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The problem of estimating large scale implicit (non-recursive) models by two-
stage methods is considered. The first stage of the methods is used to construct
or estimate an explicit form of the total model, by constructing a minimal sto-
chastic realization of the system. This model is then subsequently used in the
second stage to generate instrumental variables for the purpose of estimating
each sub-model separately. This latter stage can be carried out by utilizing a
generalized least squares method, but most emphasis is put on utilizing decen-
tralized filtering algorithms and a prediction error formulation. A note about the
connection between the original TSLS-method (two-stage least squares method)
and stochastic realization is also made.

1. Introduction

Identification of large scale models is often considered to be an extremely diffi-
cult problem, primarily because of the size and, possibly, the complexity of the
models. Quite typically, a large scale econometric model may consist of more than a
thousand equations, some of which can be non-linear, and several thousand
unknown parameters. It would usually not be very clever to try and estimate all the
parameters simultaneously in such a model, not only because of the very size of the
model, but also because the structure of some of the sub-models and equations is
only partially or even only vaguely known, and because all the restrictions on the
model may be hard to impose when all the parameters are estimated simulta-
neously. In such a case it would be much better, in fact maybe the only meaningful
way, to employ some kind of decentralized estimation scheme. Provided sufficient
information about the interactions between the sub-systems, and sufficient local
observations are available, a completely or partially decentralized estimated algo-
rithm can be employed.

In addition to the size and complexity of large scale models, a large class of
discrete-time models consists of so-called implicit models, models where some or all
of the equations are implicit. This implies that some of the variables which appear
on the right-hand side of the implicit equations may be correlated with the process
noise (or equation uncertainties), causing eventual parameter estimates obtained by
ordinary least squares methods to be biased. The problem of estimating implicit
models has in econometrics (where implicit models are called simultaneous equation
models) been solved by employing various multi-stage methods, for example, the
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two-stage least squares method (TSLS) which originally is due to Theil (1953) and
Basman (1957). The general idea behind these methods is to replace the variables
which are correlated with the process noise with new variables that are uncorrelated
with the process noise. Assuming certain conditions to be fulfilled, one can then
employ a simple least squares method to estimate the unknown parameters one
sub-model (or equation) after the other in a completely decentralized manner.

In more general types of models where there are observation uncertainties, one
will generally have to use more sophisticated methods in order to get unbiased
estimates. We shall in this paper take a closer look at the TSLS method and its
relation to stochastic realization theory and instrumental variable methods. The
methods derived in this paper consist of two stages, where the first stage is used to
generate estimates (of states and interaction variables) which are uncorrelated with
the process noise (exactly like the first stage of the TSLS method). This can be done
by employing various stochastic realization algorithms or least squares methods. In
the second stage the parameters in each sub-model are estimated using a least
squares method that, subject to the underlying assumptions yields constant esti-
mates, for example, the generalized least squares method, or by using decentralized
filtering algorithms and a prediction error formulation. The state and interaction
estimates generated in the first stage are used extensively in the second stage.

The major field of applications of the derived methods seems at first hand to be
econometrics, but they can be used to any discrete-time implicit model, models that
arise from systems where the sampling interval is long compared to the dynamics of
the system. Also, as pointed out by Mehra (1974), the use of aggregation concepts or
asymptotic expansion methods in large scale systems can lead to implicit models of
the form being assumed in this paper.

The paper is organized as follows. In § 2 a description of the model and the
decentralized structure is given. In § 3 we focus our attention on the TSLS method
and its relation to stochastic realization theory and instrumental variables methods.
§ 4 is devoted to generalizing the first stage of the TSLS method, generation of
intermediate state and interaction estimates (or instrumental variables) for use in the
next stage. In § 5 we estimate the parameters in each sub-model by using variables
generated in the previous section. Most attention is focused on the use of decentral-
ized filtering algorithms and a prediction error interpretation. A discussion of the
derived methods and conclusions which can be drawn from results on identification
in closed loop are made in § 6. In § 7 a conclusion and some preliminary experiences
from the derived methods are given.

