MODELING, IDENTIFICATION AND CONTROL, 1986, voL. 6, No. 4, 217-229
d0i:10.4173/mic.1985.4.3

Perspectives in software design for dynamic process simulationt
S. MURTHY DIVAKARUNI§

Keywords: Software design, process simulation, integration schemes, steady state
solvers, linear analysis.

The process simulation analysts have a wide range of options for simulation
packages today. It is often difficult to choose one simulation software package to
meet all the requirements of the process industry. The revolutions in computer
hardware and software combined with increased knowledge of the users makes it
a challenge to design a single simulation software package that meets all of their
demands.

In this paper, the needs of the process simulation users and general features
of the two most widely, but differently designed simulation packages ACSL and
EASYS are described. Based on the experiences of the Modular Modeling
System (MMS) code users in the last three years, the shortcomings of the simula-
tion languages in general are described. Additional desired features for these lan-
guages are briefly mentioned. The role of personal computers and engineering
work stations in easing the burdens of the users for the code inputs/outputs
design are outlined, and their advantages in the design of advanced and parti-
tioned simulation languages are explained.

1. Introduction

Traditionally, the developers of the power plant design and analysis software
always insisted in designing the numerical integration schemes themselves, as a part
of the overall software development effort. This required the users to keep in pace
with the latest developments in the numerical integration schemes and distracted
their attention from the main efforts viz., the power plant analysis. The recent
enhancements in general purpose simulation languages have earned their place and
creditibility in the process simulation arena due to diligent effort by their designers
to understand the needs of the users. Rapid education on the user’s part created new
demands from them. In addition to ever increasing competition among the com-
mercial software vendor houses, the user demands posed new challenges to the soft-
ware designers. The task of meeting the user demands has increased by another
dimension due to the diversities seen in the hardware and migration towards smaller
and powerful machines. In general, however, the use of general purpose simulation
languages to perform the process simulation and analysis has increased significantly
in the last decade.

In 1978, the Electric Power Research Institute (EPRI) made a deliberate choice
to use the simulation languages in the development of the Modular Modeling
System (MMS) code—the software package for the dynamic analysis of the fossil
and nuclear power plants. Many simulation languages were screened to select the

Received 1 July 1985.

T This paper was presented at the International Seminar on Modern Methods in
Dynamic Simulation of Industrial Processes, Trondheim, Norway, May 1985.

i Nuclear Power Division, Electric Power Research Institute, Palo Alto, California,
94303, USA.

218 S. M. Divakaruni

most popular and the state-of-the-art software, based on the selection criteria that
consisted of the perceived user needs. The Advanced Continuous Simulation Lan-
guages (ACSL) developed by Mitchell & Gauthier Associates, Inc. (MGA) and
Engineering Analysis System (EASYS5) developed by the Boeing Computer Services
(BCS) were selected to form the framework for the MMS code development. MMS
and the typical user applications with the code are discussed in Divakaruni (1985),
where some design features of the process simulation software have also been pre-
sented. During the course of the last seven years, the MMS users have identified
several shortcomings in these two most advanced simulation software packages and
the code developers MGA and BCS have complied with their requests to a large
extent, to alleviate the problems. Where it was necessary, EPRI worked with their
contractors Babcock & Wilcox (B&W), BCS and Argonne National Laboratories to
address the deficiencies in the code in an expeditious manner. The MMS code com-
mercializer, B& W is further addressing the needs of the MMS user community espe-
cially in developing the user-friendly packages, and in improving the steady-state
solvers and integration routines in the MMS simulation language.

The new applications for the power plant process simulation software MMS
have given challenges to EPRI to make the code more versatile and fast running,
which in turn required ACSL and EASY to be more efficient, faster, economical and
portable. Some of these requirements are conflicting in objectives and required com-
promises in the modeling accuracies.

In the following section, the general and most desired features of simulation
languages are provided and ACSL and EASYS5 are used as examples.

