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The numerical solution of differential and
differential/algebraic systems+
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Systems of ordinary differential equations (ODE) or ordinary differential/
algebraic equations (DAE) are well-known mathematical models. The numerical
solution of such systems are discussed. For (ODE) we mention some available
codes and stress the need of type insensitive versions. Further the term stiffness is
redefined, and ideas on handling discontinuities are presented. The paper ends
with a discussion of index for DAE.

1. Introduction

Modeling physical phenomena often leads to differential or algebraic systems. In
differential systems we distinguish between ordinary and partial differential equa-
tions. As an example of the first set we have population modeling and in the second
class the model of a vibrating membrane, with or without an initial transient.

Due to the difficulty involved in solving these differential systems analytically,
numerical techniques must be used. Time-dependent partial differential equations
are often semi-discretized into ordinary differential systems (ODE). Further station-
ary partial differential equations are discretized to systems of non-linear or linear
algebraic equations.

In this paper we concentrate on systems of ordinary differential systems and
their numerical solution. The newest developments are discussed, including both
non-stiff and stiff systems. The important question of how to design a code which
can handle both cases in an efficient way is discussed together with the problem of
how to handle discontinuities in the system efficiently. Finally problems connected
to the handling of combined ordinary differential equations and algebraic systems,
(DAE) are mentioned. This is a new field of research. Some insights have been
gained, but open problems are still at hand.

2. Examples

2.1 One-dimensional heat-conduction

The modeling of heat-conduction in an isotropic one-dimensional rod of dimen-
sionless length [ is illustrated. The partial differential equation is the simple para-
bolic equation
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o is a positive constant and u = u(x, t) the temperature in the rod. Let the initial and
boundary conditions be given as

u(x, 0) = f(x) (22a)
u(0, t) = polt),  u(l, 1) = @s(t). (2.2b)

With second order space discretization egn. (2.1) is approximated by
U'(t) = AU(1) + BV(p) (2.3)

where
U(r) = [U (), -.-» Uﬂ(t)]‘"}v.{t) ~ uli Ax, t),
V(t) = [Ug(t), Uy+,(0]" Ji=0,..., N+ 1L

Eqgn. (2.2) is written as

U)=[fGiAx);i=1,...,N] (2.4)
(.00(‘)] 2
CV(t) = (1) = eR (2.5
(1) = ) [(al{t) )
The matrices A, B and C are given by
[—2 1 07
. E NxN
A_(Axlz | eR
L 0 1 -2
o [1 0 0 01 vz
B=aplo o 7 o 1] €F

Egn. (2.3) together with eqn. (2.5) is a DAE of the form

y=f(ty2; yeR¥
0=glt,y,2); zeR% (2.6)
which is normally written as
y = F(, ) @7

since dg/éz = I is regular and z can be solved from the last system and inserted into
the first part.

2.2. Flow model

Next is the mathematical model for a compressible, inviscid, isentropic medium
(Courant and Friedrichs 1948)

0 .
a‘:’ 4+ (u.V)p + pV.u=0; mass-conservation
du 1 .
& +(u.Viu+ ; Vp=0; momentum equation (2.8)

p —f(p) = 0; equation of state
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where p is the density, p the pressure and u the velocity. In addition there are initial
and boundary conditions. If we let D be the semi-discretized internal density vector,
U the similar velocity vector and P the pressure vector, eqn. (2.8) is approximated
by the DAE-system

D'+ C(U)D + Co(D)U = G,(U, D)

U’ + Cy(UMU + C4(D)P = G,(U, D)
P—FD)=0

which is of the form of eqn. (2.6). When P = F(D) is replaced in the second equation
a system like eqn. (2.7) is again found.

2.3. Electrical network model

This is a model for an electrical network consisting of branches and nodes
(Sincoree et al. 1979). For a network containing voltage sources and linear capac-
itors and resistors the equations are

[CV.o+ 0 0 0 0 -1 0 ol ve 0

0 0O I 0 0 0 0 0|l v E

0 0o 0 I 0 0 —-R 0 || vk 0

o o -1 0o 0o o o Alln]l=lo] @
0O —-I 0 0 0 0 0 Ac || Ic 0

0 0 0 —1I 0 0 0 Ag || Ix 0

[ 0 0 0 0 Af AL A} oJlvyl Lo

Viand I, (i = E, C, R) represent the voltages and currents in branches with voltage
sources, capacitors or resistors. The node voltage vector is V.

Again a DAE-system in the form of eqn. (2.6) is obtained, but it is now much
more complicated. Can it be transformed into a system of the form of eqn. (2.7)? A
solution is found in the different sub-matrices of eqn. (2.9).