2. System description
We consider a large scale discrete-time linear state space model of the form

Xy = AX, + Bxyy + Cu, + v, 1

where x, is the state vector, u, the control (or input) vector, {v,} a gaussian white
zero-mean process, whereas A, B and C are matrices of appropriate dimensions, It is
assumed that the matrix (I — B) is non-singular, so that (1) has a unique solution.
Models of the form given by (1) occur frequently in econometrics where they are
referred to as simultaneous equation models, as opposed to so-called reduced form
models where B = 0. The real reason for this special model form is the fact that the
sampling interval is so long compared to the dynamics of the system (e.g., the Nor-




Large scale implicit models using two-stage methods 5

wegian Central Bureau of Statistics issues only annual data whereas quarterly data
are issued in some other countries). It is a well-known fact that when the time
increment is long compared to some of the time constants, only implicit solution
methods for differential equations can be employed in order to avoid numerical
instability, so in that sense there is nothing surprising about the implicit form given
by (1). In fact, as pointed out by Mehra (1974), the use of aggregation concepts and
asymptotic expansion methods in large scale systems can also lead to implicit or
simultaneous equation models. The implicit model concept is therefore of interest
outside the field of econometrics.
The observations of the system are assumed to be of the form

Yi=Dx, + w, 2

where y, is the observation vector and {w,} is a gaussian white zero-mean process.
Errors in the input variables 1, may be accounted for by proper modeling of v,.
The model (1) is assumed to consist of N sub-models &;,i =1, ..., N, described

by

Xy =Auxi+ Cu + Tizigy + 4 (3)
where z! is the interaction input to &; from the other sub-models, viz.
) N N
Zy= 3 Lyxi+ 21 Miixiey = Lix, + M; X4 4
i i
where
L;=A4;  I:M;=B; (%)

A;; and B,; are, respectively, the (i, j)th block entries of the matrices A and B. Note
that we have assumed B; =0,i=1,..., N.

The system is said to be output decentralized (Siljak and Vukcevic, 1978) if the
observation (or output) equations can be written in the form

y:=Dfx.:-+w:$ i=l,"')N (6)

where y! is the observation vector of sub-system &;, whereas w! is the observation
uncertainty.

Any linear system can be output decentralized, and it is therefore no loss of gener-
ality to assume this structure.

3. The TSLS method and some interpretations of the first stage

In this section we assume the available state information to be full (or fully
reconstructable) without noise. Consider a stable linear system driven by white
noise, and consider the following implicit model

Xep1 = AX, + BX4y + 0 (7

of the system. Also, for the sake of simplicity, let us first assume the observation
equations to be of the form

Ve =X {8)
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We want to estimate the parameters of the model (7), the matrices A and B, which
we believe to be the ‘true’ model of the system. Now, let us try to estimate A and B
using an ordinary least squares method with a cost functional of the form

J =% (xar = A — Bx, 1) X4y — AX, — Bx;4y) ©)
t

where summation is taken over the available sample points. Minimizing J with
respect to A and B, we find

3—:= 0= -2 Z‘:(x,ﬂ — Ax, — Bx, . )xT =0
g—;= 0= —2;{x,+1 — Ax, — Bx,, )x71 =0,
ie.,
A‘;x,x}'eu —ﬁ)‘;xmx;" (10)
ﬁ;xrﬂ)‘ﬂl:;xrﬂxﬂl*ﬁ;xrxr7+1 (11)
Multiplying (7) by xI and x[, , and summing, we obtain
Zx,+lx,"=A¥x,xf'+BZx,Hx,T-i-Z‘:v,x;" (12)
;xmx.‘"u=A¥x.x:’ll+8§x;+1x.‘"+: +);v.x£1 (13)

Now, assume the process is ergodic and stationary. Dividing (12) and (13) by the
number of sample points, M say, we obtain

1 1 1 1
ﬁZx,+1x,r=A(ﬁxx,x,)+B(EZx,“xf)+HZv,x,"' (14)

1 1 1 1
ﬁ?iﬁuxﬂn = A(ﬁ)‘:x:xf'+l)+ B(ﬁ ;xr+lx;r+l) + ﬁ ; v X4p (15)

where

1
HE v, xI —— 0wp. 1,
t

M— oo
whereas
1
M E U X{31 M_“’ E(v,x/+1) 4+ 0 wp. 1
1 o

generally.