2. General design features of simulation packages

A good simulation language provides four features which makes its utilization
extremely attractive from both a programmer and a user standpoint: (1) translation,
(2) input/output, (3) integration algorithms, and (4) linear analysis routines.

Translation

The simulation language serves as a pre-compiler to translate a user’s source
code into a FORTRAN program. This allows the source program to be extremely
compact. It also allows the user and the programmer to take advantage of the
functions and routines provided by the language like tables, limits, deadbands,
random number generator, switches, etc. The translators convert the source
program statements into an executable order providing great flexibility.

Input/output

The simulation language provides a run-time executive which includes many
user convenience features for printing and plotting outputs either as print plots or
line plots.

Integration algorithms

Simulation of a power plant generates a stiff mathematical model. That is, a
model which includes a range of response modes (eigenvalues) whose characteristics

Software design for dynamic process simulation 219

response times vary widely. The range in a typical power plant model includes
modes with response times of 10~ sec to modes with response times of 10° sec. This
severely complicates the numerical integration because while the user is not inter-
ested in the fastest response modes (less than a few tenths or hundredths of a
second) the integration algorithm must at least provide stable results for those
modes. Special integration algorithms have been developed to address models with
these characteristics; the most popular is an algorithm developed by W. Gear
(1971).

The simulation language includes this algorithm, or a variation, and thus pro-
vides an integration technique specifically tailored for models similar to power plant
models.

Linear analysis routines

While transient response analysis is the major use of a plant model, it is not the
only use. Particularly in the area of control system design and analysis, a great deal
of the valuable information is available from analysis of the linear model. The linear
model can be used to generate root-locus diagrams, Bode plots, Nyquist plots and
perform, stability margins analysis, and optimal control design.

A clear advantage from the MMS code development standpoint was that by
building the code in an existing simulation language, these four features were avail-
able without development costs to the project. Still another advantage to use of a
simulation language was that (to the extent that the language is widely used), a built
in user base already existed.

For these reasons EPRI decided to develop MMS in a simulation language
framework. A number of simulation languages were evaluated. In addition to the
four features discussed above, it was clear that the language must have at least the
following three characteristics, (1) support, (2) transportability, and (3) MACRO
capability.

Support

The language must be well supported by an organization thoroughly familiar
with its operation. This support should include continuing development from which
MMS could benefit.

Transportability

The language must be usable on several large mainframe computers, at least on
large CYBER and IBM machines. It must be available for installation on other
users machines with minimum transportability problems.

MACRO capability

The language must have MACRO capability to allow a FORTRAN program to
be built as an in-line code and that allows MMS to generate all variable names.

3. ACSL vs. EASYS5 comparisons and other simulation languages

Although ACSL and EASYS5 were used to provide the features outlined above
and to meet common objective of supporting the MMS user needs, the structures of

