration has a characteristic influence on the
resistance of the cell. This relation is shown qualitatively in Fig, 2.

The relation described in Fig. 2 is not fixed, but will depend on the chemical
composition of the bath, on the temperature and, of course, on the interpolar dis-
tance. The various curves corresponding to the different combinations of the vari-
ables are not known in detail, but they will all have qualitatively the same form with
a minimum around 3-4% alumina. The idea is therefore to estimate the slope of the
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Figure 2. The resistance of the cell versus alumina concentration.
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curve in Fig. 2, based on the resistance measurements, instead of estimating the
alumina concentration directly. An estimation of the concentration will require
more detailed knowledge about the curves than is available.

If we assume that the resistance is only influenced by the alumina concentration
and the anode movement, neglecting the other factors mentioned above, the differ-
ence in resistance over the time interval from k — 1 to k could be written:

R(k) — R(k — 1) = byuy(k — 1) + byu,(k — 1)
where
b, is the derivative of the resistance with respect to the alumina concentration
uy (k — 1) is the change in alumina concentration in the time interval

b, is the derivative of the resistance with respect to anode movement
u, (k — 1) is anode movement in the time interval.

Setting the difference in resistance equal to y(k) and introducing a noise contribu-
tion, n(k), we get

wk) = byuy(k — 1) + byuytk — 1) + n(k) (6)

n(k) models the noise that affects the system, and we have found it adequate to use
simple, first-order representation

n(k) = v(k) + d ok — 1) (7

of this noise, where v(k) is an independent white noise sequence. For the RLS esti-
mation method only the simple noise model with d, = 0 is allowed, while RELS and
RML assume the full model in Eq. (7).

If we compare the model (6) with the general model (1), we see that (6) is a
two-input, one-output model of first order in u«,, 4, and v and of zero order in y.
The algorithm developed for estimation of ARMAX processes could be used
unmodified with data vector and parameter vector

Y(k) = [uy(k — D uyk — 1) ok — 1)]7
and

(k) = [b, b, d, T
respectively.
The input signal u,(k) has to be calculated from the sum of the feedings in the
time interval from k — 1 to k and the estimated alumina consumption in the same
interval, i.e.

u,(k) = (feeding rate — consumption rate)T /mass-of-bath

All quantities in the calculation of 4, are encumbered by uncertainties. We know
the number of feedings to the cell, but not the exact amount of alumina supplied.
The consumption rate depends on the current and the current efficiency, the latter
being nonmeasurable, but fairly constant. The mass of bath will also vary with time
and is not measurable. All these factors make it advantageous to use an estimator to
‘measure’ the alumina concentration, instead of just keeping account of the alumina
supplied and consumed.

The parameter b, depends on the specific resistance in the bath and will there-
fore vary with the composition and the temperature of the bath. However, the varia-
tion of b, is much smaller than of b, and in addition the anode movement u, is
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usually zero, resulting in a somewhat poor estimation of b, . It is therefore inadvise-
able to try to draw too much information from this parameter. To be safe, b, is only
allowed to vary between relatively narrow limits.

To make sure that the estimator stays ‘awake’, a constant diagonal matrix Q is
added to the covariance matrix P as in Eq. (5). The advantage of this compared to
using a forgetting factor 4, is that different forgetting may be put on the parameters.
If the feeding of the cell is such that the variation in alumina concentration is large,
one will expect considerable variations in b,. The element in Q that corresponds to
b, has to be relatively large for the estimator to be able to follow these variations.
The disadvantage of using a too fast forgetting is that the estimator becomes sensi-
tive to noise and will give a poorer filtering of the data.

To make the estimator capable of handling sudden spikes in the resistance, a
filtering of the estimation error is included. This filtering is done by modifying the
gain vector in Eq. (4) as follows:

WK)moa = NK)/f (K)

where

f(k) = max (|e(k)|/e,{k), 1-0)

edk) =oedk — 1) + (1 — a)f| ek — 1)]
e(k)  1s estimation error

o is a filtering factor, o < 1-0

p is a constant, preferably = 2-0

This filtering will effectively damp out estimation errors which are much larger
than a weighted average of f times the latest errors.

Some cells exhibit more high frequency noise in the resistance than others. For
these cells a prefiltering of the resistance through a low-pass filter may be advanta-
geous. This possibility is included in the input part of the estimator.

The controller

The controller can manipulate the two control variables u, and u, by ordering
different feedings of alumina and movements of the anode respectively. The fact that
the alumina concentration may vary over the interval 2 to 5%, allows for relatively
large variations in the feeding, and therefore a ‘ persistently exciting’ control signal
1, may be generated to ensure reliable b, estimates.