(10y11) and (14)15) now yield (wp. 1)
A (I — BYI — B) ‘4 (15)

Mo
B B + (A — AB(x, X[y NE(X, 41 X, 1)) " + E@, x5 HEX, s X4 )" (16)

M—-w

which shows that the estimate B of B generally must be inconsistent even if 4 = A.
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In econometrics this problem is resolved by applying the two-stage least squares
method (TSLS), originally due to Theil (1953) and Basman (1957), see also Theil
(1971). The first stage in this consists of writing (7) in the form

X4y =Ox, + Ty, (17

where ® = (I — B) !4 and I" = (I — B) " '. This is the so-called reduced form model,
whereas (7) is denoted the simultaneous equations model. Estimating @ by ordinary
least squares techniques using a cost functional like

J= Z (%41 — q)xl)r(xﬁ—l — ®¥x,),
we obtain

aJ
== _gg(x,ﬂ — &x)x =0, (18)

e

&»=Zx.+,x,’(z x:x,”)_l (19)

which is a consistent estimate of ®. Moreover, a consistent estimator of the covari-
ance matrix of I'v, is given by

[

=LY (s — Bx)x sy — D)7 (20)

It could be argued that a direct approach to estimating the matrices A and B
would be to estimate ® and T using (17) and then to compute B=1—-T1"",
A = ' '®. This would certainly be a consistent estimator. Note, however, that the
structure of the system may be only vaguely known, and that the matrices 4 and B
can be quite sparse. For example, in an econometric model, a variable would nor-
mally depend upon only a few other variables, although the lag structure etc. may
be unknown. It would be very difficult, probably impossible, to impose such
restrictions if A and B should be estimated from A =T '® and B=1—-T"".1In
econometrics one usually has to estimate each equation separately. This is normally
done by trying out different variables to be explanatory (i.c., on the right-hand side)
in that particular equation, by trying out different lag structures, etc.

Now, let us write x,,, as

Xp1 = X4 — Ox, + ®x,
= &x, + (@ — ®)x, + I'y, (21)
which by substitution into (7) yields
X414 = AX, + B%,,, + B@® — ®)x, + 'y, 22)
where %,,, = ®x,. Noting that (¢ — ®) - 0 and E(%,v)) — 0 wp. 1,
e -

we see that consistent estimates of A and B are obtained by employing ordinary
least squares techniques on (22).
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Now, returning to (18), note that this equation simply expresses the fact that

E{(Xp41 — Dx)xT} =0 (23)
or
X, =%x, (24)

where X = E(x,,,x]). This is simply the projection theorem (Kailath, 1968).
In the slightly more general case where the observation equation takes the form

y, = Dx,, @5)

the foregoing cost functionals and equations have to be modified accordingly. Esti-
mates of @ (and D) will now be obtained from the equations

Z Gesr — ‘ﬁ'&’-"ft)yl;r =0
Z Va1 — ﬁ&’zxt—l)yrr— 1=0 (26)

E (Vre1 — ﬁﬁﬁx,_z}yf_z =0
H

which simply express

E{(yr+1 — wx:-tﬂ)y;r—ul} =0. 27
Making use of y, = Dx,, (27) can be written as
Y, = D&* X DT (28)

where ¥, = E(y,,,y7) and X = E(x,xT). Note that (28) is also valid for k = O since,
from (25), Y, = DXDT.

Equation (28) expresses the fact that estimation of the reduced form model
essentially means to compute the matrices D, @, and X from the sequence of covari-
ance matrices ¥, Y, Y;, ... (or estimates of these). This brings the first stage of the
TSLS method in relation to the stochastic realization problem, see Faurre (1976) or
Rissanen and Kailath (1972). What we have actually demonstrated is that the first
stage of the TSLS method (as it is being used in econometrics) essentially amounts
to constructing a simplified stochastic realization (not general) of the system. This
fact was first pointed out by Kalman (1980).

The TSLS method can also be interpreted as an instrumental variable estimator
(IV estimator), see Theil (1971). Using, for example, the estimated matrix ® from
(19), we can generate instrumental variables (instruments) from the equation

&l“’l e &x‘.