o

(9D MON (INV) BUOZUY (vd)
HANON ANON Jo As1dAmup) ANON ANON sod VOW yoddns ezieRWWO) A
00T~ 61 o1~ 01 0t 00T < 00€ < (e1ewinss) sivsn [el0] F
0z~ ANON s ¢ ANON g1~ 05~ ('xoidde) szasn Ainun jo ‘oN A
‘dwod o7 wnuiuIp wnwiuip — WnWiuiy Wiy ‘dwod gL ‘dwod gp sjonuo)
QUON Wwosg Wos JUON SIA WEE WEE hum_n—w—_dbw m—uﬁoE EoﬂOn—E OU
ﬁocmu 1004 1004 1004 po OO JUI[[a0Xg u_._ozuonmnﬂooo =0_§—u=d A D
(zopz0 poonpai jeuondQ)
ON ON ON ON ON SHA ON uisap 19[j0nu0d [ewndo
ON ON ON ON ON STA ON sisA[BuE snoo[100y
ON ON ON ON ON STA ON SUOIIOUN] JYJSUBL],
ON ON ON ON ON STA ON 101d sjoYoIN
ON ON ON ON ON SAA ON 1o[d 3sInbAN
ON ON ON ON ON SHA ON 101d apog
ON ON ON ON ON SHA ON siskeue asuodsax Kousnbau g
ON ON ON ON ON SHA ON siskreue uidrew AJIqels
ON SHA ON ON ON SAA S3A sisAJeue Jeaul[Joj sa1els JZATdA
ON ON ON ON ON SdA SaA $10309A U2 13/saneAuadig
S4A SHA SAA SHA ON SHA SAA lapuy aje)s Apealg
SdA SdA ON ON ON SHA SHA UONBIAUIF [9pOW BT
saniqeded sisd[eue Jeaulr] g
SHA SHA SdA ON ON SdA ON uone[nwis Juunp sajels JZIIUA
SdA SIA SHA SAA SHA SdA SHA SPUBLWILOD UONNIAXD JO §)00|q duya(]
SAA SHA S3A ON SAA SsgA SdA owry ya siojourered AFpop
SHA SHA SAA ON ON SHA SHA Lymqeded weisay
SHA SHA SHA SAA SAA SAA STX indino jo a3ues uedog
SHA SHA SdA SdA SdA SHA S3A synsaz ndino joid sso1)
SHA SHA SIA SHA SdA SHA SHA awm s s3msal indino 10[d
SHA SHA SHA SHA STA SAA SdA awn yum sjpnsas indino juug
SdA SdA SHA SHA SdA SHA SdA sjurod Sunerado 1340031 puE 3Aeg
SdA SdA ON SHA SHA SHA SdA sjonuod uoneidajur aduey)
SdA SdA S3A SIA SHA SdA SdA anbruyoay uonedajur sduey)
SdA SHA SHA SdA SHA SdA gax sioyoweled [apowr suyep pue adueyd
seniqeded vonenuig
dINSD LTVS d-3dva 18d dNSd SASVH SOV uonesadQ v

sagengdue

220

Software design for dynamic process simulation 221

the two packages are widely different. The major differences arise from (1) model
structure, (2) nomenclatures, (3) model schematics and of course the capabilities.

ACSL is block oriented language and follows the Continuous System Simulation
Language (CSSL) specifications. The model is housed in three blocks: INITIAL,
DYNAMIC and TERMINAL. INITIAL block is used to define the variables prior
to simulation; DYNAMIC block is the main simulation block and TERMINAL
block is used to wrap up the simulation model. The model consists of free format
FORTRAN:-like statements and FORTRAN subroutine like invocations of any of
112 MACROS. Generally, these MACROS are MMS modules or FORTRAN
equivalents. ACSL allows the user to define MACROS within the program. Thir-
teen MACRO directive statements provide branching logic and statement gener-
ation loops to allow the amount and type of code generated to be controlled by the
MACRO directive statements. FORTRAN subroutines, if needed, may be appended
to the program. ACSL capability allowing six characters for variable names has
been exploited to define the MMS variables very effectively.

EASYS, on the other hand is component oriented language unlike ACSL.
Although it does not follow CSSL specification, it is very widely used and is a
simulation language with exceptional capabilities. The code is supported by a large
group of numerical analysts at BCS on a continuous basis. The EASYS model con-
sists of definition of location in a schematic and interconnections for any of 48
standard EASY5 components or the MMS modules and imbedded FORTRAN
statements. EASY5 has additional 72 standard components which are largely of
control hardware. EASY5 provides eleven matrix operations, e.g., addition, multipli-
cations, inversion etc. EASYS variable names are seven characters in length, with
blanks allowed. All EASYS names are automatically generated by appending a three
character engineering quantity identifier, a two character component name and a
one or two character user defined component identifier. Further, EASY5 automati-
cally generates a schematic representation of the model from user specified com-
ponent locations showing all interconnections. EASYS5 also allows the user to define
MACROS within the program, which may be saved as part of a user-defined
MACRUO library for utilization in subsequent EASYS models.

