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Maximum-likelihood estimation of seismic
impulse response?

B. URSIN and O. HOLBERG{
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A seismic trace is assumed to consist of a known signal pulse convolved with a
reflection coefficient series plus a moving average noise process (colored noise).
Multiple reflections and reverberations are assumed to be removed from the
trace by conventional means. The method of maximum likelihood (ML) is used
to estimate the reflection coefficients and the unknown noise parameters. If the
reflection coefficients are known from well logs, the seismic pulse and the noise
parameters can be estimated.

The maximum likelihood estimation problem is reduced to a non-linear least-
squares problem. When the further assumption is made that the noise is white,
the method of maximum likelihood is equivalent to the method of least squares
(LS). In that case the sampling rate should be chosen approximately equal to the
Nyquist rate of the trace. Statistical and numerical properties of the ML- and the
LS-estimates are discussed briefly. Synthetic data examples demonstrate that the
ML-method gives better resolution and improved numerical stability compared
to the LS-method.

A real data example shows the ML- and LS-method applied to stacked
seismic data. The results are compared with reflection coefficients obtained from
well log data.

1. Introduction

A seismic section is a mapping of geological structure. The ultimate aim of
seismic data processing and interpretation is to solve the inverse problem: ie., to
infer the geological structure from noisy seismic data. Particularly in field develop-
ment accurate and detailed geologic information is required. Most reservoirs are
small in the vertical dimensions and even those that are not may thin out to zero
thickness at the edges. For the delineation of such structures high vertical resolution
is required.

Due to earth filtering, the seismic wavelets are distorted during their travel
through solid earth. Deconvolution methods (Robinson and Treitel 1980) are used
to compensate for this filtering effect and improve resolution. They have been suc-
cessful for seismic events which do not closely overlap. The constraint limiting the
applicability of such inverse filters is the limited resolution due to lack of band-
width. It has been shown that with inverse filtering it is impossible to retrieve infor-
mation outside the data bandwidth (Van Riel 1982; Van Riel and Berkhout 1983).

Classical interpretation techniques fail to resolve events with time separation less
than approximately 1/(1-4B) where B is the bandwidth of a broadband seismic
wavelet (Kallweit and Wood 1982). This resolution limit is the best one can achieve
in a noise-free case and, in practice, a larger time separation is required to resolve
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overlapping events. The state-of-the-art resolving power of reflection seismology is
at best in the order of 20 m. This is not sufficient for the current aim of reservoir
seismology.

The classical techniques are mostly based on least-squares (LS) inverse filtering
which is optimal only if the noise is white. When the noise is colored, a weighted
least-squares procedure should be used with a weighting matrix equal to the inverse
of the noise covariance matrix. In practice, it is a problem to determine the noise
covariance matrix. This problem can be solved by assuming that the noise is a
moving-average process (white noise which has passed through a linear filter) and
then estimate the coefficients in the noise filter. This corresponds to the method of
maximum likelihood (ML) which is well-known in system identification (Astrom
and Bohlin 1966; Astrem and Eykhoff 1971; Astrom 1980; Ljung and Sederstrom
1983; Mendel 1983). A first attempt at using this technique to estimate seismic
reflection coefficients was made by Ozdemir (1982). Our results differ significantly
from his, because we have used a different algorithm for the non-linear minimization
which is required to compute the noise filter coefficients. Chi, Mendel and Hampson
(1984) have developed a method for fast maximum-likelihood deconvolution in
which the wavelet is estimated at the same time as the strength and location of the
significant reflectors.

Our model does not include multiple reflections. These could be included by
introducing auto-regressive parameters in the seismic model (Robinson 1978).

2. The seismic impulse response model

A seismic trace is assumed to consist of a known signal pulse convolved with a
reflection coefficient series plus a moving average noise process (colored noise).
Multiple reflections and reverberations are assumed to be removed from the trace
by conventional means. If there are multiple reflections present, they will appear as
part of the signal and thus give rise to false reflection coefficients. It is also assumed
that the data have been corrected for geometrical spreading, and that identical
scaling has been applied to the seismic traces.