The particular IV estimator for this problem, which now replaces the estimator
given by (10)11), takes the form

jz"a;ﬂ.:u—ﬁ)ziule
1 T

BZSC,+15(,T+3 =Z£t+155t+l —A thi:+1
' ] t
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Since ® ——— ® wp. 1 and E(%,,,v]) — 0 wp. 1, we now find the asymp-
M=« M=o

totic properties (provided ®E(x, x7)®7 is non-singular)
A (I-Bo=(1I-B(I—-B 4

M-

B B

>

M- o

that is, consistency. More details about IV estimators and their properties can be
found in Soderstrom and Stoica (1983).

For more about the TSLS method and its interpretations, see Chow (1964) and
Dhrymes (1972).

4. Generation of interaction variable estimates

The form of the system model assumed in the TSLS method (egns. (7) or (17)
and (25)) is unfortunately not general enough to cover all kind of linear stochastic
systems, not even stationary systems, and this, of course, limits the applicability of
this method. Consider a vector valued weakly stationary process {y,|t = ..., —1,0,
1, ...} from which estimates of the covariance matrices ¥, = cov {y,,;, ¥}, i=0, ...,
can be made. A system of the form

Xp41 = Fx, + v, (29)
¥, =Dx, 4+ w, (30)
is said to be a Markovian representation of the time series Y, i=0, 1, ..., see

Faurre (1976), if {v,} and {,} are stationary white processes satisfying
E{vr UI} = Q‘st.v E{wt w:-} = R‘sx,s’ E{vt W;‘r} = Sél.s
Let X = cov {x,}. From (29)

X =FXFT+Q (31)
and from (30)
Y, =DXD" + R (32)
Furthermore, from (29)<30)
Y =DF 'K, k=>1 (33)
where
K=FXD" +5§ (34)

The stochastic realization problem consists of finding a Markovian representation
for a given covariance sequence Y, k=0, 1, ..., ie, finding matrices F, D, K and
four covariance matrices X, Q, R, S satisfying (31), (32), (33), and the relations

I:SQT ;]20, X>0 (35)

A solution is said to be a minimal stochastic realization (MSR) if the dimension of x,
is the least possible.
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The solution of the minimal realization problem is not unique. For one thing,
the triple of matrices (F, D, K) is only unique modulo a similarity transformation T
in the sense that if (F, D, K) is a solution, then (T 'FT, DT, T 'K) is also a
solution. For another, the four covariances matrices X, Q, R, § are not unique even
when (F, D, K) has been selected.

An interesting observation pointed out by Faurre (1976) is the fact that there
exists a minimal solution X, which is the covariance matrix of the statistical filter
E{x,|%,_}T of the underlying process {x,}. This filter has the form

%1 = F%, + Hy, (36)
Ve = Dx, +v, 37

where {v,} is the innovation process.
Another representation is the statistical filter E{x,|#%,} which has the form

Xo1 =FX + Hyvieq (38)
Yo = DX, + Ev, (39)

where Hy = F 'Hand E=1— DH,.
Since we only assume weak stationarity, i.e., covariance stationarity, we may
have to assume the slightly more general form

Xev1 = FXx, + Gu, + Hy, (40)

instead of (36). In order to find the matrix G and an initial value x,, note that (40)
and (37) recursively define a set of equations of the form

k-1 k-1
y— 3 DI**"'Hy, =DI* 3o+ Y DI* "Gy, + v, (41)
=0 =0
where I' = F — HD. Since the process {v,} is white and all variables in (41) except y,
are independent of v,, we can apply simple least squares techniques to find estimates
of G and X, from this set of equations (provided F, H, D and ug, u,, u,, ... are
known).

Now, after having solved the minimal realization problem, we are able to gener-
ate estimates of the interaction variables, which then can be used as instrumental
variables in the equations of the original model. Before we proceed to the next
section, let us briefly discuss the consequences of assuming a certain model struc-
ture, i.e., the class of models which we want our model to belong to, e.g., the class
represented by (36)—(37), (38)(39) or the general type (29)(30) with S = E{v,w]} = 0.

