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Modular simulation of dynamic systems offers the possibility of computational
speed through parallel processing of individual sub-systems and through the use
of the best integration algorithms for each sub-system. Such simulation needs
co-ordination algorithms to keep the various' sub-systems in time synchro-
nization and to compute the interconnection between the sub-systems. A mathe-
matical description of the co-ordination problem leads to the development of
several new algorithms, These new algorithms are shown to have desirable con-
vergence and stability properties. In particular a new Newton type algorithm is
A-stable in a sense similar to that defined for ordinary integration algorithms.

Numerical tests with several small example problems and with the simulation
of the dynamics of an atmospheric crude unit consisting of five interacting
columns are used to evaluate the various co-ordination algorithms. The crude
unit simulation was carried out using a prototype modular simulator for distilla-
tion systems. This simulator is briefly described.

1. Intreduction

The increase in the price of energy has brought about conservation measures
which have increased the degree of integration in many chemical and petroleum
processes. A new dynamic simulation capability is needed to enable engineers to
anticipate and compensate for the complex interactions produced through such
process integration.

There are two different numerical approaches to simulate the dynamics of an
integrated process: (1) the various sub-systems are integrated with a single algo-
rithm (ordinary integration), or, (2) each sub-system has its own algorithm (modular
integration).

In the first approach (ordinary integration), all linked sub-systems are considered
as onc single large system. A single algorithm, explicit or implicit, is used to simulate
the dynamics of the whole system. Time is advanced the same amount at each step
for cach sub-system no matter if it is stiff or not. Typical examples of simulators
using variants of ordinary integration are: MIMIC (Sansom and Peterson 1965),
CSMP (IBM, 1972), DYNSYS (Barney et al. 19752, 1975b), SPEED UP (Perkins et
al. 1982) and ASCEND (Westerberg 1980).

In modular integration, each sub-system is integrated independently with inde-
pendent error control. Explicit and implicit integration algorithms are used to inte-
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grate non-stiff and stiff sub-systems separately. An example of a simulator using
modular integration is MODCOMP. (EXXON 1976).

In general, modular integration may possess the following advantages over ordi-
nary integration:

(i) The simulation can be more efficient because:
(a) each sub-system uses an integration algorithm which is best suited to
that sub-system.
(b) each dynamic simulator has its own error control, and
(¢) all dynamic simulators can operate in parallel.

(i) The software can be completely modular and therefore easier to maintain.

Most chemical and petroleum processes are examples of systems with stiff and
non-stiff components. The modular approach to integration permits the use of
explicit integration algorithms for the non-stiff sub-systems and implicit integration
algorithms for stiff sub-systems. Independent error control in the individual
dynamic simulators insures that the proper step size is taken in cach sub-system.
Thus, the efficiency of the overall simulation is not adversely influenced by the step
size in any single sub-division.

Because of the separate integration algorithms for the individual sub-systems,
debugging of the computer program for modular simulation can be reasonably
simple. Each simulator can be tested independently to locate any possible program-
ming errors. In contrast, the location of errors in highly integrated computer soft-
ware can be very difficult and time consuming. In addition, a modular simulation
can be expanded with little or no disturbance to existing programs.

The principal obstacles to running two or more dynamic simulators simulta-
neously are communications between simulators and synchronization of the simula-
tion. When a large simulation is composed of several simulators, the individual
simulators are not independent of each other. The outputs of one simulator may be
input to another in the same way that the outputs of one chemical process unit may
be inputs to another. the simulations must proceed at roughly the same pace with
none falling behind or racing ahead of the others.

Miller (1978) has developed an interface to link dynamic modules to MIMIC or
CSMP. The interface allows the dynamic modules to use different integration algo-
rithms and take different step sizes. Controllers are usually simulated by MIMIC/
CSMP and the other process units are simulated by the user generated dynamic
modules. No pre-programmed dynamic modules are supplied with Miller’s interface.

Miller’s interface keeps the simulation in time synchronization by making the
modules compute forward until they pass the point MIMIC/CSMP is expected to
reach on the step it is about to take. Linear interpolation or extrapolation is used to
obtain the inputs needed by MIMIC/CSMP or the modules. If the error in the
interpolation or extrapolation is greater than the error tolerance, the module can
back up and recompute. Unfortunately, MIMIC/CSMP can not back up when
there is an error in the interpolation or extrapolation, so there is no error control
between MIMIC/CSMP and the modules. Another problem with Miller’s interface
is that the MIMIC/CSMP step size controls the overall step size in the simulation
when it should be controlled by the error in the interpolation or extrapolation
among all the modules.

An alternate method of constructing a modular simulator is with a co-ordinator.
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The co-ordinator allows each module to have a different integration algorithm and
to take a different step size from the other modules. The co-ordinator keeps the
dynamic modules in time synchronization and supplies inputs to the dynamic
modules which come from other simulators. Time synchronization is accomplished
by having the co-ordinator set a time horizon over which each dynamic module
computes. The accuracy of the simulation is maintained by adjusting the size of the
time horizon.

Cook (1980) and Cook and Brosilow (1980) have developed a dynamic simulator
for distillation systems using the concept of a co-ordinator. The simulator consists
of a Fortran softwarc package with dynamic modules to simulate distillation
columns, reboilers, condensers, and control systems. The co-ordination algorithm
employed by Cook uses either constant or linear extrapolation method to calculate
the inputs to each sub-system. Cook’s simulator is described briefly in § 5 as an
example of the use of extrapolation algorithms. This simulator has been used by
Klatt (1983) and Klatt and Brosilow (1984) to simulate the dynamics of a crude unit
and this application is described briefly in § 6.

Even though co-ordinators using extrapolation methods have been successfully
used to solve significant problems, they can run into trouble. The time horizon used
by the co-ordinator can become very small when the dynamic modules are strongly
interconnected (Liu 1983; Liu and Brosilow 1983 and Gomm 1981). A small time
horizon defeats the purpose of modularization and leads to excessive computational
effort. To overcome this problem a Newton type co-ordination algorithm has been
developed. The Newton algorithm is described in § 3.