An observed seismic trace may then be modeled as

.}’k_—'sk""""’k’ k=0’ l!"'! ny {l)

where s, is the noise-free signal and w, accounts for noise and model errors. n, + 1
is the number of samples in the part of the trace that is being considered.

The signal is given by the convolution of the seismic pulse p,, k=0,..., n,,
with a reflection coefficient series 1, k =0, ..., ng:

AR
Se=2.Px-p> )

j=0
where ng + 1 is the number of reflection coefficients. The refiection coefficients rep-
resent a discretized reflectivity model in which the reflectors are distributed in depth
with two-way travel times between the reflectors being equal to the sampling inter-
val. The seismic pulse is assumed to be constant in the time-gate considered. The
shape of the pulse would then possibly include the effect of anelastic absorption.
When p,p is the last sample of the seismic pulse which is significantly different from
zero, n, should be taken as ng + np. We have tried to illustrate the assumed build-

up of a noise-free seismic trace graphically in Fig. 1.
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Figure 1. The assumed build-up of a noise-free seismic trace.

The noise is a low-order moving average process:
nC
W= ) Ciej, (3)
i=0

where ¢o =1 and ¢;,j =1, ..., nc, are the unknown filter coefficients. {e,} is a
zero-mean Gaussian white noise series with variance 2.

The seismic impulse response model consists of a moving average model both
for the signal and the noise. The signal is assumed to be deterministic while the
noise is a stochastic process, as illustrated in Fig. 2.

From the observed seismic trace we may estimate the reflection coefficient series
and the noise filter coefficients provided that the seismic pulse is known. Alterna-
tively, if the reflection coefficients are known from well log data, the seismic pulse
and the noise filter coefficients may be estimated.

The input wavelet is never known exactly. In offshore applications a recorded
pulse may be used. For two reasons the recorded pulse is usually a poor estimate of
the wavelet. Firstly, the effect of the surface reflection (‘ ghost’) at the receiver must
be taken into account by filtering the recorded pulse in the computer. This includes
uncertainty in the surface reflection coefficient (usually assumed to be —1) and in
the depth of the receiver array. The second source of error is more fundamental; the
recorded pulse does not include the filtering effects of the sub-surface geology. An
improved estimate of the seismic pulse from deep reflections may be obtained by

Linear convolutional seismic model

L] , Convolve with noise k
White noise coefficient series ¢ Colored noise
P Corwolve with reflection S () .
Thuse T coefficient series r Noise-free TNC/ Seismic trace
seismic trace

Figure 2. The seismic model used.
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using reflection coefficients from well logs as input to our seismic model. This esti-
mated pulse can in turn be used to estimate the reflection coefficient series in a
corresponding time gate for the seismic traces in surrounding areas.

Generally it is difficult to recover the true values of the reflection coefficients.
The relative amplitudes of the reflection coefficients are, however, preserved if the
estimation is applied within a short time gate of a seismic trace with constant
scaling within that time gate.

We have assumed that the reflectivity function is zero np samples before and np
samples after the estimation time window. Therefore, we must expect edge effects
when only a limited part of a trace is considered.

3. Maximum-likelihood estimation
Given the seismic data

nR ne
V= Lrib-j+ Y cie k=0,1,...,n (4
i=0 =0

and the seismic pulse py, k =0, ..., np, we want to compute estimates of the reflec-
tion coeflicients r,, k = 0, ..., ng, the noise filter coefficeints ¢;, k =1, ..., "¢ (co =
1) and the noise variance ¢2. The principle of maximum likelihood consists in
choosing the values of r, ¢ and ¢ which make the observed data y the most prob-
able for the given pulse p.
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Figure 3. Iterative estimation of the refiection coefficient series r and the noise coefficeint

series ¢. The model is perturbed until the trace is fitted: ie. r and ¢ are perturbed until
no further minimization of J is feasible.
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The sequence e is assumed to be Gaussian and white. Therefore, because our
model is linear, the sequence y is Gaussian. The conditional ML-estimates of the
vectors r and ¢ are obtained by maximizing the conditional probability distribution
of y for fixed p. It is easy to show (Astrem 1981) that this is equivalent to mini-
mizing

n’
Jr,ely,p)= Y e (5)
k=0

with respect to r and ¢. This is a non-linear least-squares problem. The ML-estimate
for the variance of the white noise sequence e is:

¢* = min (J)/(n, + 1). (6)

Estimates of the white noise process, needed in (5), are given by the recursive
formula

< k=0,1,...,n,
€=V — 5 — ;€ _;, . .
= Vi k j;ljkj {k—}?—O W)

Clearly, for ne # 0, J is strongly non-linear in ¢. We have tried to illustrate the
maximum likelihood estimation of r and ¢ graphically in fig. 3.

In seismic applications it is commonly assumed that the noise w is white. This is
equivalent to choosing ne =0 in the equations above. The method of maximum

likelihood then reduces to the method of least squares.
When searching for a minimum, we need the partial derivatives of e, with respect

to r; and c;. A recursive formula is obtained by differentiating (7) which gives
(Astrem and Bohlin 1966):

k=0,1,...,n,

s i=0,1,...,

de/or; = —pk_j—izoc,»ae*_ifarj, 4i_j?—0nn; (8a)

k—iz=0
k=01,...,n

ne ;] —
J — l’ 2’ ] nR
k—i=0

These are currently termed the first order sensitivity functions. From (8) it is seen
that

3ek/3rj=3ek_,/5rj_1, (93)
aek/361= ae,‘_l/acj_l. (gb)

Therefore, (8) need only be computed for the first index j. This is utilized to reduce
the computational effort.

Differentiation of (8) yields the second order sensitivity functions. As these are
not required by our optimization algorithm (Moore, Garbow and Hillstrem 1980)
they are not included in this text.

The statistical properties of the ML-estimates are well-known. It can be shown
(Goodwin and Payne 1977) that the ML-estimates obtained from (4) have the fol-
lowing asymptotic properties.
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(i) The estimates converge to their true values as the number of independent
observations goes to infinity (asymptotic consistency).
(i) The estimates converge to normal random variables (asymptotic normality).
(iii) There exists no other unbiased estimator which gives smaller variance
(asymptotic efficiency).

It should, however, be emphasized that very little is known about the statistical
properties of the estimates obtained from small data sets (Astrom 1981).

4. Choice of sampling interval

An inherent property of the discrete system (4) is that no estimates can be
obtained between sampling instants. Therefore, we cannot expect to resolve events
with separation smaller than the sampling interval. How should the sampling inter-
val be chosen to achieve the best possible resolution? We have not been able to fully
answer this important question on a theoretical basis.

In least squares estimation it is assumed that the noise spectrum is white. If the
noise spectrum is flat within the bandlimits of the signal, the noise will appear as
white noise when the Nyquist frequency is equal to the bandwidth of the noise. If a
higher sampling rate is used, the noise spectrum does not occupy its full bandwidth
and the spectrum is definitely not white.

On the other hand, to avoid aliasing the Nyquist frequency cannot be chosen
lower than the signal bandwidth. This leaves the upper cut-off frequency of the
signal as the only allowed Nyquist frequency in least-squares estimation. Experi-
mental observations with synthetic data support this conclusion, which has also
been obtained by Ozdemir (1982). If the Nyquist frequency is chosen larger than the
signal bandwidth the least-squares procedure will become unstable. It is possible to
stabilize the least-squares procedure by using the singular value decomposition
cut-off method or ridge regression (Ursin and Zheng 1983), but this decreases the
resolution. A spectral characterization of the ill-conditioning in numerical deconvol-
ution is given by Ekstrom (1973).