First, let us start by assuming our model to belong to the latter type. The esti-
mates %, ,,, can then be generated from one of the preceding filter representations.
Rewriting (3) as

xf+1 = Aﬁxi + Ciuy + r£2§+1|: + rt(z:‘+1 - 2:+1|r) + l’: 42)

we see that zj,, — 2, acts as an additional noise input. Furthermore, ¢} is inde-
pendent of 2, since v}, according to the model specification, is independent of
data prior to 1. Also, since Eﬁﬂh can be written as a linear function of the innovation
vectors v, vy, ..., v, it must be independent of (z;.; — 2. ,,) (by the projection

1 #,_, denotes the set of observations up till time ¢ — 1,
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theorem). However, z;,; — %, ), and v; are not independent and {z},, — 2, ,,} is
not generally white, so estimation of (42) would be complicated, although a gener-
alized least squares method can be applied.

Second, let us specify the model to belong to the class represented by (36)—37).
Noting that in this case the system is represented by the statistical filter E{x,|%,_,}
(and that the states of this representation are denoted by X,) we obtain

Zyer = LiX 4+ MiX,4q, 43)
and (3) is seen to take the form
Xty =Auxi+ Cuy + T, Lix, + T, M; X, + 1} 44)
where, however, X, , , and v} are correlated (this is seen from (36)). Writing (44) as
Xie1 = Auxi+ Cou, + T L%, + LMooy + TiM{(Xi g — Xpaqpe-1) + v, (45)
where
Xiv1e-1 = FX, + Gu,, (46)
we have from (40)
Xeer — Xeer—1 = Hy, 47

The term Hy, is correlated with ¢}, but Hv, is white. Furthermore, %, , ,—, is inde-
pendent of both v, and ¢!, Because Hv, is white, (45) would be easier to estimate than
(42).

Third, assume the model is specified to belong to the class represented by
(38)+39). (3) now takes the form

i, =Agxi 4+ Ciuy + T, L% + T, MR,y + 1) (48)
where %, , and v} are correlated. Rewriting (48) as
g =Apxt + Coup + L% + TiM Ry g + TiMiRyyy — Reon) + b (49)
where
X1y = FX, + Gu,, (50)
we have from (38)
i;+1—5€¢+||:=H1V|+1 (51)

H,v,,, is white, but correlated with v} (according to the model specification). Both
%, and %, are independent of v, , and t;.

A crucial point in all this is the construction of a minimal stochastic realization
of the system. Several algorithms for solving this problem can be applied, e.g.. those
proposed by Ho and Kalman (1966) or Rissanen and Kailath (1972), see also Faurre
(1976). More recent algorithms are primarily based on the concept of singular value
decomposition, see van Zee and Bosgra (1979), Damen and Hajdasinski (1982), Haj-
dasinski et al. (1984), and Aoki (1983), which more easily allows approximate lower
dimension solution. It should be stressed, however, that the problem of constructing
a minimal stochastic realization may be extremely complicated, at least when only
estimates of the covariance matrix series Y, Y;, ... exist. In such cases, it may
therefore often be necessary to consider other ways of generating the instrumental
variables for the interaction vectors. Mehra (1974) has considered the problem of
eslimating a canonical representation of the Kalman filter form given by (36)}-37).
This is done by writing the canonical form as a set of difference equations in terms
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of the input-output variables (y, u, v). The first of these equations is an ARMA
model of the first output variable y,(f) with u(t) and v(t) as inputs. This equation is
estimated by the TSLS method (since y,(t) is correlated with many of the input
variables represented by v, such a technique is necessary). The next equation is then
estimated using u(r), v(t), and y,(f) as inputs, and so on (the TSLS method is used all
the way). Mehra (1974) also considers the problem of estimating the order of each
sub-model, the order of each difference equation in the foregoing procedure.

5. Estimation of model parameters

We shall consider two methods for estimating the parameters in the model, the
method of generalized least squares and a prediction error method based on decen-
tralized filtering algorithms. Emphasis will primarily be put on the latter, whereas
only brief mention of the former will be made (since this method should be well
known).

