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Identification of seismic reflections using
singular value decomposition}

BJORN URSIN{} and YUYING ZHENG§
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Singular value decomposition (SVD) is applied to the identification of seismic
reflections by using two different models: the impulse response model where a
seismic trace is assumed to consist of a known signal pulse convolved with a
reflection coefficient series plus noise, and the delayed pulse model where the
seismic signal is assumed to consist of a small number of delayed pulses of
known shape and with unknown amplitudes and arrival times.

SVD clearly shows how least-squares estimation of the reflection coefficients
may become unstable, since a division by the singular values is required. Two
methods for stabilizing this procedure are investigated. The inverse of the singu-
lar values may be replaced by zeroes when they are less than a given threshold.
This is called the SVD cut-off method. Alternatively, we may use ridge regression
which in filter design corresponds to assuming white noise. Statistical methods
are used to compute an optimal SVD cut-off level, and also to compute an
optimal weighting parameter in ridge regression. Numerical studies indicate that
the use of SVD cut-off or ridge regression stabilizes the least-squares procedure,
but that the results are inferior to maximum-likelihood estimation where the
noise 1s assumed to be filtered white noise.

For the delayed pulse model, we use a linearization procedure to iteratively
update the estimates of both the reflection amplitudes and the arrival times. In
each step, the optimal SVD cut-off method is used. Confidence regions for the
estimated reflection amplitudes and arrival times are also computed. Synthetic
data examples demonstrate the effectiveness of this method. In a real data
example, the maximum-likelihood method assuming an impulse response model
is first used to obiain initial estimates of the number of reflections and their
amplitudes and traveltimes. Then the iterative procedure is used to obtain
improved estimates of the reflection amplitudes and traveltimes.

1. Introduction

Reflection coefficient estimation plays an important role in seismic data pro-
cessing. Knowledge of the seismic wavelet may be used in the design of least-squares
wavelet inverse filters (Berkhout, 1977). Ursin and Holberg (1985) estimated the
reflection coefficients by the method of maximum likelihood. In this case the noise is
assumed to be filtered white noise, and the discrete filter coefficients are estimated in
addition to the reflection coefficients. Another method which has been used to
improve the least-squares procedure is singular value decomposition (SVD) (Levy
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and Clowes, 1980; Shim and Cho, 1981; Van Riel, 1982; Tufts and Kumaresan,
1982: Van Riel and Berkhout, 1985; Lines and Treitel, 1984). Two methods may be
used to stabilize the least-squares procedure (Lawson and Hanson, 1974). One is the
SVD cut-off method which has been discussed by Shim and Cho (1981) and Van
Riel (1982). The inverse of the singular values may be replaced by zeroes when they
are less than some threshold. Another method is ridge regression which has been
discussed by Van Riel (1982) and Lines and Treitel (1984). The weighting parameter
used in ridge regression is similar to the white noise factor used in filter design. The
linear parameter estimation problem is discussed in Appendix A, the optimal choice
of SVD cut-off level in Appendix B, and the optimal choice of weighting factor in
ridge regression is discussed in Appendix C. For the seismic impulse response
model, in which the seismic signal is assumed to consist of a reflection coefficient
series convolved with a known seismic pulse, these different methods will be com-
pared on synthetic data.

An alternative model of the seismic signal is a sum of delayed pulses of known
shape but with unknown amplitudes and arrival times (Van Riel, 1982, Van Riel and
Berkhout, 1985). The amplitudes and arrival times are estimated using non-linear
least-squares model fitting and an iterative Gauss—Newton procedure as discussed
in Appendix D (see also Gjeystdal and Ursin, 1981; Lines and Treitel, 1984).
Assuming that the model errors are Gaussian and that the errors made in the linear-
ization of the model are small, it is possible to compute confidence regions for the
estimated parameters (Ursin 1981). The effectiveness of this method is illustrated by
synthetic and real data examples. In the real data example the number of reflections
and the initial estimates of the amplitudes and traveltimes are obtained from inter-
pretation of the results obtained with ML estimation by Ursin and Holberg (1984).
Then the iterative procedure is used to obtain improved estimates of the reflection
amplitudes and traveltimes.