Before describing the various co-ordination algorithms, the co-ordination
problem is stated in the next section.

2. The co-ordination problem

The co-ordination problem is formulated for a general dynamic system with a
total of n interacting sub-systems.
A sub-system (kth) can be described by eqn. (2.1):

xut) = flt), udt) vift), 1) 2.1

where x,(t) is the state of sub-system k, f, is a vector of non-linear functions describ-
ing the dynamic behavior of the sub-system, and (u(£), v¥(¢))” is a vector of inputs.
The inputs are divided into two parts: v,(t) represents the external input to sub-
system k from the surroundings and w(t} is the vector of inputs to sub-system k
from other sub-systems.

The output g,(t) from sub-system k can be a vector function of x,(t) and (u] (1),
v ()"

9{t) = gx1), 1(1), vle), 1) (2.2

Part or all of g,(t) can be an input to other sub-systems. Thus g, interconnects
sub-system / to the rest of the system. To simplify notation, we assume that all of g,
is connectec to the rest of the system.

Figure shows the relationship of sub-system k to the rest of the system. For
any sub-sy em j which receives its inputs from sub-system k, part (or all of g(f)
becomes ¢t (or all) of ugr).
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Figure 1. Relationship between sub-system k and the entire system.

The state of the kth sub-system can also be expressed in the form of an integral
equation:

x{t) = x(0) + J‘foAfL uy(1), vy(7), 7) dt (2.3)
0

with 0 < v <t < TH, where TH is the time horizon. To simplify the notation, we
use bold letters, e.g., z to denote a function defined over [0, TH], and use z{t) to
denote the value of g at time ¢.

The state x,(t) in eqn. (2.3) depends only on (#/, v;)” and so can be expressed as

x{) = xyluy, v, 1) 24
The output of sub-system k is then:
i) = @lxaleay, vi, 1), tlt), vt 1) 2.5)

Equation (2.5) describes the input-output functional mapping of sub-system k. For
an input function (uf, »])7, sub-system k creates an output function g, over the
entire time horizon.

For the n-module system, there are n vector equations in the form of eqn. (2.5).
Collecting all of the inputs and outputs, we define the system interconnections as:

q(1) = (g4(1), g2(1), - -, g.t)" (2.6)
ut) = (uy (D) ux(t), ..., u(1)" 2.7

Since by definition, the sub-system outputs g, change names to become the sub-
system inputs u;, it is convenient to define a single interconnection variable w:

w(t) = q(t) or u(t) (2.8)
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We can also collect the states and external inputs of the sub-systems as:
(1) = (xi, (@), x3(1), ..., x ()" (29)
u(t) = (v], (), v3(1), ..., vI(0)T (2.10)

Then, by putting together the input—output mappings of all sub-systems, we have a
single vector equation to describe the interconnections of the entire system:

w(t) = qlx(w, v, 1), wit), v(z), t) (2.11)
where g =1(q1,495,...,4)" (2.12)

Finding the solution of eqn. (2.11) is the co-ordination problem of modular inte-
gration. Co-ordination algorithms are designed to solve eqn. (2.11) for the intercon-
nection variable w(t) over the entire time horizon. Equation (2.11) is in the form of
an integral-algebraic equation. The major difference between eqn. (2.11) and regular
intcgral-algebraic equations is that the function ¢ in egn. (2.11) is not given explic-
itly. Only the input-output mappings of the sub-systems are available. The co-
ordinator only sces the interconnection variables among the sub-systems. The states
of the sub-systems are kept within the sub-systems and are not accessible to the
co-ordinator. The size of the interconnection variable w is usually much smaller
than the size of the state variable x.

3. Co-ordination algorithms

Four co-ordination algorithms are presented to solve the co-ordination problem
given in eqn. (2.11). To avoid complications, the modules are treated as continuous
systems which accept continuous inputs and provide continuous outputs. The effects
of using numerical algorithms within the modules which provide only a sequence of
points rather than continuous functions is treated by Liu (1983). A fairly involved
analysis shows that errors introduced by the integration algorithms in the modules
are not, in general, amplified by the co-ordinator.

To initiate a simulation, the user provides the following data: initial time
horizon (TH), initial values of the interconnection function (w(0)), and an error tol-
erance (E,_,,). The user-supplied time horizon will be used as the time horizon for
the initial calculation. This time horizon may or may not be adjusted later depend-
ing on the nature of the algorithms. The initial guess of the interconnection vari-
ables cnables the sub-systems to start calculations in parallel. Usually, the
interconnection variables will be assumed constant at their initial values over the
initial time horizon. If the initial guess is not good enough, the algorithms make the
necessary adjustments automatically. The user is also requested to set an error toler-
ance which is used to control the computation accuracy.

There are three phases in each algorithm after initialization: (1) estimation of the
error, (2) adjustment of the time horizon or the interconnection variables, and (3)
computation of the interconnection variables for the next time horizon.

The first phase estimates the error in the interconnection variables and is the
same for all four algorithms. Sub-systems take the interconnection variables pro-
vided by the co-ordinator as inputs and produce outputs to form a new intercon-
nection variable. The co-ordinator then compares the assumed and the calculated
interconnection variables to obtain an error estimate. This error estimate is used as
the basis of adjustment in phase 2.
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The following norm is used to determine the difference between the assumed and
the calculated interconnection variables.

(Definition 1) The norm of a vector of functions f over an interval [0, T] is the
maximum vector norm of f(t) over [0, T withO <t < T, ie.

£ = max |[f()] for all t € [0, T]
h
with f(t) = (fT@. 150, ... f@)"

If w© and w® are two vectors of functions of the assumed and the calculated
interconnection variables, a relative error estimate can be calculated as

Iw — w

(|

The second phase adjusts either the interconnection variables or the size of the
time horizon. If the error estimate calculated in Phase 1 is not acceptable, the co-
ordinator will automatically perform the required adjustment. For Algorithm 1
given below, the co-ordinator recomputes the interconnection variables for the
present time horizon taking as input the most recent calculation. For the other
algorithms, the co-ordinator reduces the size of the present time horizon in order to
reduce the error estimate. The formulae for time horizon adjustments are given with
the algorithms. .

