MODELING, IDENTIFICATION AND CONTROL, 1986, VOL. 6, N0. 4, 249-255
d0i:10.4173/mic.1985.4.5

Perspectives in simulation hardware
and software architecturef

W. O. GRIERSON}

Keywords: ADSIM, SYSTEM 100, SYSTEM 10, hybrid computers, time-critical
simulation, real-time simulation.

Historically, analog and hybrid computer systems have provided effective real-
time solutions for the simulation of large dynamic systems. In the mid 1970s,
ADI concluded that these systems were no longer adequate to meet the demands
of larger, more complex models and the demand for greater simulation accuracy.
The decision was to design an all-digital system to satisfy these growing require-
ments (see Gilbert and Howe, (1978)). This all-digital approach was called the
SYSTEM 10. The SYSTEM 10 has been effective in solving time-critical simula-
tion problems and in replacing the previous approach of utilizing hybrid com-
puters. Recent advances in 100 K emitter coupled logic (ECL) now make it
possible to support a new generation of equipment that expands modeling capa-
bilities to serve simulation needs. The hardware and software concepts of this
system, called the SYSTEM 100, are the subject of this paper.

The author received a Bachelors’ degree in Physics from the University of
Michigan and a Masters’ degree in Operations Research from Wayne State Uni-
versity. During 20 years in applied simulation he directed large real-time simula-
tion studies and was responsible for the purchase of simulation equipment. He is
currently responsible for the international operations of Applied Dynamics Inter-
national.

1. Introduction

The task of solving time-critical simulation problems is generally associated with
ordinary differential equations whose right-hand-side components include many
scalar computations. Because of the nature of these computations, they can not be
*vectorized” and accommodated effectively within a general-purpose digital com-
puter. The solution time on general-purpose mainframes is typically much slower
than real time on all but the simplest problems. The problem is further complicated
when constraints imposed by hardware-in-the-loop timing requirements are added
to the simulation scenario. An added dimension is the engineer’s need to ‘interact’
with the model and experiment with different concepts in a timely manner. Further,
the engineer needs to document his work so that he may communicate the results
more effectively (see Grierson et al. (1980)). The SYSTEM 100 provides an effective
approach to satisfying these requirements.

2. The SYSTEM 100 design concepts

The details of hardware architecture provide some indication of potential
problem execution speed. However, the true performance of any equipment can only

Received 15 June 1985.

T This paper was presented at the International Seminar on Modern Methods in
Dynamic Simulation of Industrial Processes, Trondheim, Norway, May 1985.

1 Applied Dynamics International, 3800 Stone School Rd., Ann Arbor, Michigan 48104,
USA.

250 W. O. Grierson

be measured by executing the type of problem for which it was designed. Generally,
the resulting throughput speed is a measure of the software effectiveness in utilizing
the available hardware resources. When ADI began the SYSTEM 100 project, they
established parallel efforts for hardware and software design. The resulting system is
an optimized trade-off among many factors. Before reviewing these results, it is
important to list some of the considerations:

Design objectives

Expansion of current modeling capabilities

Greater than 32-bit floating-point arithmetic

Provision for future expansions

One model for design and hardware testing

High efficiency for long vector and scalar computations
Parallel hardware and software design

Design constraints

Costs competitive with market traditions
Combatibility with industrial requirements
Responsiveness to * Host” computer changes

‘True’ high-level simulation software

Support for program documentation

Support for hardware-in-the-loop (HIL) testing
Support for an ‘experimental” operations environment
Real-time code execution

Realistic hardware/software servicing.