When we consider the maximume-likelihood method, the answer is no longer
trivial. The noise spectrum is now allowed to have any shape, and it does not put
any restrictions on the choice of sampling rate. When a Nyquist frequency higher
than the bandwidth is used, one cannot assume the observations (samples) to be
independent. This problem is taken care of by the noise coefficients provided that
the number of noise coefficient is large enough to approximate the spectrum reason-
ably well. A finite-impulse-response low-pass filter cannot be implemented with
fewer coefficients than the ratio between the sampling frequency and the cut-off
frequency. On the other hand, because our optimization problem is non-linear in ¢,
a high value for n¢ is not recommended. If n¢ is chosen carefully with these two
limits in mind, we are able to perform estimation with a Nyquist frequency higher
than the bandwidth of the signal. Nevertheless, we have a strong intuitive feeling
that—as the sampling rate is increased—we will sooner or later face a non-
uniqueness problem. This is easily demonstrated by convolving a band-limited pulse
with a series of spikes of opposite polarity. The output tends to zero as the interval
between the spikes of opposite polarity is decreasing. From a practical point of view,
a non-uniqueness situation may not always represent a serious problem. If good
initial estimates are provided, one can use a high sampling rate and hope that the
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optimization algorithm will converge to the correct solution, irrespective of whether
the solution is unique or not. This is a possible approach in stratigraphic extrapo-
lation.

Using linear algebra Van Riel and Berkhout (1982) have shown that 2BT, ie.,
twice the product of bandwidth B and time gate T, set an upper limit to the number
of independent parameters which can be uniquely retrieved from a seismic trace.
For the least-squares method this gives the empirical result stated above. The data
are n, samples with a sampling period At, giving T = n,Ar. The signal bandwidth
should be B = 1/2At, and we see that the number of independent parameters is

2BT = 2n, At/2At = n,.

Keeping the statement above in mind we are led to conclude that, if we successfully
have retrieved more than 2BT parameters from a seismic trace, these parameters are
not independent. The estimated parameter set then contains no more information
than a corresponding set with only 2BT parameters. However, the result with the
smallest sampling interval may be easier to interpret.

In general, for maximume-likelihood estimation of the parameters in the model
(4), we expect the resolution bound to depend on bandwidth, time gate, pulse length,
signal-to-noise ratio and a priori information. We have not been able to establish a
theoretical resolution limit, and we leave this question open.

5. Numerical optimization

For the minimization of the function J in (5) we have used the MINPACK
library (Moore et al. 1978). This is a program package for the solution of systems of
non-linear equations and for the solution of non-linear least-squares problems.

The MINPACK-implemented general non-linear least-squares solver,
LMDERI1, uses a modification of the Levenberg—Marquardt algorithm (Moore et
al. 1980; Wolfe 1978). This algorithm generally guarantees global convergence, even
from starting points far from the solution.

Our experience with the computer program is that the optimization algorithm
generally converges, even from zero starting values. However, the convergence is
very slow for nc # 0.

During testing of the program we encountered numerical problems in a few
cases. The problem seemed to be that the MINPACK optimization subroutine
LMDERI produced estimates that made the inverse of the filter ¢ unstable. This
resulted in overflow during the recursive calculations of e in (7). However, this
problem was always easily solved by shifting the estimation time window a few
samples or by choosing a lower order of the noise process. The problem did not
occur when good initial estimated for the noise coefficients were provided.

6. Numerical results

6.1. Synthetic data
All our synthetic data are generated using a delayed pulse model without multi-
ple reflections. Each trace is built up by summing the primary reflected pulses.

Wty =Y rplt — ) + wie), (10)

i=1
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where r, is the reflection coefficient and t; is the two-way traveltime for reflecting
interface number i. p(t), the seismic pulse, is an airgun array signature. This pulse
and its amplitude spectrum are displayed in Fig. 4. w(t) is a low-pass filtered white
noise sequence which is different for each trace. The bandwidth of the noise is
chosen equal to the bandwidth of the pulse (125 Hz). The signal-to-noise ratio
(SNR) is here defined as the ratio of the signal energy and the noise energy in the
part of the trace under consideration. The displayed SNR-value on top of each
synthetic data example is the average SNR for all traces in the ensemble. The
delayed pulse model in (10) differs slightly from the model (4) used in the estimation:
the two-way traveltimes for the reflecting interfaces are not restricted to the sam-
pling instants, and the number of non-zero reflection coefficients is generally much
less than the number of estimated reflection coefficients.