2. The seismic impulse response model

The measured seismogram is assumed to consist of a known source wavelet
convolved with a reflection coefficient series plus a random noise series. The discrete
impulse response model used here is then

Yo =Tg * P+ Wy

N
= Db it W )

i=0
where y, is the measured seismogram (k =0, 1, ..., L + N), p, is the known source
wavelet (k =0, 1, ..., L), r, is the estimated reflection coefficients (k =0, 1, ..., N)

and w, is the unknown random noise (k =0, 1, ..., L + N).
Equation (1) can be rewritten in matrix-vector form (Claerbout 1976) as
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or
y=Pr+w 3

where y and w are (L + N + 1) = 1 vectors, ris a (N + 1) # 1 vector and P is a
(L+ N +1)* (N + 1) matrix,
The least-squares estimate of r is
P =P"P) 'PTy 4)
if (PTP) ! exists. The matrix inversion may be numerically unstable as some eigen-
values of the matrix (P"P) may be close to zero. Hence, in the conventional LS
inverse filtering, an extra term A2I is often added to (P"P) to make the inversion

stable. 1% is a white noise factor, and 1 is an identity matrix of dimension
(N + 1) % (N + 1). This gives the stabilized LS estimate

= (PTP + 221 'PTy (5)
To analyse the stability of the LS estimation problem we may use singular value

decomposition (SVD). Then the matrix P can be decomposed as (Golub and
Reinsch 1970; Lawson and Hanson 1974; Dongarra et al. 1979)

— S T
P= U[O] \ (6)

where the square matrices U with dimension (L + N + 1) = (L + N + 1) and V with
dimension (N + 1) * (N + 1) are orthogonal matrices. The columns of U and V are
the left and right singular vectors of the matrix P respectively. (T denotes transpose).

The matrix
S
0

is a rectangular diagonal matrix of the same dimension as P with the real non-
negative singular value series arranged in descending order of magnitude, that is

S = diag [0, Sy, -- -, 55] 7)
where so = 5, = sy = 0. Substituting (6) into (3) and multiplying by U™ gives
§ = [3] F+w ®)

where ¥ = U'y, w = U"w, and ¥ = V'r are the transformed vectors. The least-
squares estimate corresponding to equation (4) is

F=[S'0ly ©
In appendix A we consider the linear estimate
f = [D0]y (10)

where D is a diagonal matrix approximating S *.

In the following it will be assumed that r and w are uncorrelated stochastic
vectors with zero mean values and covariance matrices o2 1 and o2 I respectively. If
the expected value of r is known to be r, # 0, we apply the estimation procedure to
Ar=r —r1y and Ay =y — Pr, (see Appendix A). The estimate of r is now £ =rq
+ Af. However, if we assume that r has zero mean value, when it is in fact ry, we
see from equation (A3) that the expected value of the estimate is

E{f} = Rr, (11)
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The resolution matrix (Jackson, 1972) R = HP should be close to the identity
matrix for the estimate to be unbiased.
The stabilized least-squares estimate in equation (5) corresponds to equation (10)
with
D = diag[so/(s§ + 4%), -, sy/(sg + 47)] (12)

From equations (8) and (9) we see that if some of the singular values s; are close to
zero, the least-squares solution will become unstable. This stabilized LS procedure is
also called ridge regression (Lawson and Hanson 1974), and in Appendix B it is
shown that an optimal value of 4? is given by

1? = ¢%/o? (13)
An alternative method for stabilizing the LS procedure is the SVD cut-off method
(Van Riel 1982; Shim and Cho 1981; Lawson and Hanson 1974). The singular value
series is truncated at point K (this means that the reciprocal elements of sfj > K)
are sct to zero), so that the estimate of the transformed reflection coefficient series is
again given by equation (10) with a matrix D having elements

1/s ji=0,1,...,K
d-= J LT ] L]
7 {0 j=K+1,...,N (19
Combining equations (8) and (10) with (14) we obtain
2 . ?}"‘ﬁr’j/sj j=0.. l,...,K
'*"_{0 j=K+1,..,N (13)

the noise may become large. Hence, the singular value series should be cut-off to
keep the error term at a proper level. In Appendix C it is discussed how to choose
the optimal cut-off point K such that the expected value of ||f — r||? is minimized.
After making the same assumptions as in ridge regression, it is shown that the
cut-off level should be chosen such that

sg = 0,/0, (16a)
and
Ske1 < 0u/0, (16b)

This result has also been obtained by Van Riel (1982) using signal-to-noise ratio
considerations.