2.1. The SYSTEM 100 hardware architecture

The SYSTEM 100 uses a multi-processor architecture as shown in the figure
above. There are currently five processors in the system that have been uniquely
designed to support the computations required by real-time dynamic simulation. An
ALU and MUL are the arithmetic and multiplier processors, respectively, in the
system. The STO is the storage processor that supports variable data and function
table data storage for the model. The COM is the communications processor. This
processor stores the application program and provides data communication via a
dual ported memory to ‘other’ digital systems. The COM processor is the primary
device for controlling the operations of the other processors. The supervisor pro-
cessor (SUP) supports the downloading of ADSIM instructions from the host com-
puter prior to run time. The SYSTEM 100 uses a host computer for program
preparation, program debugging, program storage, running diagnostics, etc. While
the host is required for all off-line or non-runtime tasks, it is not generally required
during run-time to support the computations. Each of these processors may operate
independently and have their own program memory, program counter, and instruc-
tion decoder. The processors are interconnected by a bus system called the
PLUSBUS (see Fadden, (1983)).

Simulation hardware and software architecture 251

40 MHz PLUSBUS 105 BITS

<)
TR
I;CCNTHCI.I.ER I_

INTERFACE TO OTHER
INTERFACE DEVICES

Figure 1

Fundamental properties of the SYSTEM 100 architecture include

80 MHz clock
40 MHz PLUSBUS, 105 bits wide, (65 bits data, 40 bits address and control)
64-bit instruction word length in each processor

65-bit floating-point add each 100 nanoseconds (1 sign bit, 12 exponent bits, and
52 significand bits)

53-bit floating-point multiply each 100 nanoseconds (1 sign bit, 12 exponent bits,
and 40 significand bits)

32K words of COM processor memoty for user programs
16K words of STO processor memory for user data

External word format matching capability for 16, 32, 48, and 64-bit fixed and
floating-point representations.

The parallel execution of one floating-point add and one floating-point multiply
results in a design speed for the SYSTEM 100 of 20 million floating-point oper-
ations per second (20 MFLOPS). Figure 1 also shows spaces for 4 additional pro-
cessors on the PLUSBUS. One future consideration is to add an additional ALU or
MUL processor. This would allow maximum resource utilization when processing
algorithms where two adds and one multiply, or, one add and two multiplics are
required, respectively. The addition of an ALU or MUL would increase the design
speed to 30 MFLQOPs. Other considerations for future expansions include a large
data memory processor and an input-output processor.

2.2. The SYSTEM 100 software architecture

The software for the SYSTEM 100 is called ADSIM, an acronym for ADvanced
SIMulation language. ADSIM has been designed to support the computational
requirements of simulation as well as manage the resources of the hardware effec-
tively. To illustrate this effectiveness, consider the computation for sine (x). The
execution time for sine (x) is 1-1 microseconds. The computation uses a 53-bit
format with an error of less than one-half of one LSB (for the 40-bit significand).
Within the SYSTEM 100, the sine (x) function requires one instruction in COM
processor. This is the extent of the user code requirement for this computation. The
algorithm to support this computation is called a ‘kernel’ and is distributed across
the ALU, MUL, and STO processors. A kernel is the fundamental code, written by
ADI, that supports the computational requirements of the user code (currently there
are approximately 1000 kernels written for ADSIM). By distributing the kernels

252 W. O. Grierson

across the processors, ADI is able to ‘ phase’ the operations for these computations.
This means that while one kernel is finishing its processing, the COM processor
may begin to work on the next kernel as required by the user code. In general, it can
be expected that upwards of 50 per cent of the design speed of the SYSTEM 100
may be realized in actual simulation problems. An accurate estimate of problem
execution speed is:

.7*(Number integrations) + 1.*(Number math functions) + ---
0.1*(number adds & multiplies) + 12.0 overhead = - --
Approximate frame time in microseconds

As mentioned above, the hardware and software designs of the SYSTEM 100
have been conducted in parallel and some trade-offs have been made. The sine
function is an example. Initially, the hardware design did not accommodate the
determination of the quadrant in which the computation was made. A change in
hardware saved five instructions (500 nanoseconds) that had previously been
reserved for determining the quadrant location. This ‘compromise’ not only saved
five instructions but also allowed ‘ other’ algorithms to be started in a more effective
manner.