The third phase of the algorithms is to compute the interconnection variables for
the next time horizon. The co-ordinator uses either a polynomial extrapolation
method or a Newton type algorithm to calculate the interconnection variables from
past data.

In general, the value of the interconnection variable w(t) over any time horizon
can be expanded about w(0) with 0 < t < TH. By Taylor’s theorem:

ERR = (3.1)

rp+l

@+

where w! is the pth order derivative of w, and & lies between 0 and ¢. If a pth order
extrapolation method is used, w(t) will be approximated by w(f) with

wi(t) = wi0) + tw'(0) + - + :T': wiP(0) + A (4] (3.2)

w ) = w(0) + tw'(0) + -+ + ;_,: wiPY0) (3.3)

where the values of w'(0), w”(0), ..., wi?{0) are calculated from the values of w near
the end of previous time horizon or from several previous time horizons. Each
element of w(t) for the present time horizon is extrapolated from its past values and
is independent of the other elements of the interconnection variable. Equation (3.3)
is also used to calculate an initial interconnection variable in Algorithm 1.

The Newton type algorithm calculates new interconnection variables by solving
a set of linear integral equations. These integral equations describe the local
response of the sub-systems to changes in their inputs. The kernel of the integral is a
step response function which is obtained by perturbing the initial guess for the
interconnection variables by a small step function. That is, the sub-system outputs
are computed first for a nominal interconnection function, which is usually obtained
by constant extrapolation, and then by a function which differs by a constant from
the nominal. The difference between the sub-system responses for the two different
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inputs is the local step response of that sub-system. Collected together the sub-
system step responses form the kernel of the integral equations which are solved by
the co-ordinator to obtain the new interconnection variables. For an n-vector inter-
connection variable, an n x n matrix of step responses S(t) will be calculated. The
ijth element (i # j) of S(t) is the step response of the ith element of the intercon-
nection variable w to the jth element of w. If element w, is not related to element w;
through a sub-system, S;(t) is zero. Once the matrix of the step responses is deter-
mined, the co-ordinator solves the following integral equation to calculate a new
interconnection variable w'V),

w1y = GOx(w'®, ¥), wt), v(2), 1)

+ I St —7) dwPz)); 0<t<TH (3.4)
0

3.1.  Algorithm I. Direct substitution

3.2

Phase 1.
(1-a)

(1-b)

Phase 2.

Phase 3.

Estimation of error

Computation of outputs

Sub-systems use the interconnection function W over [0, TH] pro-
vided by the co-ordinator as inputs and produce outputs to form a
new interconnection function w'*,

Error estimate

The co-ordinator compares the two interconnection functions, w®
and w'), to calculate an error estimate ERR.

[ — W

ERR =y

Adjustment
If ERR > E,,,, teplace w@ with w'") and go to Phase 1, otherwise
increment simulation time by TH and continue.

Coniputation of the new interconnection variables
The co-ordinator calculates a new interconnection function w©® by
polynomial extrapolation and returns to Phase 1.

Algorithm 2. Extrapolation methods

Phase 1.

Estimation of error
Same as Algorithm 1

Phase 2. Adjustment

and is

If ERR > E,_,, , reduce TH and go to Phase (1-b), otherwise, increase
TH if necessary, increment simulation time by TH and continue. The
formula for time horizon adjustment is:

" E et 1)

max

—= , for eral system,
| ERR | or a gen y

{TH)new = (TH)old N

Niiip+2)
|_Emax i

(TH),o = (TH)y, - | ERR , for a purely dynamic system,
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where p is the order of accuracy of the extrapolation method. Deriva-
tion of this formula can be found in Lui (1983).

Phase 3. Computation of the new interconnection variables
The co-ordinator calculates an interconnection function w® over
[0, TH] by polynomial extrapolation and goes to Phase 1.
As indicated by the formula for time horizon adjustment, a pth order extrapo-
lation method is of (p 4+ 1)th order accuracy for a general modular system. When
the system is purely dynamic (ie., g,, = 0), the order of accuracy improves by one.

3.3. Algorithm 3, The Newton type method
Phase 1. Estimation of error
Same as Algorithm 1
Phase 2. Adjustment
If ERR > E,,,, reduce TH and go to (1-b), otherwise, increase TH if
necessary, and move on to the next time horizon and continue. The
formula for time horizon adjustment is:

E 1/2
(TH)ou = (TH)yq - (ﬁ) for a general system,

and is
E 1/3
(TH)yew = (TH)gyq - (E—;“E) for a purely dynamic system.

Phase 3. Computation of the new interconnection variables

(3-a) Co-ordinator calculates an initial interconnection function w'® with
wO(t) = w® for 0 <t < TH.

(3-b) Sub-systems take w® as input to produce an output g(w'®, »),

w© v, 1)

(3-c) The co-ordinator makes a constant perturbation on w® and calcu-
lates a matrix of step responses S(t) for 0 < T < TH.

(3-d) The co-ordinator solves the following equation for a new intercon-

nection function w'"), and returns to phase 1.

wh(t) = g(x(w'?, v), wt), 0(t), 1)
+ _[:S(t —7)dw1) O0<i<TH

The Newton method is of second order accuracy for a general modular system
as indicated by the time horizon adjustment formula. When the system is purely
dynamic (g,, = 0), the method becomes third order accurate.

The above Algorithm is actually only an approximation to an exact linearization
since the step response function given above and in eqn. (3.4) should actually be
evaluated as S(t, 7) rather than S(t — 7) as shown. That is, an exact linearization
generally results in a time varying system rather than a constant coefficient system
as is implied by S(t — 7). However, the computational effort required to compute a
step response for all 7 between zero and the time horizon, TH, is prohibitive. There-
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fore we approximate S(1, 1) as: S(t, ©) = S(r — 7, 0). That 1s, we use only only the
initial step response. This approximation does not change the order accuracy of the
method. Further, Algorithm 3 gives the exact solution for any time horizon when
the original system is linear and constant coefficient.