When we compare SVD methods with Fourier transform methods for wavelet
deconvolution (Berkhout 1977), some simple analogies are apparent (see also Van
Riel and Berkhout 1985). From equation (9) it is seen that the simple LS procedure
corresponds to spectral division. From equations (14) and (10) we see that the SVD
cut-off method corresponds to a spectral division in the frequency band where the
signal spectrum is larger than the noise spectrum while the estimates are replaced by
zeros outside this frequency band. Finally it is seen that ridge regression (or Bayes
estimation) corresponds to a two-sided wavelet deconvolution filter which takes the
noise spectrum into account. The analogy between the transformed quantities using
SVD and the Fourier spectrum is further strengthened by results given by Ekstrom
(1973). It is shown that the singular values of the matrix P are approaching the
absolute values of the Fourier spectrum of the discrete pulse p, , given by

[P()] = kZOPk exp (—2nifkAt) (17)
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Figure 1. Characteristic curves for the inverse of the normalized singular values by different
methods. Dotted line: Conventional least-squares. Dashed-dotted line: SVD cut-off.
Dashed line: Ridge regression.

where At is the sampling interval. The least squares procedure may be stabilized by
SVD cut-off or by ridge regression. In the transformed domain it is seen that the
difference between these two methods lies in the choice of matrix D for the linear
estimator in equation (10) as given in equations (12) and (14). For the optimal choice
of cut-off level (given in equation (16)) and for the optimal weighting factor in ridge
regression (given in equation (13)) the two methods give similar results for large and
small values of the singular values s,. For s, » 4 = 0,,/0, both methods give d, ~
s, ! and for s, < A both methods give d; = 0. Thus the main difference between the
methods consists in different weights d, for s = A. This is illustrated in Fig. 1 where
the diagonal elements of the matrix D are plotted as a function of the normalized
singular values (s,/4) with decreasing value. The dotted line shows the least-squares
solution d, = 1/s,, which becomes unstable when s, goes to zero. The dashed-dotted
line shows the SVD cut-off solution which is equal to the LS solution for s,/ = 1
and zero otherwise. The dashed line shows the ridge regression solution which gives
a smoother variation of the elements of the matrix D as a function of the normalized
singular values.

In order to compute the optimal weighting factor in ridge regression of the
optimal cut-off value in the SVD cut-off method we need to know o? and 6. The
former must be specified a priori while the latter may be estimated from the data as
indicated in equation (A17). Then the residuals are used to estimate o2, and the
estimated value depends on the value of 4% or the cut-off level. Thus the formulas
(13) and (16) may not be used, but the expected squared error norm must be mini-
mized numerically. We have used the SVD cut-off method and the expression (see
equation (C-8)):

N+L

CRN2Y — 2N _]___ ~2 =
Ele —#1%} = (N —K)+ 7 X 3 L Ust (a8)

has been minimized with respect to K.
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3. The seismic delayed pulse model

A different seismic signal model which has been studied by Van Riel (1982) and
Van Riel and Berkhout (1985) is the delayed pulse model

N
Yi = Zr_,p(fAt—‘u‘:_,)+w,. j=],2,...,M (19)
i=1
where r; is the reflection amplitude and © ; is the traveltime of the jth reflected wave,
At is the sampling interval and N is the number of the reflections. In Appendix D a
general non-linear parameter estimation problem is studied. The measurement data
vector is

y=1f(x)+w (20)

where f(x) is a non-linear function of the parameter vector x, and w is the noise or
model error vector. It is assumed that x and w are uncorrelated stochastic variables.
It is also assumed that the second-order error terms in the first-order Taylor-
expansion of f(x) are small compared to the noise terms, so that we may write

Ay, = FyAX + w (1)

where Ay =y — f(%;), Ax = x — x,, and the elements of the Jacobian matrix F, are
Jr.ij = 9f/0x; evaluated at x = %, , &, is the estimate of x at iteration step number k.
Equation (19) is a special case of equation (20) with the unknown parameter vector
x" = (r", <) consisting of the reflection amplitudes and traveltimes. Linearizing
equation (19) gives