5.1. Estimation of model parameters by the generalized least squares
method

After the first step which was used to generate instrumental variables for the
interaction inputs z!, ; , each sub-model can be rewritten in the form

Xioy = Agxi + Cou + Tizpp g + & (52)
Vi=D;xj + w (53)

where & may be white or coloured, depending upon the model specification (of
course, the form of w} also depends upon this). Let us for simplicity assume ! to be
scalar. The model (52)<53) can be rewritten in input-output form as

Ag™ ") = Big Y, + Cllg el =1} (54)

where {n} is a coloured noise term which is independent of Z}, ;;,. Assume {n{} can
be represented by

7 =Glg™ e; (55)
where {e!} is white. The model (54) can then be represented by
Alg™ )i = Bla N+ Cla reye + € (56)
where
- 1 _ 1 . 1
.Vi="m Yis “:=m“n E:+l[l=6i'(_"}ti_)zl+llr

The problem of estimating the polynomials Aig '), B¢~ %), C{(¢ !) and Gi(g ') can
be solved in the way proposed by Clarke (1967).

5.2. Estimation of model parameters using decentralized filtering
algorithms and a prediction error formulation
The problem of estimation and filtering in large scale systems has been treated in
several papers, e.g., Sanders et al. (1974), Sing (1975), Siljak and Vukcevic (1978), and
Tacker and Sanders (1980). The main feature about the cited papers is that some
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kind of hierarchical or decentralized structure is used to simplify the filtering algo-
rithms.

In the papers by Sanders et al. (1974), Tacker and Sanders (1980), and many
other papers on the same subject by these authors, a decentralized structure is used
in the filtering algorithms for large scale interconnected systems. Their theory is
based on the assumption that interaction information is available in each sub-filter,
and that only local observations (or measurements) are used in the filtering equa-
tions, whereas some centralized information structure may occur in the prediction
equations. A crucial point is the assumption that the system satisfies the interaction
measurement condition, which essentially means that, in addition to (6), there exists
an observation g of the form

t=Hixi+zi0 + & (57

which is available in sub-system &;. We shall, for the sake of simplicity, assume
H; = 0. There is essentially not much loss of generality in doing so.

Based on the foregoing assumptions it can now be shown that if (4;;, D;) is an
observable pair, a non-empty class (%) of completely decentralized unbiased
filters exists, see Sanders et al. (1974).

Instead of assuming interaction measurements to be available in &;, a partially
centralized filtering structure with information exchange between the sub-filters has
also been considered, see Sanders et al. (1978). The results there are similar to the
previous ones.

Now, as a first step, let us write down the decentralized filtering equations for
our implicit model.

First, assume the system has been specified to belong to the class of statistical
filters E{x,.,|%,}. Let

Boaw=LiX, + MRy, (58)
where X, is obtained from the model
X1 = FXx,+ Gu, + Hv,
¥y = DX, + v,
whereas
Xevry-1 = FX, + Gu,

We then obtain the model form

Xiep = Apxt+ Coup+ T2, + & (59)
¥i=Dix; + w; (60)

where
E=vl 4+ T, M;Hv, (61)

Furthermore, v; = P, v, and wi = Pi v, (P} and P, are matrices).
We write the local filter for the ith sub-system in terms of the local estimate
%fje— 1 of x}. This filter has the form

ifa-ux = As‘iﬁlf—l + Cu, + ri5f+1|: + Kf[}'f - j’in 1] (62)
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where §4, , = D;%},_, . Specifying K] to be such that (x;,,; — %;. ) is uncorrelated
with the local innovations process & = y; — J—1,

E{(xin — 3y 1||]{3:)T} =0 (63)
we find
Ki=(A; X4 Df + P)D; X3, D + W)~ ! (64)
where X}, ; = cov {x} — Xi,_,}, P; = cov {&], wi}, and W, = cov {w;}. The covari-
ance matrix X;, , satisfies the equation
Xioue = (Au — KiD)Xyy,(A;; — Ki D)™ + E; + KiW(K)T — P{K)" — K{ P

(65)
where E; = cov {&}.
Provided (A;, D;) is an observable pair it can be shown (Sanders et al., 1974)
that the foregoing filter is stable, unbiased, and has a steady-state solution.
The external input to the process x; — %j,_, is purely white noise, and it can
therefore be shown that the local prediction error, or local innovations process

5§=.V:-_j’:||—1 =)’:_Di5‘:|r—1 (66)
1s a white process with covariance matrix
cov {&} = D; Xy, DI + W, (67)

Second, assume that system has been specified to belong to the class of statistical
filters E{x,|%,}. Let

Brarpe = L% + M %0y, (68)
where X, is obtained from the model
X401 =F% + Gu + Hyvyy,
¥ = DX, + Ev,
whereas
Revqpe = FX + Gu,.