3.4. A combined algorithm

The first step of Algorithm 3 (Newton method) is actually a step of the constant
extrapolation method. Since the results of constant extrapolation may be accept-
able, it seems reasonable to check the error at the end of step (3-a) before lineariza-
tion. If the error estimate of constant extrapolation is small enough, we can proceed
to the next time horizon directly without linearization. Only when the results of
constant extrapolation are not acceptable, is the linearization needed. This may save
significant computational effort. Thus, a possibly more efficient version of Algorithm
3 can be constructed by introducing an error check step after step (3-b).

3.5. Convergence and stability

A detailed discussion of convergence and numerical stability for the various co-
ordination algorithms can be found in Liu (1983), and Liu and Brosilow (1983). The
following summarizes the result of the aforementioned references.

Iteration by substitution (Algorithm 1) converges to the solution of 2.1 and 2.2 if
(1) fand g satisfy Lipschitz conditions with respect to both x and w, (2) the contin-
uous system is stable and, (3) the Lipschitz constant with respect to the intercon-
nection variables for the purely algebraic portion of system (i.c. eqn. 2.2) is less than
one. The foregoing conditions are quite mild. Indeed, if there are no purely algebraic
relationships between the interconnection variables, then the algorithm converges
for any problem which can be shown to have a stable unique solution. In addition
to the foregoing, one can prove that for linear systems obeying the same conditions
as given above, iteration by substitutions is numerically stable for any finite time
horizon.

Algorithm 2 (extrapolation) is convergent for non-linear modular systems if the
extrapolation method is a first or higher order polynomial. Constant extrapolation
is a zeroth order polynomial and so may not be convergent. That is, the results of a
constant extrapolation need not approach the true solution even when the time
horizon approaches zero. The numerical stability of extrapolation methods when
applied to linear modular systems requires that the magnitude of the roots of a
characteristic equation be less than one. This characteristic equation is similar to the
characteristic equation which results when multistep methods are applied to the
numerical integration of linear differential equations and requires the evaluation of
the determinant of a sum of matrices. It is therefore too complex to yield insight
into any but the simplest of problems.

Finally, the Newton type algorithm is convergent for non-linear modular
systems and is stable for any time horizon when the algorithm is applied to linear
sub-systems. Indeed, the Newton algorithm is exact when the sub-systems are
described by linear constant coefficient differential equations. It is not even necess-
ary for the linear sub-systems to be stable.
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4. Small scale numerical experiments

The various co-ordination algorithms are tested on simple problems which are
selected so as to demonstrate the strengths and weaknesses of these algorithms.
Problem (i) below is a linear, constant coefficient system which 1s highly oscillatory.
The eigenvalues of the system are —8-8889 and —0-05555 + 0-33078i.A The overall
system is therefore stable as is each sub-system. Problem (ii) is a non-linear system
which has a simple solution (i.e. x(t) = w(t) = e ", y(f) = ¢) and yet has both alge-
braic and dynamic coupling. Problem (iii) poses a severe test of the convergence
properties of an algorithm, since the sub-systems are non-linear and interact so as to
yield a limit cycle. Problem (iv) was developed by F. T. Krogh (Gear 1971, p. 218) to
test ordinary integration algorithms which treat stiff differential equations. The
stiffness of the non-linear problem can be adjusted by adjusting the parameters f;,
and the number of sub-systems N. For convenience we have chosen N = 4.

In order to reduce computational complexity the following procedure was fol-
lowed for each example:

(a) Each sub-system uses a fixed-step Runge—Kutta algorithm for integration.
The step size taken by each sub-system has been made small enough so that
the results of the sub-system integrations can be considered perfectly accu-
rate.

(b) The same step size is taken by each sub-system so that no interpolation is
needed in the determining step responses, and in solving the integral-
algebraic equations.

(¢) Numerical quadrature is carried out using the trapezoidal rule on the same
mesh as that of the sub-systems.

Problem (i)
sub-system 1: X,
sub-system 2: X,
sub-system 3: Xj

—-2x1 - 5'56x2 + X3, x1(0)= 1
—3_‘(1 + 5)63 x;_(O) = ].
—4x; + x; +478x;, x3(0)=1

Problem (ii)
sub-system 1: w= —1/y, x =w?y, x(0)=w0) =1
sub-system 2: y = l/x, y0)=1
Problem (iii)

sub-system 1: %= — (1 + ")x — 0-5(" — 1), x(0) = —0-1111889
sub-system 2: y = xe” — 89y — (2 + 2:225y) + 0-5(¢” — 1),
(0) = 0-0323358
w=25y/(2 +y)

Problem (iv)
Overall system: y = UZ — UBW, y{0) — —1, 1 €i <N
I/N—1 ifi=j
h .e =
=y {I/N if i
w=Uy
Zl' — w.z

B = diag ()
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when N =4,
sub-system j is given by

R () )]
A G o5 ) )]

#1

o ——

——
—

exact solution

-3F ® Newton method

..... linear extrapolation

Figure 2. Results of problem (i), TH = 1-0.

4.1. Numerical results for Problem (i)

Figure 2 compares the trajectories generated by the three sub-systems over a
single time horizon using linear extrapolation and the linearization methods. A co-
ordinator which uses constant extrapolation gives such poor results that they are
not included in Fig. 2. Table 1 compares the same algorithms when the time horizon
is five. The results in this table confirm the statement made previously, that the
Newton method solves a linear, constant coefficient system exactly. The small dis-
crepancies from the true solution are due entirely to discretization errors within the
sub-systems.
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t (1) 2 (3) (4)
02 1-221 1-219 1-211 1220
0377 1-458 1-452 1-436 1-462
0-530 1-698 1-689 1-663 1-715
0-671 1-956 1-948 1-904 1-977
1-027 2-794 2-786 2-672 2-805
1-309 3-703 3-698 3-480 3-705
1-701 5477 5-461 4-951 5430
1-895 6-653 6653 5-845 6-559
2:09 8-082 8100 6957 7-877

(1) exact solution, (2) Newton method,

(3) constant extrapolation, (4) linear extrapo-

lation.

