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Task space tracking for manipulators
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For the purpose of controlling a manipulator in the task space, a linear model
with task space position and velocity as state variables can be developed. This is
done by means of exact compensation of the state space model non-linearities
using non-linear feedback. In this paper, feedback control for this linear state
space model is developed using optimal control theory. Integral action is
included to compensate for unmodeled forces and torques. In the resulting
control system, the problem of transforming the task space trajectory to the joint
space is avoided, and the controller parameters can be chosen to satisfy require-
ments specified in the task space. Simulation experiments show promising results.

1. Introduction

In most applications for industrial manipulators, the desired trajectory or path is
specified in the task space, e.g. a Cartesian co-ordinate system,

For task space trajectory tracking, the trajectory is normally transformed from
task space to joint space. The tracking problem is then formulated in joint space.
This can be done by using one PID-controller in each of the servomechanisms (Luh
1983). In certain applications this might be adequate, but as the controller par-
ameters must be chosen to ensure stability in the worst case, the controllers will not
be well tuned for all of the joint space. Alternatively, the non-linear terms of the
dynamic equations may be compensated for by non-linear feedback. The resulting
linear system can then be controlled using linear theory, e.g. optimal control theory
(Luo and Saridis 1985) or the inverse problem technique (Paul 1972).

The transformation of the trajectory from task space to Jjoint space, which is
complex and multi-valued, can be avoided by formulating the control problem in
the task space. This is done by Luh, Walker and Paul (1980a) in their resolved
acceleration control scheme and by Tarn, Bejczy, Isidori and Chen (1984) who
extend the ideas of Freund (1982) and employ a diffeomorphic state transformation
which gives external linearization and output decoupling. In this way, a linear state
space model with task space position and velocity as state variables is obtained.
This linear system is controlled using a sub-optimal controller.

In this paper, the model structure proposed by Tarn et al. (1984) is derived in a
straightforward manner in § 2 without the use of complex transformations. In § 3 a
feedback controller is designed using optimal control theory. The use of integral
action to compensate for unmodeled forces and torques is discussed. In § 4, the
controller performance is demonstrated by means of simulation experiments.
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2. The state space model

The equations of motion for a general manipulator can be found from Newton—
Euler’s equation (Symon 1, Luh, Walker and Paul 1980b). We consider a manipula-
tor with n joints. We have:

Mg+ Vq+ng g+2g=r (1)
where

g vector representing the actual displacements of the n joints
M(g) inertia matrix
V  viscous friction matrix
n(g, §) vector defining Coriolis and centrifugal terms
glg) vector defining the gravity terms
t vector of input generalized forces

The relationship between the velocity, p, in the task space and the velocity, ¢, in
joint space is given by (Whitney 1972)

p=J@yq @

where J(g) is the Jacobian matrix defined by J;; = 0p;/0q;-

For task space trajectory tracking, we choose the state vector x = [xT, x317
where x, = p which is the position in the task space and x; = p which is the velocity
in the task space.

By differentiation of (2) with respect to time and combining the result with (1),
we get the state space model

Xy =x; &)
i, = J(g)q + J@M(g) ‘[~ Vg — nig, §) — &(§) + 7] @
where J(g) = [0J(q)/q1"q.
By choosing

t = V§ + nlg, §) + glg) — M(g)lJ(@) "' J(g)g + Ac

we obtain exact compensation of the non-linear terms in (4), and we get the state
space model proposed by Tarn et al. (1984).

Xy =x; 3
k,=u (6)

where u = J(g)M(g) ™ *Az. The input generalized forces are found from
t= Vi +nig. §) + glg) + Mg (@)~ (@) +u) (N

We see from (7) that the Jacobian matrix J(g) has to be non-singular. This means
that the method of obtaining a linear model (5, 6) by exact compensation of the
non-linear terms in (4) is not immediately applicable to kinematically redundant
manipulators.