The first example is a simple pinchout where the reflection coefficients have
opposite sign. The reflectivity model, the synthetic traces, and their frequency
spectra are displayed in Fig. 5. For plotting, all traces are scaled by the highest
amplitude in the ensemble. The sampling interval is 1-0 ms, and the time gradient is
zero for the first interface and 10 ms/trace for the second. The wavelet used to
generate the synthetic data is also used to obtain the estimates. All our assumptions
are thus satisfied.

Two sets of reflection coefficient estimates are displayed in Fig. 6, where all
reflection coefficients are scaled by the highest amplitude in each set. The first set is
the least-squares result (n. = 0). To meet the white-noise requirement we had to
re-sample the traces to their Nyquist interval (4-0 ms). Where signal events arrive at
the sampling instants or close to them, the estimates are good. Events arriving
between sampling instants result in two reflection coefficients with smaller ampli-
tude than the true amplitude. In attempting to increase the resolution by using a
Nyquist frequency above the bandwidth, the LS-method becomes unstable. The esti-
mates are then dominated by spurious events with large amplitudes and alternating
polarity.

The next set in Fig. 6 is the result of maximum-likelihood estimation with the
number of noise coefficients equal to twelve. We have obtained 1-0 ms resolution

Seismic pulse
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Figure 4. The recorded airgun signature used in synthetic data generation.
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from a signal with 125 Hz bandwidth. The number of estimated parameters is
approximately 2-6 times the product of the bandwidth and the time gate. The
numerical values of the estimated reflection coefficients do not deviate more than
5% from their theoretical values. It can be seen that the spurious reflection coeffi-
cient are correlated. The spurious events generally have small amplitudes, and they
are not continuous from trace to trace. This is probably due to the fact that the
noise in our model is spatially incoherent. We cannot normally expect the same to
hold for real data. By trial and error we found that the ML-estimates were slightly
better with increasing order of the noise model and in this case the optimum value
of nc seemed to be about twelve. Further increase in nc to over twenty produced
spurious events with larger amplitudes. The displayed noise spectra are obtained by
Fourier-transforming the estimated noise coefficients. These spectra indicate a noise
spectrum with bandwidth of approximately 125 Hz. Figures 7 and 8 are equivalent
to Figs. 5 and 6, but now the average signal-to-noise ratio is 2 dB. Some of the
spurious estimates for nc = 12 are large in amplitude and therefore the reflection
coefficient series are scaled individually.

The results shown were obtained using zero starting values for r and c. If the
true values are used as starting points, the algorithm still converges to the displayed
values. It has been verified that the minima of the loss function in (5) corresponding
to the displayed solutions are smaller than the values of the loss function corre-
sponding to the true parameter values.

We also did experiments with different locations and lengths of the estimation
time window. A narrower estimation window containing the interesting events did
not produce significantly better results. One property that may be important in the
interpretation of the estimated reflection coefficients, is that the spurious events are
changing when ng is changed.