4.2. Numerical results for Problem (ii)

Table 2. Results of problem (ii).

165

Results obtained by applying the various algorithms are given in Table 2. To
simplify the content of Table 2, only results for y(t) are included. A total of 9 time
horizons are needed to reach ¢ = 2-0. To reach the same time, the linear extrapo-
lation method needs 34 steps, and constant extrapolation needs 196 steps. Results
from the linearization method and both extrapolation methods are also plotted in
Fig. 3 for comparison. With the same error tolerance, the results from the constant
extrapolation method are much less accurate than the other two methods. This may
be due to the accumulation of local integration errors.

yit)

exact sclution

Newton method

linear extrapoclation

constant extrapciation

Figure 3. Results of problem (ii).
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y(t)

Euler’s method
Newton method

linear extrapolation method
------ constant extrapolation method

-——~- direct substitution method

Figure 4. Results of problem (iii).

4.3. Numerical results for the limit cycle, Problem (iii)

An analytical solution of Problem (iii) is not available. A solution obtained by
Euler’s explicit method with a small step size (h = 0-0001) is used as reference (see
Fig. 4). All three co-ordination algorithms are tested with this problem. The results
of the Newton method and to linear extrapolation method are virtually identical to
the reference solution obtained with Euler’s method. However, it took the linear
extrapolation method 58 time horizons to integrate from t = 0 to t = 6:0 with an
error tolerance of 0-003. The Newton method took 19 time horizons to integrate
over the same time period with the same error tolerance.

Again, using the same error tolerance, the constant extrapolation method
diverges from the true solution while taking 252 time horizons to reach t = 6-0. The
results of the iteration method with a fixed time horizon of 0-3 is also shown in Fig.
4 for comparison. The time horizon of 0-3 is chosen to be approximately the average
time horizon used by the Newton method. Three to four iterations were needed to
“converge’ for each time horizon. The iteration method also diverges from the true
solution and decays towards the origin. The probable reason for the divergence is
that an insufficient number of iterations were used at one or more time horizons.

In addition to yielding accurate results, the Newton method and linear extrapo-
lation method use relatively large time horizons. Using Euler’s explicit method to
solve the integrated problem with a fixed mesh requires about 1500 mesh points.
Since the linearization method and linear extrapolation method require only 19 and
58 co-ordinator mesh points, there is a lot of integration going on in the sub-
systems between time horizons.

4.4. Numerical results for the Krogh problem, Problem (iv)

The parameters f8;, B3, and B, were fixed at 8, — 10, and 0-001 and N = 4. The
parameter , was adjusted from 10 to 1000 to study the effect of stiffness of the
overall system on the simulation. When g, = 1000, the stiffness ratio of the overall
system is about 10°, while the time constants for the sub-systems are only about
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n(t) (o) ne**
t exact Newton method linear extrapolation
0050 —1-280 —1-280 —1-281
0-066 —1-388 —1-387 —1-387
0-074 —1-445 —1-445 —1-443
0-087 —1-545 —1-544 —1-541
0119 —1-821 —1-821 —1-821
0-168 —2-329 -2-328 —2-326
0-236 —3133 —3-132 —3-127
0-336 —4-198 —4-199 —4:198
0434 —4-831 —4-832 —4-833
0-532 -5119 —5120 —5-118
0-632 —5229 —-5-229 —522%6
0-732 —5-260 —5-261 —5-258
0-832 —5262 —5263 —5-261
0-932 - 5255 —5-256 —5-254
1-032 —5244 —5-246 —5244

* the maximum time horizon allowed is 0-1.
** interpolations are used to calculate y1(t) if necessary.

Table 3. Results for Krogh problem with By = 10 and 0-5% relative error tolerance*

250. Thus, simulating the Krogh problem using a modular approach should be
advantageous compared to ordinary integration.

To simulate the sub-systems, we use Euler’s method with a step size of 0-001.
Table 3 gives the results of Newton method for By =10 and a relative error toler-
ance of 0-5%. To reduce the content of this table, only the results of y, are reported
for ¢ up to 1-0. For a relative error tolerance of 0-5%, the constant extrapolation
method needed a time horizon smaller than 0-0001 to start the simulation and was
terminated.

Table 4 compares the Newton method to the linear extrapolation method for
stiffness ratios from 10* to 10° with either a 0-5% or a 1-0% relative error tolerance.
Based on these results it appears that the number of time horizons used by the
Newton algorithm to achieve a fixed error tolerance increases approximately as the
1/2 power of the stiffness ratio. On the other hand, the linear extrapolation method
fails as the stiffness ratio gets very large.

Number of steps
tot=1-0
Relative Stiffness Newton’s Linear
i error ratio method extrapolation
10 0-5% 104 15 58
10 1-0% 10* 14 43
100 0:5% 10° 44 fail*
100 1-0% 10% 33 90
1000 0-5% 108 138 fail*

* Initial time horizon <10~ %

Table 4. Results for Krogh problem from t =0 to t — 10. N=4, B, =8, B,=—10.
B, = 0-001.




168 C. B. Brosilow et al.

5. A prototype modular simulator for distillation systems

The simulation package consists of four types of units: distillation columns,
reboilers, condensers, and control systems. They are identified by the names DIST,
RED, CON, and EXTRA respectively. In order to describe the inputs and outputs
to a unit all the streams in the system are numbered. A stream can be either a
material flow, heat flow, or a temperature. A material flow consists of a flow rate,
enthalpy, and composition. Each unit in the simulation is also numbered. The unit
numbers are assigned in the order in which the units are input to the program.

The program begins by reading the input data. If an initial state for the simula-
tion has not been specified then the program will guess an initial state and drive the
system to a steady state. The simulation then begins from the user’s specified initial
state or the steady state and ends when the time equals the user’s specified finishing
time.

The present capacity of the program is

15 components

20 units

10 units of a single type

10 input streams to a unit

10 output streams from a unit
40 streams

40 stages to a distillation unit.

