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A solution to the blow-up problem in adaptive controllers
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This paper addresses the blow-up problem associated with the parameter estima-
tion part of an adaptive controller. A partial solution to the problem has been
devised by the introduction of a variable forgetting factor. However, this does
not eliminate the blow-up possibility. This is shown by simulation experiments
on two different models.

A new method which completely solves the blow-up problem is presented.
This method is presented in two essentially equivalent formulations. One of the
formulations is based upon a vector variable forgetting factor, while the other is
a Kalman filter approach. This new method and the scalar variable forgetting
factor are compared by means of simulation experiments.

1. Introduction

A serious problem which can arise when using an adaptive controller, is the
blow-up of the convariance matrix associated with the parameter estimation part of
an adaptive controller. The reason for this unpleasant fact is that every adaptive
controller has a mechanism for forgetting old information. One way of doing this is
by introduction of a constant forgetting factor (Astrém et al. 1977). This may result
in an exponentially increasing parameter covariance matrix during periods of little
or no excitations. If this occurs, the system will be extremely sensitive to the onset of
disturbances, and control system instability may be the result.

To avoid this problem, Goodwin, Elliot and Teoh (1983) reset the covariance
matrix at regular intervals. This method causes loss of information at the resetting
samples. Laudau and Lozano (1981) use two forgetting factors to keep the trace of
the covariance matrix constant, while Higglund (1983) has a method which makes
the covariance matrix converge to a constant matrix.

Fortescue et al. (1981), have devised a partial solution to the problem by the
introduction of a variable forgetting factor. The problem has also been addressed by
Cordero and Mayne (1981). This method is based on the idea of maintaining a
constant level of information content in the estimator part of the controller.

It is the experience of the authors, and this is also shown by Cordero and
Mayne, that the method of Fortescue et al. does not always work well and must be
combined with a restarting mechanism or some other mechanism to prevent
blow-up in the general case. One of the reasons for the blow-up possibility when
using the Fortescue algorithm, is that only a measurement of the total information
content of the parameter estimates is controlled. One has no control over how this
total information is distributed among the various parameters.
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This fact can be particularly unfortunate if the diagonal elements of the estima-
tion covariance matrix are very different. In that case information loss by a factor of
10 or more, related to a given parameter, may be masked out by a relatively small
information gain in a normally larger parameter.

Another, and more important reason, is that the information measure used by
Fortescue et al. is not a good measure of information content, unless the process is
nearly deterministic. This is also pointed out by Fortescue et al. (1981).

In the next section of this paper, the method of Fortescue is recapitulated and
commented upon. It is shown by examples that the algorithm may very well
produce a blow-up situation. In the third section a possible modification of the
algorithm is presented by introducing a vector of variable forgetting factors, or
alternatively a Kalman filter formulation. It is shown that this modification elimi-
nates the possibility of a blow-up, and the performance of the method is illustrated
by simulation experiments.

2. The blow-up phenomenon

A commonly used parameter estimation algorithm in adaptive controllers is
(Ljung 1981)

él:+1 =0, + Kiy 1841 (1)

Kirr = PoWy o [ + Wi Pl 170 2
1

Piyy =[I_Kk+l'y{+l]Pki (3)

where @, is an estimate at time k of the parameter vector 8, K, is the updating gain,
& =y — ¥ is the prediction error, where y, is the actual process measurement, and
¥, is a measurement prediction produced by a process model. P, is an estimate of
cov(8,), and , is equal to —d¢, /@8, . This sensitivity is directly given in terms of old
values of control inputs, u,, and measurements, y,, when an ARMA-model and a
least squares method is used (Ljung 1977; Soderstrom et al. 1978). Generally, ¥, is
computed by solving a set of sensitivity equations (Saelid and Jenssen 1982; Saelid
et al. 1983). 4 is a forgetting factor, usually chosen in the range A € [0-95-1-0].

As mentioned in the introduction, P, will increase exponentially if no system
excitation exists and A < 1. A blow-up situation is then created.