3. ADSIM examples

The following cxamplcs illustrate simulation programming in ADSIM, the high-
level language for the SYSTEM 100 computer (see Fadden, (1984)).

Example 1 is shown in Fig. 2. These statements are the total requirements in
ADSIM to represent van der Pol’s equation. The lines beginning with *!” are com-
ments and are ignored by the ADSIM compiler. The ‘DYNAMIC continuous’
statement begins that portion of the code representing state variable computation.
The '’ symbol denotes the differential operator d()/dt. Differential equations are
entered in first order form. Since van der Pol’s equation has two state variables, it

Title van der Pol’s Equation, a simple example in ADSIM
!

I The model Xddt+ MU(l —X » X)Xdt + X =0

!

t)YNAMIC continuous

X= Y
Y=-MUx(1-X=xX)»Y—-X
END DYNAMIC

!

! Coefficient and initial condition values

! and run specifications.

!

DATA MU=1LXa@=1LY@=0

RUNSPECS endtime = 15, speedup = 1000

1

! Finish with execution control for continuous simulation.
!

iEXECUTE continuous
Figure 2. Example 1.

Simulation hardware and software architecture 253

requires two lines of code to represent the model. (Note: because ADSIM is non-
procedural, the equations may be entered in any order. The ADSIM compiler will
automatically sort the equations to ensure proper computational order. A
‘NOSORT’ option is also available.) The ‘END DYNAMIC® statement indicates
to the compiler the completion of state variable computations for that portion of
the code. Repeated declarations of dynamic blocks are permissible to define the
model completely. Data for the model is entered as shown. The *@ *> symbol desig-
nates initial conditions. The RUNSPECS command specifies the run duration to be
15 seconds and requests the simulation to be executed at 1000 times faster than real
time.

Example 2 is shown in Fig. 3. In this example, the ‘method’ command is used
within the dynamic block to specify the integration method to be employed. The
RK4 designates a Runge-Kutta, fourth-order algorithm (the default algorithm is a
second-order Adams Bashforth method). The PARAMETERS command specifies
the values that may be changed at run-time. The parameters K, L, and M are shown
grouped under the name ¢ # PA’. Similarly, the initial conditions are grouped by the
name ‘ #IC’. These groups enable the engineer to display related groups of data
rather than reviewing the entire problem list. The use of brackets, i.c. {...], designate
computations that are performed once, prior to the simulation execution. When
computations are enclosed in parentheses, i.c. (...). they are performed on each pass
through the instructions. The reader will also notice that comments may be included
on the same line as the simulation code by using the ‘!’ symbol. This problem
includes no specification for problem speed-up relative to real time. When this
option is deleted, the problem execution will automatically be set to real time.

Example 3 is shown in Fig. 4. The previous examples demonstrate problem
control by the user. The user, with this feature, may interactively command and
control all problem execution from the terminal. This example illustrates how the
user may control problem execution automatically according to pre-defined criteria.

TITLE Simple Nonlinear Pendulum
!

! The model thddt + (K/M) » thdt — (g/L) = sin (th) = 0
¥

t)YNAMIC continuous

METHOD RK4
thd’ = — [K/M] = thd — [g/L] * sin (th)
th= thd

END DYNAMIC

!
! Parameters, data, and the endtime for

! the simulation run.
1

PARAMETERS g=322 ! Units on g are ft/sec-sec.
PARAMETERS #PA K, L, M

GROUP #IC thd@, th@

DATA #IC 0, 12

RUNSPECS endtime = 5.0 ! Time of simulation in seconds
!

EXECUTE continuous

Figure 3. Example 2.

254 W. 0. Grierson

TITLE: Solution Set Using Initial and Terminal Regions
]

REGION initial
A=0 ! Initialize the set of runs.

100 A=A+B ! Prepare the run.

END REGION

!

!

DYNAMIC continuous
X' =y ! Put in the model and the “end-run”
y =—Ay—x ! conditions.

end run=(x *x +y*y) LT.C

END DYNAMIC

!