3. Recent developments for ODE-solvers

As Sections 2.1 and 2.2 indicate, some DAE-systems can be directly rewritten as
a system of ODE’s. The general form of such systems are

Y =F(ty), te(ab); yteRs. 3.1)

In order to understand the problems connected to the solution of eqn. (2.6) we need
to know how to solve eqn. (3.1).

The first real method of solving eqn. (3.1) was by Euler and was published in
1743 (Euler (1913) p. 422). However, the real development came around 1890 with
the construction of the Adams methods and the Runge-Kutta methods, The
modern history is dated to ca. 1960 with the work of Dahlquist (1956) and Butcher
(1963). Later Dahlquist (1963) introduced the concept of A-stability and thereby
started the research for suitable methods for solving stiff ODF’s.

The word stiff was first used by two engineers, Curtiss and Hirschfelder (1952). A
formal definition was given by Lambert (1973). He related the stifiness to the eigen-
value of the Jacobian

oF
J=Jit, y)= ™ (€, y).
y
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Figure 1. The solution component y, of eqn. (3.2)

According to that definition a problem (eqn. (3.1)) with exact solution y(t) is called
stiff at ¢ if

Re (L) <0, i=1,...,s (i)
x = max Re(—/(J))/min Re (—A(J)) > 1 (i)

i
where A4J), i = 1, ..., s are the eigenvalues of J(t, y(t)) for a given . Obviously this is
too strict a definition. It is difficult to give a precise mathematical definition of the
word stiffness. Let me give a rather informal definition

A problem (egn. (3.1)) is stiff for method M and tolerance £ when the step
size selection is restricted by stability rather than accuracy.

Example 1. Let us consider the well-known Van der Poel equation

Vi=)2 y0)=2,
Ya= =y, + 100(1 — 33)y2, »:0)= 0’

Figure | gives the value of —y,(?). For nearly all values of ¢ it is zero. At
t = 81-3, y,(t) is nearly —0-1. When ¢ is 81-92, y,(t) is —133-7 and at t = 81-95 it is
again back to nearly —0-2. The first component y, has a rather smooth dependency
ont.

The eigenvalues for (3-2) behave interestingly. They start as real —300-0,
—0-0033 and according to the definition of Lambert the system is stiff initially.
Later the largest eigenvalue becomes positive while the other remains negative. Just
before the peak value in y,(f) they turn complex before they both stay real and
negative.

Using a realistic definition of stiffness, (eqn. (3.21)) is a stifl system during most
of the range of definition.

Is this a stiff system for Eulers method? In order to answer that question we
apply Eulers method with local error tolerance of 107 ? ie. norm of local error
bounded by 10~ 3. The stepsize selection is shown in Fig. 2.

For nearly the whole interval [0, 100] the step size is approximatively
0-67 . 10~ 2. The stepsize drops to nearly 0-2. 10™# close to the peakvalue at ¢ ~ 82.
The number of steps is close to 16000, in the peak just under 1000. If the accuracy
controls the value of h, increasing the tolerance from 103 to 10~ 2 should increase
h. However, the step variation is nearly unchanged. Only in the peak region is there
an observable change. The step size is controlled by stability and not by accuracy.

Obviously this is as it should be. If we now use an A-stable Runge—Kutta
method of order 3 (see Nersett and Thomsen, 1984) and tolerance 1072 we use 78

t € [0, 100] (3.2)
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Figure 2. The step size values 100h.

steps with the largest close to 25. Eighty per cent of the steps are taken in the peak
area. When the tolerance is decreased to 10 > the number of steps increases as it
should when the accuracy is the controlling factor. In conclusion, the problem is stiff
for the Euler method, but not for the given Runge-Kutta method. In short, we can
say that stiffness is a problem for the forward Euler, but not for backward Euler (if
it is implemented correctly).

The first programs with error control were based on predictor—corrector
methods. Later the well-known method of Merson (see Lambert (1973)) was intro-
duced and in fact is still in use today. They were all intended as general purpose
solvers, both for non-stiff and stiff systems. Even today Merson’s method is used on
stiff problems. The users observe an inefficiency, but do not know that the system at
hand is stiff.