Instead of choosing 4 < 1, parameter tracking capability of the algorithm can be
ensured by formulating the parameter estimation problem in the form of an
extended Kalman filter, where the unknown parameters are modeled as

0,.1=0,+v,

and where v, is a white process noise vector. In that case (3) is modified to be given
by

Pioy =0 — Ky Wil 1 JP + 4

where V, = cov (v,). This formulation also suffers from the blow-up possibility. The
algorithm is, however, more robust than the forgetting factor method because P,
only increases linearly when ¢ & 0.
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Fortescue’s method of blow-up control is based on the following definition of the
information content of the estimator (Fortescue et al. 1981)

Xy = /A Xy +(1— q’skﬂ-‘lf (%)
where X, is a measure of the total information content of the estimator, and 4, is a
variable forgetting factor. J, is chosen so that X, =%, , = ... =2%,. In other

words, the amount of forgetting will at each step correspond to the amount of new
information introduced by the latest measurement, so that Z, is kept constant. Solu-

tion of (5) with respect to 4,,and assuming £, = %, _, = ... = X, yields
(1 — Yy Ky)
y=1— # &
or by substitution of (2)
&
A= (6)

e W P

When a system is deterministic, A, approaches 1 if the system is not excited. As a
result of this P, is kept constant. However, if the system has noisy measurements, A,
will be less than 1, even if no new valuable information is entered into the algorithm.
This is seen from (6), and is due to the fact that the algorithm’s measure of informa-
tion content given by (5) is a relevant measure of information content only in the
deterministic case. In the stochastic case, ¢f will also contain noise components
which are not related to any useful information. In the following, we will see that
blow-up may occur when applying Fortescue’s algorithm to a stochastic system.

Example 1. Adaptive autopilot.

As an example we shall illustrate the blow-up mechanism by simulation of an
adaptive autopilot for ships (Saelid and Jenssen 1982). The autopilot is based on a
physically meaningful model of the ship and the environment. The model consists of
a low-frequency part (LF-part) representing the steering dynamics in calm water,
and a high-frequency part (HF-part) representing the yaw motion due to waves.

The autopilot structure is shown in Fig. 1. The autopilot includes 2 Kalman
filter, and the prediction error is used in a parameter estimation algorithm as given
by Egns. (1)3). In addition, a set of sensitivity equations has to be solved in order
to obtain WV, = 0¢,/08,. For details regarding autopilot design, see Saelid and
Jenssen (1982).

A slightly modified version of this adaptive autopilot (Saelid et al. 1984) is simu-
lated using the Fortescue algorithm for computation of 4, .

Five parameters are estimated: Two parameters in the LF-part system matrix,
two parameters in the control matrix and the dominating wave frequency of the
HF-model.

The following situation is simulated by running the adaptive controller against a
non-linear model of the ship and the environment:

First, the simulator is run for 2000 s using some initial manoeuvres and simu-
lated waves having a significant wave-height H, ; of 8 m. The measurement error
has a simulated standard deviation of 0-003 rads (=0-2°). 4 is set to 1. During this
period, the parameters and the covariance matrix obtain an approximately constant
level. X, is set to 0-02.
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Figure 1. Structure of the adaptive autopilot.

At t = 2000 s, the reference excitations are turned off. During the next 3500 s, the
covariance matrix grows exponentially as indicated in Fig. 2, where the element P, ,
of the P matrix is shown as a function of time. This will happen whenever measure-
ment noise is present. Choosing a larger Z, will not cure the situation. It will only
delay the blow-up.

Around ¢t = 5000 s, a burst of particularly large waves appears. Due to the
blown-up covariance matrix, the parameters change drastically and the system gets
unstable after ¢ = 5500 s. The parameter estimates and the variable forgetting factor
are also shown in Fig. 2. Figure 3 shows the rudder control and the heading of the
vessel.

Example 2. Second order process.
As another example we shall examine the simulated application of an adaptive

controller to the following process

. bo + blz -1

l4az '4az?

Y U3+ e 0
where y, is the measurement, u, is the control, and ¢, is the measurement noise at
the discrete time k. We assume that e, is ucorrelated white noise, and that var (¢,) =
0-25. The true parameter values are by = 0-050, b, = 0-038, a, = —1-38, and a, =
0-47.