Ay, =P, Ar + Q At + w (22)
where
Py i = plidt — %, )) (23a)
and
Oxii= —h ;p(iAt — 3, ) (23b)

fori=1,2,...,M,andj = 1,2, ..., N. The parameters are r — F + A, t= %, + At
[n equations (19) and (23) the seismic pulse p(¢) and its derivative p'(¢) are zero for
t<0andt > LAt

The iterative parameter estimation scheme is illustrated in Fig. 2. The inputs to
the algorithm are the seismic pulse p(t), the data y;, i =1, 2, ..., M, the initial
estimate of the parameter vector, x{ = [r3, t4 ], and the covariance matrix of the
parameters. This is assumed to be

a2 I 0
e[ 2]

At each step of the algorithm the problem is linearized according to equation (22),
and the SVD cut-off method is applied to the linearized problem.
The new parameter estimate

Rivt =Ry + Axyyy = %, + H Ay, (25)
has bias (as computed in Appendix D)

E{f 1} —E{x} =(I —RYT—R,_) ... (T — Ro}(Xo — E{x}) (26)
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Figure 2. Block diagram of the parameter estimation scheme.

where R, = H, F, is the resolution matrix at step number k, and X, is the initial
value of the parameter vector. The covariance matrix of the estimated parameter
vector is computed from

Coir = cl,kcxc}:k + CZ.kCu-Cg,k (27
where C,_, and C, ,; are given by
Ci =0—-RYCy ;- + R, (28a)
and
C i =(0-RYC, - + Hy (28b)

with starting values C, _, = C, _, =0 for k = 0. Since C,, = ¢, I is unknown, we
compute approximately in each step (for k = 0, 1,...):

. 1 .
67, = ﬁ | Ayy — FtAle”z
1 _ -
— = A% — D, S, 45, |7 @)

From equation (26) it is seen that the final estimate is unbiased only if E{x} = x, or
if R, = I for any value of k.
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Assuming that the linearized analysis is valid and with the statistical assump-
tions made, the estimate of the parameters is asymptotically Gaussian with covari-
ance C; given by equation (27) (dropping the index k). Assuming E{x} = x, it
follows (Silvey 1975, p. 91; Ursin, 1981, Appendix C) that (X — x)C& — x) is distrib-
uted approximately as y*> with 2N degrees of freedom (N is the number of reflected
pulses, so that 2N is the dimension of the parameter vector in this case). Conse-
quently we can find a number y2 (see Lindley and Miller 1968, Table 5) so that for
all x

®—%"C,'(x—x)< $2 (30)

in 100(1 — «) per cent of the cases. The region of the parameter space defined by
equation (30) is an 2N dimensional ellipsoid and it is a 100(1 — ) per cent con-
fidence region.

In order to produce graphical results we shall only consider pairs of variables
(7;, t;) for a single reflection. With M, = C, ! the ellipse

7 — rj)zMxJ.j + 207 —r)E; — t)Mg jen + (T; — tj)z Mg jan jon < ¥ (1)

1s a 100(1 — o) per cent confidence region (the number of degrees of freedom of the
x* variable is 2 in this case). Equation (31) has been used in the numerical examples
with o = 0-05 producing 95 per cent confidence regions. Note that the size of the
confidence region depends largely on the initial covariance of the parameters, C, , as
given by the interpreter according to equation (24).

The proposed scheme for computing confidence regions for the estimated
parameters is based on the assumption that the linearization made in each step is a
good approximation, and that a good initial estimate of the covariance matrix of the
parameters is available. Another approach would be to compute the second-
derivative matrix (Hessian matrix), and use the negative of this as an estimate of the
Fisher’s information matrix (Bard 1974; Ursin 1981). This is again an estimate of the
inverse of the covariance matrix which is used in the same way as above to compute
confidence regions for the estimated parameters. A third approach is the random
search method used by Silva and Hohmann (1983). Different initial values are used
in the search algorithm to compute possibly different parameter estimates. The final
estimate is the mean value of these estimates, and the covariance matrix of the
estimated parameter vector is computed from the spreading of the estimates. This
is a computationally expensive method since a large number of Gauss-Newton
searches has to be done.