All production codes are now either intended for non-stiff or for stiff’ systems.
For each class there are three sub-groups of methods,

Linear multi-step methods (LMM)

Runge-Kutta methods (RK)
Extrapolation methods (EXM)
Some good codes
Non-stiff systems: DVERK (IMSL): Runge—Kutta of order 5, 6
RKF45: Runge-Kutta of order 4, 5
Merson (NAG): Runge—Kutta of order 3, 4
Adams (IMSL, NAG): Adams-methods
Diffex: Extrapolation
Stiff systems: Gear (NAG, IMSL):  Backward-differentiation
LSODE
SIMPLE: Singly—diagonally implicit
Runge—Kutta of order 3
STRIDE: Singly implicit Runge-Kutta
ROW: Rosenbrock type methods of
order 4
METAN: Semi-implicit Runge-Kutta

Extrapolation

The main problem is still not solved, how do we know that the problem is stiff?
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# error #
# FIX at end # # # back
Mode eps steps  steps point F-eval Jac LU solvers CPU

FIX/MNI 10°* 100 60 1-4(-3) 577 8 36 206 0-64

MNI 1073 95 0 62(=3) 523 8 52 499 0-72
FIX/MNI  10°* 187 150  2:5(—3) 1172 4 36 261 1-15
MNI 107* 185 0 49%—49 1172 4 71 1160 1-49

Table 1. Results for FIX/MNI: Switching and MNI: Modified Newton only. (# F-eval
stands for # calls to righthand side of system).

The obvious remedy is always to use a stiff integrator. But the code will be ineffi-
cient on non-stiff systems. In order to tackle that problem we need codes that can
change automatically from stiff to non-stiff or vice versa. Shampine (1981) calls this
type-insensitive codes. His main idea is to use ||0E/dy] , in deciding which mode to
use. In Norsett and Thomsen (1985) the ratio between the displacement norm and
the redisual norm is used as a measure of stifiness. They use an implicit method and
for non-stiff problems a fix-point iteration is used while for stiff systems, a modified
Newton iteration.

Example 2. The Van der Poel equation (3.2) is integrated with the Runge-Kutta
NTI of Nersett and Thomsen (1984). The results for local tolerances 102 and 10~ *
are shown in Table 1.

We can see that the switching technique is working and saves both the linear
algebra involved and therefore the CPU-consumption.

The type insensitivity idea has been tested on both stiff and non-stiff systems. In
all cases it works as expected. For example, some problems which are listed as
non-stiff were reported stiff for very crude local tolerances. This is in full agreement
with the given definition of a stiff system. These ideas will be built into future codes.

Most methods and codes are based on the assumption that the problem is
smooth, However, there certainly are problems with discontinuous first derivatives.
A simple example is the modeling of a furnace under temperature constraints, the
temperature has to be between two limits. The codes will normally solve these equa-
tions, but inefficiently. We must hit the point of discontinuity as close as our toler-
ance admits.

Example 3. In Gear and Dsterby (1984) the problem

, 0 x < 40-33
Y=Y100  x>4033

is solved by be the code GEAR of Hindmarsch 1974 with a relative error tolerance
of 105, In Fig. 3 the result is seen as the number of f-evaluations against the inte-
gration length. Much extra work is done. This is due to the fact that we do not hit
the point of discontinuity in an efficient way.

As Example 3 indicates the existing codes handle problems with discontinuities
inefficient and to some extent inaccurate. But a recent work by Enright, Jackson,
Nersett and Thomsen (1985) shows how these problems can be solved. The point is
that we locally need a continuous approximation.

(0) = 40-33
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Figure 3. The behaviour of an ODE code at a discontinuity.

Example 4. The problem

’ y if status =0
N 10
g {—y/-? if status—=1’ *<€L010]
=1
with
_fy—=2 if status=0
o= {V —1 if status=1
and

status = 0 initially
status is reset to 0 if g(x, y) < 0 and status = 1
status is reset to 1 if g(x, ¥) = 0 and status = 0
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Interpolant approach Interpolant approach
Standard approach with u}) with u,
log,o
to1 Ermor Steps fEvals Error Steps f-Evals Error  Steps J-Evals
—1 1-32 20 148 0215 14 79 0137 14 88
-2 7-85 37 317 0321 20 109 0362 20 118
-3 20-83 69 573 0-414 24 129 0-523 24 138
-4 3375 133 1105 0732 39 204 0622 39 213
=0 54-96 175 1355 0-555 68 349 0-629 68 358
—6 2686 240 1764 0481 112 569 0637 112 578

-7 3275 374 2630 0-740 199 1004 0647 199 1013
-8 3899 569 3793 0-589 345 1734 0-655 345 1743

Table 2. Numerical results for the discontinuous problem.

Hence y is held between 1 and 2. This is a simple model for a furnace. There are 7
points of discontinuity in [0, 10]. The code DNORK based on a Runge-Kutta pair
of orders 3 and 4 were used and the results are shown in Table 2.