The method of obtaining a simple linear state space model by exact com-
pensation of system non-linearities has previously been applied, e.g. to dynamic
positioning of surface vessels (Balchen, Jenssen, Mathiesen and Saelid, 1980).
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3. Feedback control
We see that the system (5, 6) consists of n decoupled double integrators

i (8)
Kivw =1y o)

where 1 <i<n As a result of this, the probiem of finding the suitable feedback
control for the system (5, 6) is reduced to the n identical problems of finding a
suitable control for the systems (8, 9).

In this paper, optimal control theory is used in feedback controller design.
However, classical servomechanism theory may also be used.

For trajectory tracking in the case where close tracking is required and where
moderate oveshoot is tolerated, we want to minimize the functional

I
Ji= f [2idAX)? + Givp io dBXi1 ) + piru?] dt (10)
(il

where t, to t; is the time interval of the tracking, Ax; = x; — x;, and Ax;, =
Xivn— Xi+n,0 Where x;o and x;,, o are the position and velocity setpoints. g;;,
Gi+n, i+ and p; are chosen as g; = (Ax; ,..) 2 Gitnitn=(BX;sp ma) * and py =
(4, mar) ~? Where AX; vy AX; 4y max and 4 . are the maximum acceptable values
for the state deviation and for the control.

For simplicity, we let t;— co. The resulting feedback is given by (Athans and
Falb 1966)

U; = giAx; + gy s Axi iy (11)

where g; = -\/(Qasfpii) and g;,, = _\/[2\/(%:/!’:1] + Qi+, i+4/Pu)- To compensate for
constant disturbances, we include integral action by choosing

T
Uy = giAX; + Gi 4 n D%, + K -[Axt("‘-') dt (12)
0

An appropriate choice of K; is K; = g7/(5¢;+,) which corresponds to choosing T; =
5Ty in a PID-controller where T; is the integral time and Tj, is the derivative time. If
the desired acceleration X, is available, feedforward should be implemented giving
the control

T
U =X + i + gian Axy, + K ‘[Ax,(t) dt (13)
4]
The feedback given by (13) has a simple structure, and the controller parameters are
found from the specified requirements in the task space given in terms of acceptable
state deviation and the maximum acceptable task space acceleration. Of course
these specifications may have to be adjusted so that the bandwidth is lower than the
resonant frequency of the manipulator.

If overshoot is not allowable, g; ,,, should be adjusted so that the relative damp-
ening { is greater than unity. This can also be done by choosing a small x;, , max -
The resulting control system is shown in Fig. 1.

In the case where x, is the position in Cartesian space and orientation in terms
of Euler angles, the control given by (13) without the integral term and by (7) is of
the same form as resolved acceleration control (Luh et al. 1980a). In this method, )
is computed using the recursive Newton—Euler formulation (Luh et al. 1980b).
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Figure 1. Control system.

In Tarn and co-workers (1984), the double integrators (8, 9) are stabilized by
feedback u; = f;x; + fi4+nXi+n. Then a linear quadratic criterion is minimized for the
resulting damped harmonic oscillator. Clearly this gives a sub-optimal solution, as
the optimal control should be applied to the original double integrators. It is also
reported by Tarn et al. (1984) that choice of f; and f;,, has little influence on system
behaviour.

The controller design in this section is based upon the assumption that the
model (3, 4) is perfectly known. In practice this will not be the case due to modeling
errors or model simplifications. The question of the robustness of the controller is
therefore raised. This problem is investigated by Spong and Vidyasagar (1985) who
present an explicit bound on the control deviation as a function of model uncer-
tainty. A crucial point in their derivation, is the assumption that the difference
between the actual and computed value of the inertia matrix M is small.

4. Simulation

The control system developed in sections 2 and 3 was tested for the positioning
part of an industrial manipulator with rotary joints. This was done by means of
simulation experiments.