The control problem is solved in the following way. In the normal mode the
output to the alumina feeder has two levels; one overfeeds the cell by a certain
percentage, and the other underfeeds the cell by the same (or another) percentage.
However, the actual amount of alumina representing the two levels is not fixed, but
ts adjusted in accordance with the mass balance of the cell. The shifting from over-
feeding to underfeeding and vice versa is based on the estimated value of the b,
parameter. When, during underfeeding, the value of b, becomes lower than b,
overfeeding takes over and vice versa. To avoid a too frequent shifting caused, for
example, by noise in the calculation of b, a dead band is used for the first samples
after a shift, as illustrated in Fig. 3. The dead band is wide immediately after the
shift and decreases to zero after some samples.

The mean operating point of alumina concentration is the point on the curve in
Fig. 2 that corresponds to the slope b,,. Normally b,, is given a small negative
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Figure 3. Limits for shifting from over- to underfeeding and vv.

value. The advantage of this choice is that the alumina concentration will vary in an
interval of the curve where the response in the resistance is best, and also the mean
concentration will be relatively low and thus reduce the risk of sludge deposition.
During the test period reported below, the operation point was b, = 0, but later a
small negative value has been used.

The control of the anode position u, is also attached to the b; parameter. The
resistance is allowed to vary within a band on each side of the reference value
without any anode control. The width of this band depends on the value of b, as
shown qualitatively in Fig. 4.

During normal, stable operation of the cell, only a small number of anode move-
ments per day are necessary to satisfy the above criterion. This implies that the
estimator is very weakly excitated by the control sighal u,, and the estimation of b,
is therefore poor. Since u, is usually zero, this will only have minor influence on the
estimation of b,.

Supervisory level

An alumina reduction cell is subject to severe disturbances even under normal
operation. These are caused by tapping of aluminium, change of anode carbons,

N

ref

Figure 4. Resistance variation band. Anode control outside band.
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anode rack raising, current disconnection and anode effect. These disturbances
result in variations in the resistance which could be erroneously interpreted by the
estimator. To overcome this problem, a supervisory level is included in the control
system. This supervisor stops the estimator during such disturbances and provides
for restart with reasonable initial values a suitable time interval after the disturbance
is over. In addition, it will order different alumina feedings during this period depen-
dent on the type of disturbance. The various disturbances mentioned above, are
identified either manually by push-buttons or automatically by testing of the voltage
and current measurements.

To dissolve sludge which may deposit during overfeeding or from some of the
above disturbances and to guarantee that the alumina concentration is kept under
control even if the estimator fails, the supervisor initiates a tracking mode at certain
time intervals. During tracking the feeding of alumina is very low, and the course of
the resistance is tracked towards the anode effect. When the slope of the resistance
curve, calculated by linear regression, exceeds a prespecified value, the cell is
assumed to be close to the anode effect, and the feeding of alumina is restarted.
Normally, the cell is supplied with an extra amount of alumina during the first
minutes after this restart to avoid the anode effect.

The amount of alumina in each addition is recalculated after each tracking
period. This is done by counting the number of additions supplied since the last
tracking and calculating the amount of alumina consumed. Assuming that the
alumina concentration is the same at the end of each tracking period, it is easy to
calculate the average alumina addition. By these recalculations it is possible to
correct the additions of alumina according to changes in the quality of the alumina.
This is necessary when a volumetric feeder is used.

5. Case studies

We will now describe the results of some estimations done offline, but on data
taken from a period where the controller was run on one cell. The resistance and the
two control signals were recorded, and the alumina concentration was measured
manually. The duration of this test period was 320 samples, and with a sampling
time of 5-5 minutes this means about 29 hours. The sampling time was found to be
short enough to identify the interesting dynamics of the process.

The resistance and the two control signals are shown in the upper part of Fig. 5.
The test period included two events; a tapping of aluminium at k ~ 80 and a change
of anode carbon at k ~ 240. The disturbance to the resistance during these events is
easily seen. In addition, tracking was initiated at k = 133 and lasted until k = 143.
The ripple in the u, signal is due to the discrete nature of the feeding, which causes
small differences in the number of alumina additions in the various timesteps, even if
the feeding frequency is constant.

Parameter estimation using the methods RLS, RELS and RML has been com-
pared with respect to the variance of the estimation error. The RML method was
found to be slightly better than the RELS method, which was somewhat better than
the RLS. As a consequence of this investigation, the RML method is presently used
in the on-line system.

In the lower part of Fig. 5 are shown the results of the parameter estimation
using the RML method, together with the measured alumina concentration. With
reference to the resistance vs. alumina concentration curve, Fig. 2, we would expect
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the b, estimates and the alumina concentration to be positively correlated. This is
true for the first half of the period, but the decreasing trend in the alumina concen-
tration does not show up in the b, estimates.