The code performs well both with respect to efficiency and accuracy. Similar
ideas are presented in Enright et al. (1985) for DVERK, RKF45 and other RK-
methods in general.

4. Differential algebraic systems

Section 1 showed that differential/algebraic problems occur in a natural way.
The question is rather, how do we solve such equations? For the present discussion
we assume the system to be

y=ftyz2, yelR
0=4g(t, y,2), z€ IR‘} (3.1)

This form covers most practical problems, but in some cases the DAE will be given
in fully implicit form

Fi,w,w) =0, w=[" 21"

Obviously this is a more complicated system, but the different difficulties can be
seen by considering eqn. (3.1). As in Petzold (1982) let us consider the system

vy = ¢t
vy =10,
0’2 =vy.

In matrix notation this takes the form
v
y=Ay+Bz, y= ‘]

0=Cy—olt), z=1,

. 01 0
with A—[O 0], B- 1]’ cr 0]
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The simplest method for egn. (3.1) could be the backward Euler Method,

Ynt1 = Yn =W (t,4 1, Vnt15 Zns1)

0= g(tn-#l! Yn+1s Zns l)
In our example this turns out as

Uin+1 = @Ppey

Uz.m+1 =E (U1, ne1 — 01.,)
v3,n+l =;(”2,n+l _v2.n)

Let us first remark that the exact solution is
v,(1) = o(t)
V(1) = ¢'(0)
valr) = @"(1)

The first steps with backward Euler then give

©) Uyo=0
vV o=p
U3 0=7%

(1) o1y = (k)

1
vs,l=5(1@(h)—1a—ﬁ)=h%(co(h)—a—hm

() 1,2 = @(2h)

I
02,2 = (9(2h) — g(h)
1
3,2 = 17 (0(2h) = 29(h) + )

(3) vy, 3 = @(3h)

0.5 = (@3 — o(2h)

1
U3 3 = n (@(3h) — 2¢(2h) + @(h))
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In fact forn =3

Ut,n = Q‘)(ﬂh)

2.0 = - ple) — 9(n — V)
5.0 = (lnh) — 2((n — B) + (01 — 2)h)

For the error we thus have: (except rounding errors)

€1,n =V n— vl(ru} =0
€2.n = Uz n — Vaty) = O(h)

e!,n = vS,n - DS(tn) = O(h)

=
A\
w

For
n=2 ts, digresles h—0 unless the correct
n=1: vy,,0,, h— 0 ) initial values
n=70: They all diverge h— 0 arc given

The question is then, how could we foresee this behaviour, so different from the
normal ODE-case?

Gear and Petzold (1982) have discussed this problem and by considering the
index of a problem, insight can be gained. For eqn. (3.1) we have

Index 1:

g . .
— is non-singular.

0z
When we differentiate the algebraic part of eq. (3.1) we get

%

og
ot +6y

S+ e

Hence a differential system results.
The BDF-methods for eqn. (3.1) are formulated as

k
I_;o % Vn+i = B (tarks Ynsks Znss) (3.2)

0 = g(tu‘l-ka yll-l-k’ zn-l-k)
From Gear and Petzold (1982)

The error order of eqn. (3.2) for index 1 is O(#*), i.e. the order is as for
normal ODE.

For the popular Runge-Kutta methods nothing is stated in the literature, but we
obviously should have the same result. (This will be handled in a forthcoming thesis
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at NTH.) The general class of m-stage Runge-Kutta methods can be defined by

“;=yn +h z aijf(tn"'cjh’ Yjs Z_;)
ji=1

0=git,+ch Y, Z)

., } i=1,...,m (3.3)

yn‘l-l = yn +hz bif(‘n +cih’ K’ zr)

i=1
0= g{t"q-l’ yn-I-ls Zp lJ

(Other definitions are possible and will be considered.)
When g, is singular a higher index system results. Let us assume that g, = 0.
Then

O0=g¢,+9g,.f

and by differentiation

0 = gl'l +gtyf+ gytf"- gyyﬁ"- Gy.ft + Gyj;f-i- gl_)r‘fzz’I
Index 2: g, f; is non-singular

Results on error behavior are in general not known.

In short, the number of times we have to differentiate the algebraic conditions in
egn. (3.1) in order to get a differential equation corresponds to the index of the
system.

When we differentiate once the algebraic equation in our example we get

0=CAy + CBz — ¢
—— e

I I
©1n o

(-

L
D

One more differentiation yields

0=DAy+ DBz — ¢" <0 =2z — ¢"
[ I

and finally

The index is 3.
For index higher than 2 little is known. Let me only refer to the paper of Gear
and Petzold (1982) and also the paper by Lestedt and Petzold (1983).
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