4. Numerical results

4.1. Comparison of different estimation methods

The model consists of a single layer between two homogeneous half-spaces,
resulting in two reflection coefficients of opposite sign (0-20, —0-20). Synthetic seis-
mograms were generated with an airgun array pulse shown in Fig. 3. Low-pass
filtered (0-62-5 hz) white noise was added to the synthetic seismogram. The seismic
pulse was also digitally filtered with same low-pass filter which was applied to the
noise. The data were sampled at a 1 msec interval. The synthetic seismograms are
shown in Fig. 4(a) for a signal-to-noise ratio of 12 db, and the true reflection coeffi-
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Figure 3. Pulse used to generate the synthetic seismograms. (a) Pulse form. (b)) Amplitude
spectrum.

cients are shown in Fig. 4(b). The result of applying different estimation algorithms
to these synthetic data are shown in Figs. 4(c)-4(g). Figs. 4(c)-4(e) show the results of
least-squares estimation, SVD cut-off, and ridge regression applied to the seismic
impulse response model. It is seen that both SVD cut-off and ridge regression
improve the results of least-squares estimation, but that all these results are inferior
to the results of maximum likelihood estimation shown in Fig. 4(g) (from Ursin and
Holberg 1985). These last results were used to pick starting values for the non-linear
search method in the delayed pulse model. At each step in the search SVD cut-off
was used, and the final results are shown in Fig. 4(f). These results are superior to
the other results due to an improved signal model and good starting values. In Fig.
5 similar results are shown for a signal-to-noise ratio of 2 db, and it is seen that the
same conclusion can be drawn from these data as for the case of a higher signal-to-
noise ratio.

4.2. Estimation with the delayed pulse model.

The zero-phase pulse shown in Fig. 6 was used to generate the synthetic seis-
mograms in this example. Fig. 7(a) shows the synthetic data for a signal-to-noise
ratio of 13 db. The starting values (marked with x) of the estimation algorithm
were picked from the maxima of these data. The results of the non-linear search is
given by the bars, and the ellipses mark the 95% confidence regions. The true values
are indicated by the symbol +. From Fig. 7(b) it is seen that for almost ideal data,
there is only a slight improvement in the estimates. Figs 8 and 9 show similar results
for a signal-to-noise ratio of 4 db and 0-05 db respectively. It is seen that improved
estimates have been obtained by the estimation algorithm, and that in most cases
the true parameter values are within the 95% confidence region.
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Figure 6. Zero-phase pulse used to generate the synthetic seismograms. (a) Pulse form. (b)
Amplitude spectrum.
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Figure 7. Synthetic seismogram with SNR = 13 db generated by the zero-phase pulse in
Fig. 6 and the corresponding estimates of the reflections for the delayed pulse model.
(a) Synthetic seismogram. (b) Estimate of the reflections (bars) with confidence regions
compared to the true values (+) and the initial values ( x ) which are picked up from
the maxima of (a).
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Figure 8. Synthetic seismogram with SNR = 4 db generated by the zero-phase pulse in Fig.
6 and the corresponding estimates of the reflections for the delayed pulse model. (a)
Synthetic seismogram. (b) Estimate of the reflections (bars) with confidence regions
compared to the true values (+) and the initial values ( x ) which are picked up from
the maxima of (a).

4.3. Real seismic data

The iterative estimation scheme has also been applied to real data. The trace
from CDP 278 (Fig. 10(a)) was used with the reflection coefficients derived from well
logs (Fig. 10(b)) to obtain an estimate of the seismic pulse (Fig. 10(c) and 10(d))
(Ursin and Holberg 1985). The stacked seismic data from CDP 268 to CDP 288 are
shown in Fig. 11(a). Using this estimated pulse and the ML estimation scheme the
reflection coefficients (Fig. 11(c)) were obtained. The three main reflectors were inter-
preted from the ML results and used as initial values in the iterative estimation
scheme for the delayed pulse model. The results are illustrated in Fig. 11(b). In Fig.
12 the estimated values are indicated by bars together with the 95% confidence
regions for different CDP locations. The initial values obtained from the ML esti-
mates are indicated by the symbol +. It is seen that mainly the reflection amplitude
estimates have been changed compared to the ML estimates.
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Figure 9. Synthetic seismogram with SNR = 0-05 db generated by the zero-phase pulse in
Fig. 6 and the corresponding estimates of the reflections for the delayed pulse model.
(a) Synthetic seismogram. (b) Estimate of the reflections (bars) with confidence regions
compared to the true values (+) and the initial values ( x ) which are picked up from
the maxima of (a).