5.1. Co-ordinator

The co-ordinator used in the software package is limited to constant and linear
extrapolation. The co-ordinator itself selects between linear and constant extrapo-
lation based on which method gives the largest predicted time horizon to meet the
specified error tolerance. The procedure used is similar to that used by Gear (1971)
to control the order and step size of multi-step integration algorithms. The error
(ERR) is estimated from the values of the interconnection variables at the ends of
the time horizon. That is

Constant extrapolation: ERR, .1y = [W(t,+1) — Wit (5.1)
Linear extrapolation: ERR, 41y = [W(ty+1) — (W(t,) + WXTH)I (52

W(tn) — W(tn— l)
(TH)y-1

(TH), = Time horizon from ¢, t0 t,+1

wie,) = (5.3)

Equations 5.1 and 5.3 are used to determine whether or not to accept the computed
values, W(t,,,). of the interconnection variables at the end of the current time
horizon. If the error estimate is four times greater than the error tolerance then the
co-ordinator will make each module recompute over the time horizon with a
smaller time horizon and constant extrapolation. (The analysis of Liu (1983) indi-
cates that this is probably not a very good policy and that the co-ordinator should
be allowed to choose between constant and linear extrapolation even when it is
necessary to reduce the time horizon).

To select between constant and linear extrapolation over the next time horizon
the co-ordinator estimates the error, E, ., over the next time horizon and then
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chooses the order of extrapolation which will permit the largest time horizon for the
specified error tolerance.

Constant extrapolation

E,..=|W()XTH), | (54)
Linear extrapolation
E,.o =4(W,) - W, NTH,_ )| (5.5)
The time horizon in either case is calculated as
E_ \'e+D
(TH), = (TH),_, (E ) p=01 (5.6)
n+1

Flow rate and heat duty inputs and outputs use only constant extrapolation.
They are not included in the co-ordinator’s error estimate. This is done because flow
rates and heat duties are often coupled by algebraic equations and constant
extrapolation is significantly more stable than linear extrapolation for algebraic
equations.

5.2. Modules

The present distillation column module uses Ballard’s algorithm (Ballard (1979)
and Ballard, Brosilow and Kahn (1978). The algorithm trcats columns with spatially
and temporally varying phase rates, and varying holdups on a tray. The algorithm
automatically adjusts the step size to maintain an error tolerance.

The reboiler and condenser modules presently use a constant holdup version of
Ballard’s algorithm. The condenser is a partial condenser.

The present control system, which is simulated in the module EXTRA is a pro-
portional plus integral control system which manipulates heat flows based on tem-
perature measurements. The integration algorithm used is the trapezoidal rule.

Special controllers, columns, reboilers and condensers can be simulated by
modifying the sub-routine which simulates that particular module.

5.3. User input

User input to the program comes in two forms: the input file (or card deck) and
user generated Fortran sub-routines, The input file consists of the following sec-
tions:

(1) system description
(2) constants
(3) initial state (optional)

User generated sub-routines are for physical property data, distillation column
holdups (optional) and input changes to the simulation (optional). The physical pro-
perty data is entered through the sub-routines KDATA, LIQENT, and VAPENT
which describe equilibrium data, liquid enthalpy, and vapor enthalpy respectively. If
a variables holdup to a distillation unit is used then statements must be added to
the sub-routine HLDUP. If the user wishes to change the value of an input stream
during the simulation then statements must be added to the sub-routine SYSFED.
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# — continuation mark

System Description

DIST  (number of stages FEED Listl PROD list2 list1 T list1)
REB
CON
EXTRA IN list3 OUT list2

list 1 = (stream number, stage number) ...

list 2 = (stream number, stage number, L or V or none — L) ...

list 3 = (stream number) ...
list 4 = (stream number)

Constants — CONST

1) NAME = real 2) NAME (index) = real 3) NAME (index) = list 5

index = stream or unit number

list5 = componentl, component2, ..., componentNCOMP

1) NAME = DT, ERR, FIN, HINIT, NCOMP, START, PRINT

2) NAME = CONHLD, REBHLD, DISTHLD, EXTPRM1, EXTPRM2, EXTPRM3,
PRES, STRM, STRMEN, QSTRM, TEMP

3) NAME = STRMX

Initial State — INIT

IN list3 LIQ list4 VAP list4 Q list4 T list3

REB or CON EXTRA

X = listS real number
T = temperature [opt.]

DIST

liquid vapor, list5, [temperature, opt.]

Table 5. Summary of input notation.

The input has the following form

system description input
CONST
constant input

INIT
L N . ] OPTIONAL
initial state input

A summary of the input is in Table 5.

The system description input describes the inputs, outputs and interconnection
between units. A unit is described by a name which specifies the type of unit fol-

lowed by a list containing the input and output stream numbers.

The constant section of the input sets values to streams, holdups, pressures and
other constants. The streams and units must first be defined in the system descrip-

tion section.

The initial state input sets the initial state to all the units in the simulation. A
simulation can be run without initial state input. If no initial statc is specificd the

program will generate a steady state to begin the simulation.
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3.4. Output

The output of the program is in tabular format. A summary of the input is
printed followed by the initial or steady state. Fither the stream values or the entire
state of the simulation can be displayed at the print interval.

6. Simulation of the dynamics of a crude unit

6.1. Crude unit model

An atmospheric refinery crude unit generally refers to a system which consists of
a main distillation column, several side-strippers, a fired heater, and a number of
pumparounds and condensers. A crude unit is the first major processing unit in a
refinery. It serves to separate the crude oil into 4 to 10 different boiling point frac-
tions. Approximately 1% of the crude oil charged to the crude unit is used as energy
(Wade et al. 1962).

An example of a typical crude unit, supplied by the Standard Qil Company
(Ohio), is depicted in Fig. 5. It consists of a main fractionating tower and four
side-stripper units. Reflux is provided by four pumparound streams. Preheated feed
enters near the bottom of the main column, and steam is added at the bottom of the
tower (the residual tank). The lower two side-strippers utilize steam as a separating
agent while the heavy and light kerosene strippers have reboilers.

GASOLINE
VAPOR

WATER

LK

e HK

oy
ma S S

% @-(Zs—‘?—* HGO
CRUDE 4+ & N
L SR

sm LT 1 7 5 Dg—= RESID.