The control law is based on generalized minimum variance control (Clarke and
Gawthrop 1979). It minimizes

J = E{[PYism+1 — Wi + Qui]%}

where m is the process time-delay and w, the reference signal. P and @ are poly-
nomials chosen so that the desired response characteristics of the adaptive control-
ler are achieved. They are given by P = 25 — 1-5z 'and Q = 0-5(1 — z™ %),
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Figure 2, Element p,, of P matrix, parameter estimates and forgetting factor 1 when the

Fortescue method is used.
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Figure 3. Rudder control and vessel heading.
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The adaptive controller is based on explicit model identification. The extended
least squares method is therefore applied, together with the Fortescue method, in
order to identify the process in Eqn. (7). The model which is used for this purpose
has the form

Az Yy = Bz Y3 + Cz Ve
where
Az N =1+az ' +a,z7?,
Bz ') =by + bz ' and
C{Z l) =1 + E‘lz_l +ezz_2

Hence, six parameters are estimated. The parameter X in (6) is set equal to 20.
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Figure 4. Trace (P), estimates of by, ¢; and c,, and forgetting factor for second order
process.
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Figure 5. Control and measurement signals.

The system is simulated with initial excitations, such that the parameters have
converged to somewhere near their correct values at t = 1000. From then on the
following reference values are used.

10t e [1000, 1900]
w, = <15 € [1900, 3600]
10t e [3600, 4000]

The resulting trace of the covariance matrix is shown in Fig 4 together with
some of the estimated parameters and the corresponding computed variable for-
getting factor. The control signal and the measurement signal around r = 1900 are
shown in Fig. 5. As it is seen, the algorithm clearly shows blow-up tendencies and
the parameter estimator becomes very sensitive.

In the present example we have the selection C(z™') = A(z™") in the simulation
model. If we assume no feedback (i, = 0), ¢ will contain no information about the
system parameters, because in that case, e, can be regarded as pure measurement
noise. In an adaptive controller, feedback is present, of course, and the measurement
noise will excite the system through the feedback channel. But a large amount of the
prediction error, ¢, will still represent measurement noise and not parameter infor-
mation. This inevitably leads to blow-up when the Fortescue scheme is applied.

It is clearly seen from an extensive body of simulation experiments, that
increased measurement noise increases the blow-up tendency.

Simulation experiments with a lower order C(z™')-polynomial than A(z ')-
polynomial in the process model (7), eliminated the blow-up tendency. This may be
explained from the fact that

Cz" Ciz™)

Az tae
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when the order of the C(z~')- and A(z™")-polynomials are equal. The constant term,
1, can be interpreted as measurement noise, which is the cause of the blow-up situ-
ation shown in this example.

3. The constant information method

It is seen from § 2 that in certain cases there is a need to improve the existing
methods for adjusting the forgetting behaviour of an adaptive controller algorithm.

In this section we introduce a new method which is based upon the principle
that the amount of forgetting for each parameter is set equal to the amount of
information related to that parameter obtained from the last measurement.

An intuitively desirable property of a parameter tracking algorithm will in most
cases be to maintain a constant level of parameter updating, only modified by the
parameter sensitivity, ., and the prediction error ¢,. The parameter adjustment is
given by

Oy — 0, =Py [+ W PeWis ] e

Hence, from an intuitive and practical point of view, P, should be kept constant
in some sense. In this method we keep the diagonal elements of P, constant, which
is closely related to keeping the variances of the parameters constant.

This is done after an initialization period where the algorithm is run with no
forgetting until the parameter estimates are reasonably stabilized. During this
period the process has to be sufficiently excited. This can be done by introducing
deterministic excitations by cycling the reference signal. After this initial period, the
diagonal of P, is frozen.

The method can be formulated either by using a vector of variable forgetting
factors (Saelid and Foss 1983), or by a Kalman filter approach.

What the method actually does, is to disregard (or forget) exactly the same
amount of information as is supplied by the measurement at every sample.

3.1. Vector of variable forgetting factors

Eqgn. (3) with A = 1 can be written
PV s Wi+ 1 Pi
L+ Wi P

The diagonal elements pj’ of Py are given by
Pi1 = P — (1 + Wls P, NKG)? ©)

where K is the element of the K, matrix.

To obtain p, , = p} we introduce a forgetting factor for each parameter given
by AL = 1 — 1/NL, where 4 is the forgetting factor for the i'th parameter and Nj is
the associated memory length.