5. Discussion and conclusions

Two different models have been used to identify seismic reflections. For the
impulse response model it was shown that SVD cut-off and ridge regression stabil-
ized the least-squares procedure, but that the results were inferior to the maximum-
likelihood estimation assuming colored noise. The least-squares estimates could
possibly have been improved by using an a priori estimate of the reflection series
which is different from zero. This is only practical if the signal-to-noise ratio is high,
and the seismic pulse is zero phase. In this case the other methods give excellent
results, so that the possibility of using a non-zero a priori estimate of the reflection
series was not investigated. The maximum likelihood algorithm was used to obtain
mnitial estimates of the number of reflections and their amplitudes and traveltimes in
the delayed pulse model. Then the iterative Gauss-Newton procedure was used to
compute refined estimates of the traveltimes and reflection amplitudes. The number
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Figure 10. (Adapted from Ursin and Holberg, 1985) Stacked trace and well log data at CDP
278 and pulse estimated from these data. (a) Stacked trace from 2080 ms to 2240 ms at
CDP 278. (c) Pulse estimated from the stacked data in (@) and well log data in (b) by
the maximum-likelihood method. (d) Amplitude spectrum corresponding to the pulse

in (c).

of iterations in the Gauss-Newton procedure varied from 10 to 30 iterations for
poor signal-to-noise ratio and poor initial values and from 1 to 10 iterations for
good signal-to-noise ratio and good initial values. For the practical data example
the number of iterations varied from 1 to 5. The number of singular values which
were included at each step varied from all at iteration number one to only one at
the last iteration (in the extreme cases). In general, the number of singular values,
which were used at each iteration, decreased with the iteration number.

The automatic method of choosing the SVD cut-off level seemed to work prop-
erly for the examples shown.

Appendix A
Linear parameter estimation
We consider the estimation problem
y=Pr+w (A1)

where y is the (L + N + 1) x 1 data vector, P is the (L + N + 1) = (N + 1) given
matrix, r is the (N + 1) * 1 unknown vector and wis a (L + N + 1) = 1 noise vector.
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Figure 11. Real data example. (a) Stacked traces. (b) Estimated reflections using iterative
estimation scheme for the delayed pulse model. (¢) Estimated reflection coefficients by
the ML method (from Ursin and Holberg 1985).

We assume that r and w are uncorrelated stochastic vectors with mean values

Ei{r} =rxo E{w} =0
and covariance matrices

covr=C covw=C

r w

We shall consider linear estimators
= Hy (A2)
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Figure 12. Estimated reflections (bars) with confidence regions compared to the initial
values (+) taken from ML estimations for different CDP location.

where H will be given later. This estimate has mean value
E{t} =HPr, =Rr, (A3)

where R = HP is the resolution matrix (Jackson 1972). The covariance of the data
vector 1s

C,=PC,P"+C, (Ad)
so that the covariance of the estimate is
C;=HC,H" =RC,R" + HC H" (A5)
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If r, is known, we may compute the estimate
f=r, + H(y — Pro) (A6)

with E{f} = r, and covariance matrix as above.
The singular value decomposition (SVD) of P is

P= U[ﬁ] ol (A7)

where U and V are orthogonal matrices of dimension (L + N 4+ 1) % (L + N + 1)
and (N + 1) = (N + 1) respectively, and

S= diﬂg [SO 2 Ty cuny SN] {AS)

of dimension (N + 1) = (N + 1) with s, =5, > --- > sy,>0. The transformed
vectors ¥ = U”y, W = U"w, and F = C”r satisfy the equation

S
y= [ 0] P+ w (A9)
We shall consider the linear estimate
i=[D 0]y (A10)

where D is a diagonal matrix approximating S™'. This gives H = V{D 0]U” and
we obtain the resolution matrix

R = VDSV” (Al1)