Figure 5. SOHIO atmospheric crude unit.




172 C. B. Brosilow et al.

The physical characteristics of the crude oil and the steady-state operating con-
ditions of the crude unit, including intermediate column temperatures and product
specifications, were also furnished by Sohio.

Figure 5 depicts the model of the crude unit as simulated. Each of the blocked
areas represents one sub-system. The model consists of five distillation columns, the
main column having twenty-five equilibrium stages and cach of the four side-
strippers have four stages. The top pumparound is modeled simply as a heat
exchanger with a controlled amount of heat removal. Four constant side draws
leave the main tower to the side-strippers, which have fixed reboiler duties or strip-
ping stecam addition. The remaining three pumparound units are modeled as con-
stant heat removals taken directly out of the main column. Appendix I gives further
information on the crude unit,

The algorithm used to simulate the distillation columns was developed by
Ballard et al. (1978). The algorithm uses a second order semi-implicit integration
technique with variable step size adjustment. The basic model assumptions are: the
liquid on each tray is perfectly mixed and of uniform temperature; there is negligible
vapor holdup on the trays; total equilibrium exists on cach tray; tray hydraulics are
described by the Francis weir equation; and only one liquid and one vapor phase
exist on a tray. The pumparound model equations are integrated using the same
double-step method employed in the distillation algorithm.

6.2. Initialization

The first step in simulating the crude unit is in initializing the simulation. Start-
ing values for all the state variables in the simulation are needed. Typically, the
starting values are chosen to correspond to a known operating condition of the
simulated unit. For the atmospheric crude unit, Sohio had supplied specifications
for the feed, product strecams several column temperatures, and condenser and
pumparound heat duties, but not a complete set of steady state operating data.
Thus initialization of the crude unit simulation to correspond to the specified data
required solving for the steady-state operating conditions from the specifications.

The first approach at initializing the simulation consisted of guessing the
columns’ compositions equal to the crude oil composition and temperature, setting
all the heat duties and side-draw rates to their design conditions, and then running
the simulation to steady-state. This approach was not successful. The distillation
algorithm developed by Ballard et al. (1978) assumes that on every distillation tray,
a liquid and vapor phase exist which are in perfect equilibrium with each other.
During the start-up of a distillation column, transient conditions may arise in which
only a single phase exists. To avoid this condition in the simulation, the crude unit
was initialized one column at a time, similar to an actual crude unit start-up.

To initialize the crude unit in a start-up fashion, it is necessary to interact with
the simulation in the same way an operator would interact with an actual unit. The
modular structure of the simulation proved well suited for this task. Because of the
modular design, it is easy to simulate the main column initially and introduce the
side-strippers one by one into the simulation. The modular approach has an addi-
tional benefit. Upon introduction of an additional column or major change in heat
duty or side-draw rate, if an infeasible condition occurs in any of the sub-systems
during a time horizon, the inputs to that sub-system can easily be changed. This
allows the simulation to proceed past an ill-defined condition instead of halting.

The following pseudo start-up procedure was used to initialize the crude unit.
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CPU (min)
1 Main tower start-up without steam 10-80
2 Addition of main tower stripping steam 532
3 Addition of light kerosene cut 318
4 Addition of heavy kerosine cut 4-54
5 Addition of light gas oil stripper 5-93
6 Addition of heavy gas oil stripper 7-18
7 Final adjustments 7-60

Table 6. CPU utilization during initialization changes

First, the main fractionating tower was run to steady-state by guessing all its tray
compositions equal to the crude feed composition, and then simulating the column
at almost complete reflux. Next, the feed flow rate was increased and the pump-
around heat duties adjusted closer to the given design conditions. After the main
column was brought to steady-state, the side-strippers were introduced one at a
time, starting with the lower cuts and working upwards. Finally, all the flow rates
and heat duties were adjusted to the given conditions and the crude unit was run to
steady-state.

In Table 6, the CPU requirements for initializing the crude unit are given.
Approximately 20% of the computer usage was due to the co-ordinator and input/
output requirements.

The dynamic simulation initialization was carried out on a DEC VAX-11/780
computer. Typically, after a major operating condition change, approximately 6 min
of 11/780 time is required to accurately simulate an hour of the crude unit’s
dynamic response.

6.3. Comparison of extrapolation methods

A comparison of the accuracy of the two extrapolation methods, as applied to
the crude unit, is shown in Fig. 6. Extrapolation errors are depicted for 40 minutes
of the crude unit’s response to a — 10% change in the top pumparound’s heat duty.
The time horizon is held at a constant I minute for the entire simulation, for both
methods, Immediately after the change in the pumparound’s duty, constant extrapo-
lation of the interconnections results in a smaller error. Throughout the rest of the
simulated response, linear extrapolation is more accurate.

During initialization of the crude unit, the co-ordinator generally chose to use
constant extrapolation. The criteria for the determination of the extrapolation
method is given by the following equations:

If THI > THe, use linear extrapolation.

Ui - Wi
Err=Y) TR (6.1)
where: Wi — actual interconnections
Ui — extrapolated interconnections
THc = THe - (Tol/Errc) (6.2)
THI = THI - (Tol/Errl)*? (6.3)

THe = Time horizon for constant extrapolation
THI = Time horizon for linear extrapolation
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Figure 6. Linear vs. constant extrapolation for a dynamic response of the crude unit.

A difficulty with the above criteria is its use in conjunction with a constraint on
the maximum size of a time horizon. If the maximum time horizon is chosen such
that both extrapolation errors arc small (Errc and Errl € Tol), constant extrapo-
lation will be preferentially chosen. For example, if Errc = 0-1 + Tol, then the linear
extrapolation error (Errl) needs to be ten times smaller than Errc for linear extrapo-
lation to be chosen.