The other major difference between ACSL and EASYS are in the simulation and
linear analysis capabilities. Table 1 summarizes these languages comparisons. Addi-
tional languages are also included in the table and comparisons are provided based
on author’s knowledge.

Because MMS was developed in two simulation languages ACSL and EASYS,
there were opportunities to compare the performances of the two languages in
running a fairly difficult nuclear power plant transient. In Smith er al. (1983) the
steps involved in executing a 840 second duration transient are elaborated and the
CPU time required to generate the results were given. The EASY5 model out-
performed the ACSL model in overcoming the integration difficulties and in
reaching the steady state. In many instances and one in particular (Smith et al.
1983), running a natural circulation transient in the nuclear power plant, the ACSL
steady state finder had difficulties in coping with the low pressure drops encoun-
tered in the primary loop during the natural circulation conditions. The transient
pressure decreased from 2250 psi to the natural circulation pressure conditions in
five minutes and remained essentially constant thereafter.

The major reason for any simulation language superiority lies in the robustness
of the integration and steady state solvers. In this regard, EASY5 proved to be a
better language, in handling these difficult power plant transient conditions.

222 S. M. Divakaruni

4. Experiences with ACSL and EASYS

The willingness on the part of BCS to incorporate the MACRO capability eased
the burden on EPRI's part to keep the MMS code architecture intact. Special
purpose translator was developed to translate the ACSL modules into EASYS
modules at minimum cost and this allowed to perform code validation and verifica-
tion activity in one language.

The model generation capability and advanced diagnostic aids to locate the
implicit algebraic loops in EASYS provided comfort to the MMS users in debug-
ging the plant models.

BCS stiff integration routine is a modified gear algorithm unlike the ACSL algo-
rithm and allowed larger time steps to be taken during a mild to severe transient.
The variable-step variable-order basic and modified gear algorithms generally
changed the integration order quite frequently during power plant transients and
especially in larger models, it took extremely small time steps. Algorithms which
could take advantage of the “sparsity” and ‘bandedness’ of the Jacobian matrices
would have been helpful in running large MMS models.

The steady state solver in the EASYS package worked most of the time,
although it required the user to acquire skills in correctly using the ‘ Freeze” option
to isolate the effects of some MMS state variables to reach the steady state quickly.
The ‘TRIM’ function in ACSL failed with large models and the ‘FREEZE’ func-
tion worked rarely and when used by some experienced code developers. The larger
nuclear models generally had strong coupling between the component states. In a
90th order nuclear plant model, the Jacobian matrix has entries ranging from 10° to
107!, and various components can be identified and separated. The run time
requirements in executing this type of large model were generally excessive. EPRI,
its contractors, and the code commercializer Babcock and Wilcox and MGA are
looking at ways to improve the steady state and integration routines in ACSL. The
following paragraphs give descriptions of the work under progress in this area.

5. Enhancements update in ACSL and EASYS5 for MMS applications

Steady state solvers

The two common methods employed for finding the steady state operating
points for lumped parameter dynamic models are integration and gradient
approaches. The first straight-forward method for obtaining a steady state operating
plant is simply to integrate the differential equations until all states reach equi-
librium conditions. This is an inefficient approach which can succeed in the absence
of instabilities induced by the process model or numerical schemes. The other
approach is a gradient search wherein model equations are numerically linearized
about an initial guess x{ to find the Jacobian matrix A and subsequently determine
a direction of search

oXx = —A'F;
for a general set of equations
dx;
—I = X l
o~ F® (1)

where

i=1,...n

Software design for dynamic process simulation 223

The improved guess to the desired operating point is obtained from
x=x"4ex O<e<l

The procedure is repeated until convergence.

The ACSL ‘TRIM’ function uses Newton—-Raphson technique based on the
second approach, although there are many improvements. In using TRIM function,
MMS users found that the straightforward integration provided better initial
guesses for subsequent application of the ACSL TRIM function.