Assuming that the mean value of r is known to be r,, we use the estimate in equation
(A6) and the error vector is

e=f—r=(HP-I)r—r,) + Hw (A12)
which gives the transformed error vector
5=?—f=[DS—l](f—i~o)+[D 0]w (A13)
Then
E{&"} = [DS —IIG[DS — 1] + [D 0]C, ['g] (A14)

where C, = V'C, V is the covariance matrix of ¥ and C,, is the covariance matrix of
W

An optimal choice of D is now obtained by minimizing the expected squared
error:
N
E{lle|?} = E{[|&]*} = tr E{&"} = ¥ [(dysx — 1)%02 + di o2, (A15)
k=0

where tr denotes trace, and o, and o2, are the variances of , and W, respectively. In
the case that C, = ¢? 1 and C,, = 62 I, we obtain

N
E{lel®} = Y [(disy — 1)%02 + d? o2 (A16)
k=0
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In some cases we may use the following estimate of the noise variance

1
22 _ Y o pag2
=L ing 1Y H
1 S )2
_L+N+1"’_[0][D 0l
1 N N+L
= | Y —sd)E + “2} Al7
e e PR R W X

while the variance of the reflection coeflicients, o2 , must be known a priori.

Appendix B

Optimal weighting factor in ridge regression
The estimation problem discussed here is the same as in Appendix A. In ridge
regression (Lawson and Hanson 1974) the quadratic form
J = |Pr—yl*+ 2%r|? (B1)

is minimized. This leads to a linear estimator with a matrix D in equation (A10)
given by

D = diag [so/(s2 + 42), ..., sy/(s3 + A2)] (B2)

Assuming that C, = 21 and C,, = o2, the expected value of the squared error
norm is given in equation (A 16) which gives

N /1463 + Szdﬁ,
E{lel’} = ¥ —5—35"
k=0 (s +29)
In the case that o7 and o2 are assumed to be known constants, the optimal A2
(which gives least expected squared error) is found to be

2 =ayja} (B4)
This value of 1 is equal to the optimal SVD cut-off level with the same assumption
(see Appendix C). It is also interesting to note that for this last case, ridge regression
(with the optimal value of /) and Bayes estimation give the same result (Tarantola

and Valette 1982).
The optimal value of A? in equation (B4) is used in equation (B3) giving

(B3)

N 2

E{le|?} = ¥ S (BS)

2 2
k=0 S* +11

When o2 is estimated from equation (A17), we obtain using equation (B2):

1 N ‘143-73 N+L R
"'3 = -
ENTLE1 [.;;o G r P l”*] (®a)

The result in equation (B4) is no longer valid since ¢2 depends on 42. Therefore the
expression for 62 in equation (B6) must be used in equation (B3) and the expected
squared error norm must be minimized numerically with respect to 4% to give the
optimal value of 2.
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Appendix C
Optimal SV D cut-off level
With the SVD cut-off method, we use the matrix D in Appendix A with elements
(&)

Q= 1/s, k=0,1,...,K
1o k=K+1,...,N

The expected squared error in equation (A15) now is
N K
E{lel’} = Y &+ ) (0%/sD) (C2)
k=K+1 k=0
which may be minimized with respect to K to give the optimal SVD cut-off level.
This idea has been used by Shim and Cho (1981), but our results differ from theirs.
In the case that C, = ¢? 1 and C,, = o2 I, we may use equation (A16) which gives
(C3)

K
E{lle|?} = 6N — K) + 02 ) (1/53)
k=0

Then the expected squared error is minimum if we choose K such that
sx =0,/o, (Cda)
and
Sert < 0w/, (C4b)
This result has also been derived by Van Riel (1982) using signal-to-noise ratio
considerations. Assuming that r and w are white, we may normalize the transformed
variables ¥ and W, so that they have unit variance. This gives
i o, T W
h_g i M C
o, o, 0 o, ©)
In this equation, the contribution from the signal dominates as long as
6’
Tl (C6)

Ty

Using this criterion to select the cut-off level, we again obtain equation (C4).
In practice o2 has to be estimated and o? has to be given a priori. Using equa-

tion (A17) and (C1) we obtain
X 1 N+L -
M =NTLE1 k_§+ Ji (C)
which gives
l N+L K
> 3 Y st (&)