The reason for this trend is that the feeder mechanism failed during the last part
of the test period, and the cell was supplied with much less alumina than u, says.
This resulted in an apparent overfeeding in the last part of the period, as Fig. §
shows.

The estimation algorithm requires that the mean value of u, is zero. This is
normally satisfied, at least approximately, in our system. When the feeding mecha-
nism fails, however, the mean value of u, will differ from zero and show an increas-
ing trend. This will result in biased estimates as is seen in Fig. Se. In spite of this
fact, the controller works fairly well during this period by ordering overfeeding of
the cell most of the time,

We may overcome the above problem to some extent by including a mean value
compensation in the algorithm. The mean value of u, is then calculated with an
exponential forgetting.

uy (k) = 2ty (k — 1) + (1 — Zuy(k)

where 4 is the forgetting factor, less than, but close to 1. The control signal is modi-
fied to

uy(K) = uy(k) — a1, (k)

The modified control signal u,(k) is then input to the estimator. The results of
the estimation using this modified algorithm, are shown in Fig. 6. We see here the
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same decreasing trend in the b, estimate as in the alumina concentration, due to the
decreasing level of u,”. This modification of the algorithm may be useful to improve
the estimator’s behaviour during periods with failures in the feeder system, but has
not yet been tested on-line.

6. Experiences and results from the long-term testing

When the test cells were converted to point feeder technology, equipment was
installed for alumina feeding at two points. In addition, equipment was installed for
automatic anode effect quenching, but the heat balance and the cathode lining of
these cells were unchanged.

The test cells have been operated on 153 kA. They are arranged end-to-end and
contain 20 anode carbons, with an anodic current density of 0-8 A/cm?. The anodes
have been covered with alumina and the butts have been cleaned inside the cells.

The control system was implemented on local microcomputers at each cell. In
addition to the controller algorithm described here, the microcomputer handles all
on-line measuring and output to the cell. Communication between the operator and
the microcomputer is done via a panel and a display at the front of the control
cabinet. The microcomputers also communicate with a central computer which
handles long term storing of data.

The controller has been run on the test cells for a period of nearly 3 years, and
important data has been recorded frequently.

During the first part of this test period there was an improvement in current
efficiency, but nearly no effect on the energy consumption. Some practical problems
associated with the operation of the cell were clarified, like the AlF; additions to
point feeder cells. This experience lead to a rebuilding of the test cells. Equipment
was installed for automatic AlF; additions similar to the alumina feeders, and the
heat balance of the cells was changed by relining of the cathode. This relining was
done on the basis of calculations made by ASV’s mathematical models for heat
balance.

The results from the test period are divided into two parts. The first part shows
the results after the first rebuilding, and the second part the results after the second
rebuilding. The average bath composition over the whole test period has been
10 wt % excess AlF;and 5 wt% CaF,.

Part 1, period of nearly 2 years:

Average bath temperature .................ccooooiiiiiin oo 961°C
Current effiCIENCY «....ooiiiinie i 92:2%
Energy CONSUMPHON .....viiiuuriiiii it iiieiiiaeeaieiananas 15-5 kWh/kg Al

Part 2, period of about 9 months:

Average bath temperature ................ e 958°C
Current effiCIENCY «...vieiiiiiiier i iiiarrrrriieie e 93-6%
Energy consumMption ......uveuuusaeereraneereroaaearemnniemen. 14-4 kWh/kg Al

The controller has reduced the anode effect frequency to only 0-12 per day or about
once every 8th day. The average alumina concentration in the bath was measured to
3:1 + 0:7 wt%. (Operating point b;, = 0).
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During the test period there have been frequent changes in the alumina qualities,
but these variations have been handled in a satisfactory way by the controller, and
have apparently not influenced the cell in a negative way.

It is difficult to judge how much of the above improvements stem from the
rebuilding of the cell and how much is due to the adaptive controller itself.
However, the adaptive feature of the controller makes it possible to operate the cell
within a favourable alumina concentration range, which otherwise would have been
difficult due to the lack of information about this concentration. This stabilizes the
cell, leading to a higher current efficiency. It is therefore reasonable to assert that
most of the improvements stated above are due to the controller design in com-
bination with the point feeder technique.

7. Conclusion

The paper describes a control system for alumina reduction cells using point feeder
technology. The system controls the alumina concentration and the energy input
(resistance) of the cell. The system has been tested for almost 3 years and is today in
operation on several cells in A/S Ardal og Sunndal Verk’s aluminium works. The
results so far seem promising, although the work is just a first step towards the final
goal; a full mass- and energy balance control system for the alumina reduction cells.
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