EPRI together with Argonne National Laboratories reviewed four gradient
methods from IMSL routines and applied them to two benchmark nuclear plant
models. They were;

(1) Levenberg—Marquardt algorithm using steepest descent calculation,
(2) Quasi-Newton method approximating the Jacobian,

(3) Powell-Hybrid technique, and

(4) Secant method

The two MMS models used for comparison consisted of 42 and 91 non-linear
differential equations. Both were characterized by real and highly damped complex
pairs of eigenvalues which ranged from 10~ or 107° to excess of 10%. While both
models integrated to steady state quite easily, only Levenberg-Marquardt model
brought either model to steady state. The evaluation process was repeated with
modified MMS models and after integrating the model with the gear integration for
one second to allow the fast-dynamics to approach quasi-equilibrium. The evalu-
ation results are given in the following Table 2 for the 42 state model.

Similar results were obtained with the 91 order model also. In case of TRIM
function, the fraction of the linear step (FRACDL) was manually changed from 0-1
to 0-25, 0-5, 0-75 and 1-0 whereas the other routines were fully automatic in select-
ing the steps. While Marquardt model proved to be the most robust of all in solving
the stiff non-linear equations to steady-state, secant and Powell seemed to have the
best convergent properties.

Based on the above, Mitchell and Gauthier Associates, Inc. are modifying the
current TRIM function in ACSL. While the TRIM function seems to work fairly
well for linear systems to drive the unfrozen state variable derivatives to zero using
the Newton-Raphson method, for some class of non-linear problems divergence
results. MGA is planning to replace the TRIM operator with a better zero deriv-

Initial Final Required function
Algorithm residual residual evaluations
1. Integration to 1 sec. 1495 695
2. TRIM 1495 12 2077
3. Marquardt 1495 35 274
4, Quasi-Newton 1495 1483 Interrupted at 402
5. Powell 1495 82 58
6. Secant 1495 1-0 107
7. Integration to 200 seconds - 33 1271

Table 2. TMI-1 42nd order model evaluation.

224 S. M. Divakaruni

ative finder find that will transition to steepest descent steps in the case of difficulty,
reverting back to Newton steps when the going gets easy again.

Automatic ‘freezing’ of singular state variables and selection of linear inter-
polation step FRACDL are other desired features in ACSL’s TRIM function.
EASYS currently does these and enables validity error print-out when the steady
state solution is not physically meaningful.

Integration routines

Babcock & Wilcox, as the MMS code commercializer, is attempting to strength-
en the library of integration routines to meet the MMS users needs. The simulation
studies related to power plants, involve quite often discontinuities in the process
variables, special events that inject significant process disturbances in various mag-
nitudes and require large models in the order of 200-300 differential equations,
Jacobians of which could be either dense or sparse. In a recent BWR full plant
model development (approximately 230 states) with the MMS code on cyber 176
machine, special memory segmentations and partitions of the model into separate
derivative sections were required to be able to execute the model. In another inter-
active application with ACSL, the MMS model was used as a driver to the colour
graphic displays depicting the plant status information. Since the integration was
taking very small steps, the simulation was much slower than the expected real-time
plant behaviour. Several scenarios with different operator actions were simulated
and replayed. Interactive model execution in real-time would have been more useful
to evaluate effects of various simulated operator procedural actions during the
course of a transient. Sparse matrix routines, and options to reduce the model order,
which could enable the model to execute faster would have helped.

B&W evaluated sparse matrix routines and the integration methods for stiff
ODES in general, and incorporated them in STACSL—the ordinary differential
equation solver for ACSL version of MMS. Features included in this are sparse
matrix treatment of the Jacobian matrix, incorporation of techniques for detecting
and processing special events and discontinuities, and diagnostic capabilities for
developing and debugging the MMS models. In STACSL, the Jacobian matrix J is
treated as a sparse matrix by default. This significantly reduces the storage require-
ments and allows larger systems to be solved. A special grouping technique also
allows Jacobian matrix calculation with fewer derivative evaluations. STACSL uses
the Yale sparse matrix package to perform the sparse matrix related calculation.