The manipulator is shown in Fig. 2. Only the inner three joints are considered.
The equations of motion are (Saridis, 1983)

M(g) + n(g, ®) + q(g) = ©

where
Jop + J52(C2) + J35[C2 + 3))? + J,3 C2C[2 + 3] 0 0
M(q) = 0 J22 J2a C3),
Y J23C3 J33
[[2J,382C(2 + 3) + 2J,,82C2])w, @, |
+[2J53 82 + 3)C2 + 273382 + 3)C(2 + 3)]wy o,
SN b —[J23C2 +3)82 + Jys C252]w? + J,3 S3w3 i
== + M,S2 + M352 + 3)
—[J,3C28(2 4 3) + J13 C(2 + 3)S(2 + Nwi
| — J,3 8303 + M3 S(2 + 3)_
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Wy q,
O=1w; = q2 ’
w3 Gr + @3

o = [1,, 7, — 73, 73]" where 1; is the torque applied at joint i,
C2=008q2, C(2+3)=°05(‘12+43), C3=COS{13,
S2=singq;, S(2+3)=sin(q; +¢q,), S3 =sing,,

X2
Y2 T

Yo
Figure 2. Manipulator used for simulation. The co-ordinate systems are assigned according
to the Denavit and Hartenberg convention.
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Figure 3. Position reference.
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Figure 4. (a) Position deviation in the x direction. (b) Position deviation in the y direction.
(c) Position deviation in the z direction.

J,; are the appropriate moments of inertia and M, and M, are coefficients of
gravity.

In the first simulation experiment, the end of joint three tracked the contour ofa
square on a workpiece. The velocity reference relative to the workpiece was 0-3 m/s.
The workpiece was hanging from a conveyor which had the velocity 0-1 m/s. The
resulting position reference is shown in Fig. 3. gy, G4, i+, and p; were chosen as
gy = 10000, g; ., ;+n =0 and py = 1. This corresponds to choosing | mm as the
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maximum acceptable deviation in position and 1 m/s? as the maximum acceptable
acceleration resulting from the linear feedback control. Acceleration feedforward is
not used in this experiment. In Fig 4 the position deviations in the x, y and z
directions are shown. The deviations were less than 2 mm except at the corner
points where the deviations in the y and z directions were approximately 20 mm.
The larger deviations at the corner points are due to the fact that infinite acceler-
ation would be required to track the trajectory at these points. In Fig. 5 we see that
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Figure 5. (a) Joint torque t,. (b) Joint torque 7, . (c) Joint torque 7.
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the applied torques are well-behaved. In Fig. 6 the joint angles are shown. We
clearly see that a straight line in the Cartesian space is not achieved with linear
interpolation between the end-points in the joint space.

In the second simulation experiment, the manipulator lifted a mass which was
unknown, 1-0 m in the z direction. Here the same control parameters were used as
in the first simulation experiment. Acceleration feedforward was utilized.

The acceleration reference in the z direction was 10 m/s? for 0-05s, 0 m/s? for

g,(rad) + ©-¢
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Figure 6. (a) Joint angle ¢,. (b) Joint angle g, . (c) Joint angle g, .
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Figure 7. Position reference and position in the z direction.

1-95 s, —10 m/s? for 0-05 s and finally 0 m/s2. A mass of 20 kg was lifted. This is a
rather heavy load, as links 2 and 3 weighed 25 kg and 20 kg, respectively.

In Fig. 7 the position reference in the z direction and the position of the mass is
shown. Due to the unknown mass, the resulting deviation at the end-point was
300 mm. This is not acceptable. We therefore include integral action in the z direc-
tion. K; was chosen as K; = 350. The result of the new simulation with integral
action is shown in Fig. 8. We see that the accuracy is very good. The applied
torques 7, and t; are shown in Fig. 9. Maximum available torque was 500 Nm. We
see that 7, is saturated during the initial acceleration. The control is very well
behaved. Instead of using integral action to compensate for the unknown load, we
could have estimated the load in some way and adjusted our control. However,
using integral action here is very simple, and besides it will compensate for other
constant disturbances.

5. Conclusion

By means of non-linear feedback, a linear state space model describing manipu-
lator motion in the task space is obtained. By using optimal control theory, an
appropriate feedback controller for this linear system is easily found, and it is shown
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Figure 8. Position reference and position in the z direction when integral action is applied.
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Figure 9. (a) Joint torque 7, . (b) Joint torque ;.

by means of simulation that the resulting controller gives a good performance for
task space trajectory tracking. To compensate for unmodeled effects integral action
is included, and by means of simulation it has been shown that this effectively com-
pensates for an unknown load of significant mass.
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