The next example is a simple reservoir model. The reflectivity model and the
resulting traces are displayed in Fig. 9. We here simulated two problems that we
face in real data applications. The first problem is that we cannot expect the reflec-
tivity function to be zero ng-samples before and np-samples after the estimation time
window. This edge effect will probably be most serious for short time gates. The
second problem is that we do not know the pulse exactly. Results obtained with the
original pulse are displayed in Fig. 10. Inversion is successful only when the time
window contains all events. In this case the number of estimated parameters is
approximately 4-5 times the product of bandwidth and time gate. Again, the spu-
rious reflection coefficients are correlated. We shall now assume that the reflectivity
function for trace number six is known from well logs. This reflection coefficient
series together with trace number six is used to provide pulse estimates. In Fig. 11
two estimated pulses are shown. The first pulse is obtained by considering the reflec-
tion coefficients in the time interval between 10 and 100 ms. Visual comparison with
the original pulse in Fig. 4 shows that the shape of the pulse is recovered. The main
difference lies in the tail. The next pulse is obtained by considering only the reflec-
tion coefficients in the time interval between 38 and 68 ms. Although we chose the
desired pulse length to be only 40 ms in order to reduce the edge effect, this pulse is
seriously distorted. The two sets of estimated reflection coefficients shown in Fig. 12
are obtained by using the two estimated pulses. With the exception of a few spu-
rious events for traveltimes around 10 ms, the first set may be compared with the
result obtained using the original pulse. The second set shows a result that is very
poor even for trace number six. We also did tests with other and nicer looking short
pulses, but we were not able to reduce the edge effect in this way.
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Figure 11. Pulses estimated from trace number six in Fig. 7. Upper: The estimation time
window contained all events. Lower: Only the events between 38 and 68 ms were
considered.

The simple examples shown above do not complete the investigation of the
properties of the ML-method. They are merely intended to indicate how the algo-
rithm can be applied and what kind of problems we must expect in real data appli-
cations.

6.2. Real data

Figure 13 shows a part of a stacked unprocessed seismic section. The sampling
interval is 4 ms. A reflection coefficient series obtained from well data at CDP 278 is
also displayed. The sampling interval of the reflection coefficient series is 2-0 ms. We
shall focus our attention on the area between 2082 and 2222 ms two-way traveltime.
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Figure 12. Effect of not knowing the input wavelet exactly. Left: ML-estimates obtained
with the upper pulse in Fig. 11. Right: ML-estimates obtained with the lower pulse in
Fig 11.

Reflection coefficients in this interval together with the stacked trace for CDP 278
are used to estimate the pulse displayed in Fig. 14. As can be seen from its tail, the
estimated pulse is distorted by multiple reflections and/or edge effects. These effects
cannot be expected to be spatially invariant. Hence the estimated pulse will only be
suited for inversion of traces close to the well.

The results displayed in Fig. 15 are obtained using the estimated pulse and with
zero starting values for r and ¢. For least squares estimation, the trace had to be
resampled to 80 ms sampling interval. The event at approximately 2100 ms
two-way traveltime is resolved but the rest of the trace is corrupted by spurious
events with alternating polarity. Maximum-likelihood estimation was performed
with 4-0 ms sampling interval and n¢ equal to five. The result of ML-estimation
appears to be a smoothed version of the reflection coeflicient series obtained from
the well log. The event at approximately 2100 ms two-way time is nicely resolved,
but the negative peak at approximately 2150 ms is not properly recovered. The
polarity changes from 2150 to 2220 ms vary consistently along the traces.
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Figure 13. Stacked and unprocessed data with corresponding frequency spectra. Reflectivity
function obtained from well logs. The well is located at CDP 278.
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Figure 15. The stacked traces and the estimates obtained from them. The reflectivity func-
tion obtained from the well at CDP 278 is included for comparison.

7. Conclusions and discussion

Synthetic and real data examples have demonstrated the effectiveness of the
maximum-likelihood method.

When least-squares estimation is applied, the sampling rate must be chosen
approximately equal to the Nyquist rate of the trace. Maximum-likelihood estima-
tion yields resolution superior to that provided by least-squares estimation. The
ML-method also appears to be numerically more stable.

In real data applications the inversion is distorted by multiple reflections and
also by edge effects when only a limited part of the seismic trace is considered.

The synthetic and real data examples indicate where to focus attention as far as
possible improvements are considered. The edge effect may be reduced by using
different boundary conditions in the model. Because the optimization problem is
nonlinear in ¢, faster convergence may be achieved by using a fixed noise filter ¢.
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