In the BCS EASYS5 package, the Gear algorithm for solving stiff ODES is modi-
fied along the lines of Hindmarsh solution approach. This BCS Gear runs up to
40% faster than stiff Gear on large models, synchronized for use with models simu-
lating digital controllers and is claimed to ‘ gracefully’ terminate if the model detects
an invalid operating conditions. In MMS models using EASYS5, the largest model
run to date was in the order of 100 state variables. The large model handling capa-
bility was never tested.

Automatic parameterization

In MMS, substantial amount of user effort is spent parameterizing the modules
at various initial conditions. This involves calculation of heat transfer parameters,
flow resistances, volumes, areas, etc., only some of which change depending on the

225

Software design for dynamic process simulation

Lustsuel) 1010eay 191em-Suiog [eoid4) e 10) AovInddE pue s Furuuna uo suondo Furkjydus jo 1098 "¢ JqeL

“Jeimy paaotdwt aq ueo swn Furuunt wia)-Juol s ¢.q je paddad days swn uoneadaug §
sdwnd -541051 y1oq jJo (wetds ou) uonemoIn [einjeu o) dir], juarsues] L

Spou [EIpeI |

%SI— %6:T— 1020 (431 1€ 6T 01 dwiy [ony 20npay
S3pou pel1 7 0} [spow
1 [ony 2onpaa ‘sdnosd
%l L= %p-0— 1820 3L°1 133 3 € 03 Jeay ABOIp 0NPIY
%S 6 — %60+ fec0 (434 P o 3uipoq pajooogns dA0WY
Y%tb1— %b-0+ fz8-0 6C-€ Ly 87 soneupy jutod asp)
%85-0+ %S0+ 8F1 80 601 6% sopou § 0}
SOINEBIPAH-[BWIaY | 3onpay
38 DUIpY 88T SL01 gel LS (10-SIWI) [Ppow [eudLIQ
$0] e (s Sf) anfep [eUL] $238 O] 15%[8338 O] 18] {(1e101) SIS {aAnEINWND)
10119 JUdDId PIONPONU] JOLIT % (wis/dD) sO1El WL uny SPU0dSs-dD) 19qAD Jo Jaquunp suoneayydung

226 S. M. Divakaruni

model initial conditions. EPRI developed a trial version of a procedure which auto-
matically generates the parameterization given the physical and operating data for
each module. These procedure routines can be used to generate parameterization
inputs for the models by either ACSL or EASYS5 versions. B&W is planning, in the
future, to extend this trial version of automatic parameterization procedure to opti-
mize parameters to match a desired model operating point. This combined with
automatic model generation pre-processors will allow the user to parameterize the
model, generate and initialize the model fairly quickly.

Model reduction

The modular nature of MMS and the simulation package capabilities are allow-
ing MMS users to explain new applications. One such application is the BWR plant
analyser. Here, we reduced the BWR model complexity and evaluated the effects of
simplifying assumptions on model accuracies. Table 3 gives a summary and the
execution times associated with each case for a 45-second natural circulation tran-
sient as a result of recirculation pump trips, without scram. The run time was
reduced by a factor of 6, with only 0-4% error introduced by reducing the thermal/
hydraulic states, decay heat groups neglecting subcooled boiling and using a point
kinetics model. This approach was used because ACSL did not provide provisions
to perform automatic model reductions.

In another application for designing the digital feedwater control system for a
BWR plant, the linearization routines in EASY5 to automatically reduce the order
of the model was used. The results are not available at the present time, but the
intent is to develop a real-time model for the controller during normal operating
conditions and for developing a real-time closed-loop BWR test bed to check-out
the controller performance before implementing it in an operating plant.