2 _ _ -
E{lle]?*} oX(N K)+N+ L+1,.%,

This expression has to be minimized numerically with respect to K to find the

optimal cut-off value.
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Appendix D
Non-linear parameter estimation
We consider the estimation problem

y=f(x)+w (D1)

where the data vector y, the model vector f(x) and the noise (or error) vector w are
of dimension M * 1, x is an unknown parameter vector of dimension N = 1. We
shall assume that M > N, that x and w are uncorrelated stochastic variables with
mean values E{x} # 0and E{w} = 0, and covariance matrices:

covx=0C covw=C, =ad2l

The non-linear problem in equation (D1) is often solved iteratively by linearization
in each step and using the method of least-squares (Jackson 1972; Wiggins 1972). It
is assumed that the second-order error terms in the first-order Taylor expansion of
f(x) are small compared to the noise terms, so that we may write

Ay, =F Ax +w (D2)

where Ay, = v — f(X), Ax = x — X,, and the elements of the Jacobian matrix F, are
fr.ij = 0f/0x; evaluated at x = X, the estimate of x at iteration step number k. The
next estimate of the parameter vector is %, , ;, = X, + AX,, , and Ax,, , is found by
minimizing || Ay, — F; Ax|? which gives

A%, = (F{F,) "F{Ay, (D3)

This least-squares solution may be stabilized in each step using SVD cut-off or ridge
regression as discussed in the previous appendices. We may write

AR, 1 = Hy Ay, = V,[D,  0]U{ Ay, (D4)
where the SVD of F, is
S
F, = U, [0“] Vi (D5)
We now obtain, with R, = H, F,,
Ress = Ry + RyX — %) + Hyw (D6)
and then
E{% 1} = E{%} + RUE{x} — E{&,}) (D7)
which gives
E{ika-l} - E{x} =(I- R,‘){E{i*} — E{x}) (D8)

With %, = X, as initial value, this results in
E{% 11} — E{x} =0 —RYI— R,_,) -~ (I — Ro)(xo — E{x}) (D9)
From equations (D6) and (D7) we obtain
K1 — E{%ey 1) = [ = RY(X;, — E{&,}) + Ry(x — E{x}) + Hyw (D10)
The first steps are
%y — E{&;} = Ro(x — E{x}) + How
%, — E{%,} = [(I - R))R, + R J(x — E{x}) + [(I — R)H, + H,]w
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Since x and w are assumed to be uncorrelated, we obtain for the covariance
matrix of the estimate at step k + 1

Carrs = CLik G Cl4 + Co i€, Co (D11)
where
Cii=I-R)C, -, + R, (D12a)
and
Cow=U0-RJCy; + Hy (D12b)

with starting values C, _, = C, _, =0 for k = 0. Since C,, = o2l is unknown, we
use the residual in each step (for k = 0, 1, ...) to compute approximately:

. 1 . 1 - -
Gi = M Ay, — F, A"ulﬂz = ﬁ [A¥: — D, S, &hllz (D13)

From equation (D9) it is seen that the final estimate is unbiased only if E{x} = x, or
if R, = I for any value of k (assuming that the linearized analysis is valid).

The analysis leading to the optimal SVD cut-off value or the optimal ridge
regression weighting factor must also be modified for this iterative scheme. With
e, = X, — x equation (D6) gives

e =0—Rye, + Hyw (D14)
Using the initial values the result is
e+1=Bieg+ Cy W (D15)
where B, is given by
B,=(I—-R)I—-R,_,) - (I—Ry) (D16)

and C,_, is given in equation (D12b). We obtain

Efers1€(:1} = By C.B{ + C;, C.Cl (D17)
with the assumption x, = E{x}. For computational purposes we note that

E{e;, e} = ([ —RYB,_,C.,B{ ,(I-Ry)
+ [0 = RYC; 4, + HIC[C (I —RY + H;] (D18)
which gives
E{#. &1} = (1 — D SYViB,_,C,B{_,V,(I — D, S))
+ &[0 — D SYV{Cy Uy + [D,  0]]

x [U{ CI, Vil —D,S) + [0')*]] D19)

The trace of this matrix is the norm of the error vector which may be minimized in
each step to give the optimal matrix D, . 62 also depends on D, as given in equation
(D13), and this expression is used in equation (D19) when the norm of the error
vector is minimized. We have used the SVD cut-off method (as described in Appen-
dix C), but the ridge regression method described in Appendix B may also be used.
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