We then obtain the model form

Xio1 = AuXi + Cou, + r52:+1|r+6: (69)
i = Dix; + W, (70)

where
&=vi+ [ MHyvy ()

Furthermore, v! = Q! v,,, and w} = QL v,.
~ We now write the local filter for the ith sub-system in terms of the local estimate
%4 of x;. The form of this filter is assumed to be

J?:+1|¢+1 = Aiii:k + C:'ul + ri2:+1|: + K:+ l[y:+l - j’:i+1|:] (72)

where §},,, = D;Xi,q,. Again, specifying K} to be such that (xj,, — X{sy;,+1) is
uncorrelated with the local innovations process &,y = Vi1 — Ji+ 1), we find

Ki.s =(X:+1|1D3+ P)D; :.+l|!DiT +D,P,+ P/Df + W)~ ! (73)
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where
X:4 e = Al'i X:er;{ + E,' (74)
X:-+1|r+1 =U _K:+1DI)X:+1|1_ K:+1|:P; (75)

Provided (A;;, D,) is an observable pair, it can be shown (Sanders et al., 1974)
that the latter filter is stable, unbiased, and has a steady-state solution.
The local prediction error

3: = .Vf - j’:u- 1= }’: - D(Aili:—llt—l + Giu, + ri2:|:—1) (76)
is also in the case a white process with covariance matrix
cov {g} =D, X},_Df + D, P, + P D] + W, (77)

With any of the two foregoing filtering algorithms, we can formulate a local
prediction error model of the form

£:=y§_f;‘(@!—l’&l—l’t) (?8)
where
E{|¥, ., ,_,) =0 (79)

(actually & is white, as pointed out, but (79) is sufficient for the prediction error
method to work properly).

For a completely localized structure, f; will depend only on a local parameter
vector 6;, viz.

Y U s ) =[Py Uy, 15 6)

The foregoing filters are obviously of this type.
For a particular value of 6;, say 6; = 0;, the prediction error is given by

ni(0) = yi — (@1, U1, 15 0) (80)
and if 6 is the true parameter value, then
MO0 =2t — Y1, Upy s 5 600) = & (81)
Let us introduce the two criteria
Ji(6;, M) = trace [S;Hi(6)], S,>0 (82)
J5(6;, M) = log det [H(6)] (83)
where
. 1 X ;
Hi(6) = o FZI UOXni6N" (84)

Let us furthermore assume that 6° is unique in the sense that there exists no other
parameter 8! 3 62 such that f{%, _,, U,_, t; 00) =f{¥,_,, U,_,, t; 6}) wp. 1. The
important properties of prediction error identification methods, which have been
proved in several other works, see Ljung (1976) and Caines and Ljung (1976), can
now readily be transferred to out decentralized prediction error method. For an
overview of the properties of prediction error identification methods, see also
Goodwin and Payne (1977).
Two of the most important properties are summarized here.
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T heorem

Subject to mild regularity conditions, the local prediction error estimator 6 M)
obtained by minimizing either J'(6;, M) or J5(6;, M) is strongly consistent,

6(M) —— 67 wp. 1 (85)
M- a

Furthermore, subject to mild regularity and stationarity conditions, 8{M) is

asymptotically normally distributed in the sense that
law

JOOAM) — ) —— v, (86)

M-
where y; ~ N(0, ZY).

Proof
Essentially the same as Ljung (1976) and Caines and Ljung (1976), see also
Goodwin and Payne (1977).

6. [Identifiability of large scale systems using decentralized estimation

In the previous section we assumed the function f; to be unique with respect to
6;. The implications of this assumption should not be overlooked. There are certain
restrictions on the input, certain types of noise-free linear feedback must be
excluded. However, the outlined estimation method utilizing decentralized estima-
tion structures is in fact an extreme case of identification in closed loop, since z! is
certainly generated by feedback. Identification in closed loop has been investigated
in several papers, see Gustavsson et al. (1974, 1975, 1976), Ng et al. (1977), Sin and
Goodwin (1980), Gevers (1976), Anderson and Gevers (1979, 1982), and Caines and
Chan (1976). A review of the concept and some of the results are given in Goodwin
and Payne (1977).