!

REGION terminal
IFA .LT. D THEN ! Isanother run required ? If yes,

GOTO 100 ! “go to” it, otherwise, complete

ENDIF ! the set of runs.

END REGION

1

! Enter data and run specifications.

! No run is longer than endtime.

!

DATA B=05,C=.02, D=2 x@ =1
RUNSPECS speedup = 1000, endtime = 20
!

iEXEC UTE continuous
Figure 4. Example 3.

This is accomplished via the initial and terminal ‘ REGION” control blocks. Within
“REGION initial’, the run is initialized and provision is made for executing the next
run. The ‘REGION terminal® counts the number of runs. If less than 20 runs have
been executed, A will be incremented by B and a new run will be executed. The
session is terminated when either 20 runs are executed or the end condition,
(x*x + y*y).LT.C, is detected.

4. Problem interaction at run-time

An added requirement of simulation systems is that they support user inter-
action at run time. This is required because dynamic simulation is generally used as
a design tool. This means that the engineer needs the ability at run-time to change
parameters, initial conditions, integration step size, integration algorithms, run
duration, etc. In general, this requirement means that the engineer must have a
convenient means to ‘experiment’ with the model and be able to change anything
except the fundamental equations. This should be accomplished without recompil-
ing the program and as quickly as possible. ADSIM supports these requirements via
the interact file. The example in Fig. 5 illustrates some of the options available to
the engineer at run time. The variable names and data refer to the non-linear pendu-
lum problem above.

Simulation hardware and software architecture 255

ADI100 > METHODS ALL ! display integration methods
TH AB2

THD AB2

AD100 > METHODS ALL RK4 ! change them to RK4

ADI100 > GO ! run simulation using RK4
AD100 > DATA #IC ! display values in group #I1C
TH 0.

THD 1.2

ADI100 > DATA THD@ 1.0 ! change THD i.c. to 1.0

ADI00 > GO ! run with new initial condition

AﬁiOO > RUNSPECS STEPTIME display integration stepsize

!
STEPTIME 5.000E-5 ! stepsize is 50 microseconds
ADI100 > RUNSPECS STEPTIME .000100 ! change to 100 microseconds
! run with new stepsize

ADI00 > GO

Figure 5. Example 4.

The prompt from the interact file is *‘AD100>’. The “METHODS ALL’
command requests all methods in use to be displayed. Currently, ADSIM supports
the following methods.: AB1 ... AB4, AM1 ... AM4, RK2, RK4, RTRK2, RTRK4
and NOP. The NOP is a “no-op’ command used primarily during problem check
out to open loops and isolate various portions of the model. Each of these com-
mands are executed quickly without recompiling the ADSIM program. The alterna-
tive to a prompting scenario operation is to automate the sequencing as illustrated
in Example 3 in Fig. 4.

5. Conclusion and summary

The computer hardware and software to service time-critical simulation require-
ments continue to evolve to serve expanding problem needs. Future systems will
continue to make use of new digital technologies as they become available. One of
the more challenging areas in computation is to optimize software operations so
they may effectively utilize available digital resources.

REFERENCES

FappeN, E. J. (1983). The SYSTEM 10 Plus: Advancing Scientific Computation (Applied
Dynamics International, Ann Arbor).

FADDEN, E. J. (1984) The SYSTEM 10 Plus: Broader Horizons (Applied Dynamics Interna-
tional, Ann Arbor).

GiLeerT, E. O. and Howr, R. M. (1978). Design Considerations in a Multiprocessor Com-
puter, AFIPS Conference Proceedings, Vol. 47 (AFIPS Press, Arlington), pp. 385-393.

GRIERSON, W. O., Lipsk1, D. B. and TiFrany, N. O. (1980). Simulation Tools: Where Can We
Go?, Proceedings of the Summer Computer Simulation Conference. (AFIPS Press,
Arlington). pp. 3—6.