The covariance updating algorithm (3) now becomes

Py = Lt_l[f - KI:+ 1¢E+1]PnLk_l (10)

where L, = diag(/2;,...,+/4,) and p = dim 6.
With this modification, Eqn. (9) is changed to

pf+l=[pﬁ_(l +¢:"”qu;,‘+1)(}(32]/1:‘ (11)

Pooy =P, — ®
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By choosing
=1 —(1+ ¥ Py JKD?/pE (12)
or alternatively
k= Pk/Pin (2 =1)
where pi', ((4' = 1) s the pi’, , we get, with 2’ = 1, we get
Piv1 =Pk

By using (12) in the covariance updating algorithm, the diagonal elements of P, will
remain constant for all k, whereas the off-diagonal element will change according to
variations in Wy, .

The algorithm was tested by running the simulation experiments of § 2 once
more, using a vector of variable forgetting factors instead of the Fortescue method.
The algorithm behaves very well both in the adaptive autopilot and the second
order process.

Figure 6 shows the parameter estimates and the forgetting factors from the
adaptive autopilot simulation. Figure 7 shows vessel heading and rudder control.

Figure 8 shows the B and C parameter estimates and three of the forgetting
factors for the second order process. Figure 9 shows the control and measurement
around the reference change at t = 1900 s.

3.2. Kalman filter
As described above, Eqn. (3) can be replaced by Eqn. (4) by modeling 0, as a
stochastic process.

By choosing
V. = diag(v,..., vf") (13)
B 0.04] f W'
: WA
e 0.0 \ '%hﬁ] W | w J Wﬁﬁq’%ﬂm
2 -0.04 I[
0.08 i
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Figure 7. Rudder control and vessel heading.
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4

where dim 6 = p,
v = (Kys Wi PO

and (K, . W7, P)" is the i'th element of the diagonal of K, , {7, ,P,, we obtain
Piv1 =Pk -

This gives a very simple algorithm which can also be used for systems with
multiple measurements.

Using this approach, the updating of the off-diagonal element of P, is given by

Py = [ — Ky W4 OPJY, 1#] (14)
while the formulation with a vector of variable forgetting factors gives
Pler = [0 = Ko sV DPIYILHY?, 0 # (15)

The only difference between the two formulations is the (4} 2{)~*/? term in (15).
During the initializing period, the forgetting factors in (10) are set to 1, which
corresponds to ¥, = 0in (13).

Example 3. Step in parameters in the adaptive autopilot.

The adaptive autopilot of Example | was simulated once more. At the start of
the simulation experiment, the parameters had converged. Significant waveheight
was 8 m.

Initial speed of the vessel was 15 knots. After 2000 s the speed was halved. The
autopilot has an adaptive feedforward (scheduling) from the vessel speed. This feed-
forward was kept at 15 knots, causing a considerable change in parameter values.

The system was simulated using the Fortescue method. From Fig. 10 we see that
while p,;, that is the third element of the diagonal of P,, is well-behaved, p,, and
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Pss increase near exponential for t < 2000 s, which is the time of the parameter
change.

The parameter estimates are shown in Fig. 11, and rudder control and vessel
heading are shown in Fig. 12. Due to the blown-up P,, the parameter updating
gains are too high at the time of the change in parameter values. This causes the
system to become unstable after 7500 s, which is seen from Fig. 12.

X, was chosen as 0-02. A large X, would have decreased the blow-up tendency
in P, but this gives a slow speed of adaption for some of the parameters.

The system was then simulated, first with a vector of variable forgetting factors,
and then with the Kalman filter formulation.

As could be expected, the formulation using a vector of variable forgetting
factors and the Kalman filter formulation given almost identical results. Both
methods are well-behaved.

The parameter estimates are shown in Fig. 13. These parameter estimates were
obtained using the Kalman filter formulation. v,5, v,, and vs5 are shown in Fig. 14.
Rudder control and vessel heading are shown in Fig. 15. Rudder control and vessel
heading were as good as identical for the Kalman filter formulation and the formu-
lation with a vector of variable forgetting factors.

4. Conclusion

It has been demonstrated that the variable forgetting factor algorithm as pro-
posed by Fortescue et al. (1981) does not prevent blow-up if measurement noise is
present.

A new method that solves the blow-up problem is introduced. The method can
be formulated by means of a vector of variable forgetting factors or by means of a
Kalman filter. These two formulations are essentially equivalent.

The method is based upon the principle that at every sample exactly the same
amount of information is disregarded for each parameter as is supplied by means of
the measurement.

The excellent behaviour of the method is exemplified by application of the algo-
rithm to a simulated adaptive autopilot and a simulated second order process.
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Figure 15. (a) Rudder control and (b) vessel heading.
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