Another observation made during several simulations runs is that the error defi-
nition given in eqn. (6.1) tends to be rather sluggish in responding to rapid changes
in the interconnections. Because the error is defined as the sum of all the intercon-
nection errors, the co-ordinator does not respond to large errors in a few intercon-
nections. In order to spot sharp changes in a single interconnection, without having
to wait until the entire system simulation is affected, the co-ordination error defini-
tion was redefined as simply the largest single co-ordination error, cf. eqn. (6.4)

Ui— Wi

Ui (6.4)

Err = maximum
i

6.4. Atmospheric crude unit simulation

After initializing the crude unit, corresponding to the design conditions supplied,
the product qualities did not match up with the specifications for the product
streams. Therefore, product specifications were used to calculate a True Boiling
Point (TBP) of a new feed.

To test the utility of the simulator as a steady-state simulator, the crude unit was
simulated for a change in feed composition corresponding to the calculated TBP
curve. The feed was introduced to the main fractionator as a step change. Imme-
diately, because of the increased light ends, the stage above the feed ran dry. The
column pumparounds were adjusted to avoid the transient problem and were slowly
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Figure 7(a). Light kerosine stripper 90% endpoint.

resct to their steady-state levels. After the run was complete, the new product qua-
lities were found to correspond well with the given design conditions. The total
CPU usage for the run was 7-32 min.

A second example of the simulator is shown in Fig. 7. For many multi-variable
distillation control schemes, the composition and or temperature response data is
needed for changes in side draw rates (DiBiano 1981). The dynamic response of the
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Figure 7(b). Heavy kerosine stripper 90% endpoint.




176 C. B. Brosilow et al.

610.00
11X
s aba &
Step response to a + 3.0 gad asd
o Lbpt/min. change in the 3], s
o_ 80000 four drow roles l‘l F"""""
- [
c v
g it e
s v
‘E '] "
w 58000 e ?
- ]
g TR
o .3 eV
K] I v
o 580.00 s v
= . v
o v L
v o
i ””gg" 0000u000°°°°°°°°°°°
o
E 570.00 !'l00‘83§ooooooooooo00°°°°°°° SIDE STRIPPERS
sss+ — Light Kerosine
assd- Heavy Kerosine
wvev- Light Gas Oil
o000 - Heavy Gas 0Oil
560.00
000 2000 40.00 60,00 80.00 100.00

Time (minutes)

Figure 7(c). Light gas oil stripper 90% endpoint.

crude unit to changes in each of the four side-stripper draw rates are shown in Fig.

5. The changes are from the nominal flows of 26-66, 44-25, 76-88, an
moles per minute for the light kerosine, heavy kerosine, light gas oil

d 33-44 pound
and heavy gas

oil draw rates respectively. Each figure shows the response of the 90% end point of

each stripper product to changes in the four draw rates.
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Conclusions

Based on the numerical experiments described in § 4 and 6, it appears that
modular integration methods are robust and efficient. These observations are but-
tressed by the theoretical analysis of the stability and convergence properties of
modular integration methods given in § 1 and 2 and in Liu (1983).

A rudimentary completely modular simulator, using constant and linear
extrapolation is now available for simulating the dynamics of distillation systems.
This simulator has been successfully applied to study the dynamics of a crude unit
consisting of five interacting columns. It may be possible to improve the efficiency of
the aforementioned simulator by incorporating a Newton type algorithm along with
constant and linear extrapolation methods. Also, work is needed to develop the
software constructs necessary to enable user friendly simulation on parallel pro-
CESSOTS.
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Appendix
CRUDE DISTILLATION UNIT MODEL

Sub-systems

Main fractionating tower
25 stages
Fixed linear pressure profile
Feeds enter stages 1, 5, 11, 16, 21, 24
Output streams off of stages 2, 5, 11, 16, 21, 25
Heat removal (pumparounds) from stages 6, 12, 17
Stripping steam enters stage 25

Light and heavy kerosine strippers
4 stages
Fixed constant pressure profile
Feed enters stage 1
OQutput streams off of stages 1, 4
Heat addition (Reboiler) stage 4
Light and heavy gas oil strippers
4 stages
Fixed constant pressure profile
Feeds enter stage 1
Output streams off of stages 1, 4
Stripping stream enters stage 4

Top pumparound (using condenser sub-routine)

Fixed heat duty

Constant holdup
Crude oil composition

31 pseudo components are used to model the crude oil. The equilibrium expres-
sion relating y and x is of the form:

KA{T) = (Pees/P) * Exp (/T + dy + dyy* T+ day * T?)

Liquid enthalpies are given by:

hy=ay; +ay° T +as"T?+a,* T3  per component (i)

hy= 3 by Xy per stage (j)

i=1

The vapor enthalpies are given by:
Hy =by+by " T+by* T> +by;* T3, per component (i)

[
Hy, = >—:1 Hy, - Ky xy; per stage (j)
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The liquid’s density is given by:
Pi = pigo * (e — 3= T);  per component (i)
pi= l/.-.i. (xii/psy); per stage (j)

Distillation towers
The material and energy balances describing the unit are:

dM .
(1 Tin:Lj—lXJ—l.i"'FJZJ.i"' ViVi—L;X;: - 8;X;.;
‘Sj' YJ i~ V;-l }; 1.i

d
) 3 Mih)=L; b\ + F;he, + V;H; — L;h; — S;h, — Vi-1H;,
dM
@)§f=g1+ﬂ+ﬂ—g-&—g—qﬂ
The column trays are taken to be at complete equilibrium.
The holdup on a tray is given by the Francis weir formula:
M; = pjr A Ay - ((Lj/Pj)Hs + Aj3)

The tray area A, is taken to be double the actual area to account for the actual
holdup of the 50 tray column. The equations are solved using the double-step inte-
gration method. An error tolerance in the range (0-005-0-002) was found to be effec-
tive for the five columns (using the maximum norm definition), with a maximum
step size of 10 min.

Top pumparound
The material and energy balances describing the unit are:
dXx
Mthi=Fin.zi_Foul-zl
F w=7F out

OEFln.hin_Fom‘Houl"'Q
0. M,, F,,F,,, are fixed by the user.

Equations solved by use of the double-step integration method. An error tolerance
of 0-01 was used for the solution of the compositions (maximum error norm used),
with a maximum step size of 2-0 min.