6. Simulation software design

The discussion, thus far, focused on the simulation languages used in the MMS
code development and the deficiencies in the two languages ACSL and EASYS were
highlighted, from the user standpoint. The decision to use ACSL and EASYS in the
MMS code development was taken in 1978 and since then, many changes have
taken place in the simulation software development area. There are noticeable dif-
ferences among the commercial simulation packages available today resulting in a
wide range of capabilities for solving specific simulation problems. The tendency on
the part of simulation software vendors is to focus on improving characteristics
related to input/output features, debugging or diagnostic aids, portability to new
and small computers and documentation. While these aspects are very important,
the modeler still suffers from poor steady-state solver and integration techniques.
Often he is frustrated with situations to make multiple costly runs or model modifi-
cations in attempts to reach a solution with accepted computational speed and
accuracy.

It is interesting to note how the commercial simulation packages have been
developed in the U.S. From CSSL specifications of late 60s and the old CSMP code,
CSSL-IV and ACSL have evolved. These codes still expect users to develop his own
plant models. On the other hand, plant specific simulation languages such as DSNP.
GSMP, GPSAP, SALT and SALT-D have also evolved in attempts to fix the short-

Software design for dynamic process simulation 227

Improvements

Comments

L.
Universal pre-processor

2.
Data Base Management System
(DBMS) or interface development

3.
Standardization of compilers,
DBMS and graphics packages

4.
Library of steady-state solvers
and automatic selection/switching

5.
Library of integration routines
with automatic selection

Development of a super-macro code which acts as a
universal pre-compiler to codes like ACSL, EASY,
DARE-P or CSMP. The super-macro code will
develop input files for the translator of the selected
language. The usefulness of the universal
super-macro routines can be further enhanced if a
general operating system like the UNIX structure is
used in the code.

The simulation language should recognize that each
user has limited interest in applications and will use
only limited utility or analysis routines. The software
design should structure it so that the user can access
various programs independently, using the data base
management system and keep the length of the
overall program short.

Although the general purpose simulation package
may not be able to run completely on a personal
computer, the basic modules for analysis may be
implemented on an IBM-PC (for example). The
simulation itself may be performed on a mainframe
or a mini computer. For that reason, the standard or
most popular compilers and graphics packages for a
super-macro would be essential so that the sofiware
can be tailored to user needs and executed efficiently.
Similarly, some simple but essential features like
automatic conversion of single to double precision
variables should be offered in the support packages
(e.g., integration routines).

The steady-state solvers in the current simulation
packages normally work for the linear problems. The
non-linear problems require good initial guesses of
the state variables. The general purpose simulation
package should have a library of steady-state solvers
instead of a single solver based on one method. Also,
it will be desirable to offer an automatic switching
from one method to another in some classes of
problems (example: in ACSL code, switch over from
Newton-Raphson to steepest descent method) or
based on convergence criteria.

Most simulation codes provide a library of
integration subroutines for solving ODES and
PDES. The capability to switch algorithms between
stifi and non-stiff ODES is essential, but an
automatic recognition of stiff problems and switching
an integration routine is desirable. Along the same
line, partitioning of state-space problems based on
automatic recognition of fast and slow dynamics is
helpful. Currently, in solving the power plant
transient problems the Gear integration routine
changes the order of the integration and the step size
automatically, even during minor perturbations.
Partitioning the problems and communication
between the sub-models at the end of communication
intervals may prove to be an efficient way, if properly
implemented.

228 S. M. Divakaruni

6. Debugging a large simulation problem tends to be
Large system solvers very tedious and expensive. Model partitioning,
independent set-up and check-out of submodels at
initialization and integration stages are necessary.
Large data handling, table look-ups for properties
onwards to memory extensions are sometimes
necessary. An extensive debugging tool with pre- and
post-processors may be reliefs for the users in this
area. Model reduction routines may be helpful for
redefining large simulation problems.
7. The simulation problems dealing with
Special problem handlers discontinuities, time delay, noisy systems are not very
uncommon. The integration packages should exactly
locate when the discontinuities occur.

-

8. Many times the modelers are frustrated because the
Efficiency and user-friendly simulation stops and no diagnostic messages are
features given out. Some helpful diagnostics come from

automatic model generation, recognition of
undefined parameters, continuous integration step
sizes, detection of special events like a discontinuity,
algebraic loop, etc. The simulation software
developers should provide default options to store
automatically simulation results upon time outs.
Also one should be able to suspend simulation and
start with new parameters at the run time.

9. There are many applications specific simulation

Pre-compiled models and blocks packages like DSNP and SALT. One of the strengths
of SALT code is that it provides pre-compiled
modules and hence, the execution time tends to be
minimal. Similar features can be incorporated at the
simulation blocks level. For example, each block in
ACSL can be developed fully so that the compilation

time can be reduced.
10. Standard benchmark problems to evaluate several
Benchmark problems simulation software packages should be developed.

Table 4. Desired improvements in current simulation packages.

comings in CSMP and DSNP. Yet another family of simulation codes consists of
DARE-P, EARLY DESIRE, DARE-ELEVEN, PSCSP and MICRODARE. Each
of these codes have their own strong features and although most code vendors rec-
ognize the shortcomings in their codes, the existing user base and their market focus
precludes them from making the codes ‘truly’ general purpose simulation packages.
Based on the strong features in the codes mentioned here and the experiences gained
in the MMS code development effort, the following ideas have been compiled. The
objective here is to present ideas for the design of a software package that would be
more acceptable by simulation software users.

Basically the simulation software design can be viewed from three aspects: (1)
user’s needs, (2) developer’s potential to market the software to different analysts
groups, and (3) simulation and analysis routines. The credibility of the language lies
in the robustness of the analysis routines in the simulation software to handle small
to large size problems described by either ODES and PDES. The analysis routines

Software design for dynamic process simulation 229

may range from classical *control’ related routines to a wide spectrum of routines to
include optimal control packages to solve the modern control problems and address
noise analysis issues with fast-Fourier transform routines. Typically, the software
vendors are trying to extend continuous system packages to handle the discrete
systems also. The users, on the other hand, want to be able to utilize the same plant
model for various applications, and with the latest available hardware system. Con-
sidering these trends among the users and developers of the simulation software, it is
best recommended to use modularity at each stage and let a data base management
system handle the interfaces between various routines. Table 4 lists improvements or
typical advances one wishes to see in the current simulation packages.

7. Concluding remarks

The simulation languages have been batch processing oriented software, until
recently. Unless problems are extremely large, engineers often prefer to work with
engineering work stations today. From that aspect, it is desirable to design the
simulation software for interactive use and ideally set up to solve a series of small
problems or use different analysis routines to perform different evaluations. File
manipulations, together with graphics usage have become essential tools and we can
no longer overlook this predominant PC-culture. While the data base management
systems, graphics monitors for post- and pre-processors developers might help meet
the user-friendly needs, the smaller machines pose more challenges to develop pack-
ages with robust numerical routines.

For the mainframe and mini-computer applications, the focus of attention must
be on improving the robustness of steady-state and integration solvers. Handling
special events, methods to reduce the model generation and computation times with
improved run-time commands are emerging.

With many simulation languages available today, the time has come to look at
the possibility of developing a super-macro or super pre-compiler to the simulation
languages, for use in codes like the Modular Modeling System. This super-macro
code would select the modules in a given language (example: ACSL or EASYS5 or
any other) and create the pre-compiled FORTRAN code. Based on the application
problem and size, the user can then set up and run the models on his choice
machine. The advances in data base management systems and graphics can be taken
advantage of, and even the universal operating systems can be addressed at least at
a conceptual level.

REFERENCES

DivAKARUNI, S. M. (1985). The application of simulation in large energy system analysis
codes. Modeling, ldentification and Control, 6,

GeAR, W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations
(Prentice-Hall)

Smith, L. B, UmMEL, B, and Divakaruny, S. M., (1983). Effective utilization of two com-
mercially available simulation packages in MMS code development. SCS Conference,
Vancouver, B.C., July 1983.