Now, assume we attempt to estimate the parameters in sub-system &;, and let
¢ denote the part of the system which is external to &;, the remainder of the
system. .%¢ contains the feedback to sub-system &;, and let ¢; denote the part of &§
which constitutes the feedback to ;.

First, consider a single-input, single-output system described by

Alg™ Yy, = q *Blg ", + Clg™ Ve, (87)

where {¢} is a white sequence, whereas {y,} and {u} are the input and output
sequences, respectively. The input {u,} is assumed to be generated by the feedback
law

E(q ", = F(g ")y, (88)

The polynomials A, B and C are assumed to be relatively prime, and the same
assumption is made about the polynomials E and F. Furthermore, the polynomials
(AE — ¢ *BF) and CE are also assumed to be relatively prime (the feedback does
not introduce pole/zero cancellations).

The identifiability conditions, under the foregoing conditions, have been closely
analysed in the paper by Gustavsson et al. (1975). A major result is, loosely speak-
ing, that identification in closed loop will give consistent estimates provided the
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controller, that is (88) is sufficiently complex. This can be achieved by switching
between several different linear controllers, or by increasing the order of the control-
ler, e.g., if the order of both A, B and C is n,, if the order of both E and F is n,, and
if k = 0, then a sufficient condition for identifiability of 4, B and C is that the order
of the controller be greater than or equal to the order of the forward path,

n,=zm (89)

If a prediction error identification method is used, it is furthermore shown that a
priori knowledge about the controller is not needed (or even that it is known that
the system is operating in closed loop), the forward path can be estimated as if the
system is operating in open loop.

In the multiple-input, multiple-output case, the major result is essentially the
same (Ng et al., 1977), a sufficient condition for identifiability is that the minimum
observability index (Wolovich, 1974) of the feedback be greater than or equal to the
maximum observability index (Wolovich, 1974) of the forward path.

Now, returning to our own decentralized identification method, we note that
normally ¢ (or more correctly, %,) is of a much higher order than &;, e.g., in an
econometric model where each equation is estimated separately, %f will consist of
all the other equations of the model. Naturally one would therefore expect the pre-
ceding conditions for closed loop identifiability to be fulfilled. We therefore conclude
that the system, using the outlined prediction error method, is identifiable provided,
loosely speaking, that the sub-system %, is small enough compared to %;.

7. Conclusion

We have considered the problem of estimating large scale implicit (non-
recursive) models by two-stage methods. The first stage consisted of constructing a
minimal stochastic realization of the system, and we have shown the connection
between this and the first stage of the original TSLS-method. The minimal stochas-
tic realization is used to generate estimates (instrumental variables) of the interac-
tion variables, which subsequently are used in the second stage where each
sub-system is estimated separately. This latter stage may be carried out by utilizing
a generalized least squares method, or, as derived in our paper, by utilizing decen-
tralized filtering algorithms and a prediction error formulation. Some comments on
the identifiability of large scale systems using decentralized estimation are also
made, and it was shown that the system under fairly meaningful conditions would
be identifiable even if the feedback was neglected, provided the outlined prediction
error method was utilized.

We have so far not touched upon the problem of estimating the covariance
matrix sequence Y, = cov {y,, Yi4.}» T =0, 1, ... . Since our method is based on the
construction of a minimal stochastic realization of this sequence, it is essential that
we have good estimates of the sequence Yy, Y;, ... . However, it may be very hard,
or even impossible, to obtain good estimates of these covariance matrices because
the number of data points could be very low, e.g., a model of the post-war Nor-
wegian national economy could only be estimated in a meaningful manner using
annual data from 1950 to 1983. Another problem, noted by Caines and Chan (1976)
and also observed by Wieringa (1984), is the fact that the state transition matrix @
in a minimal stochastic realization may be very sensitive to small variations in the
covariance data, often resulting in ® being unstable. This is a serious difficulty since
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our assumption about weak stationarity is based on the fact that ® must be stable.
Also, as pointed out by Caines and Chan (1976), increasing the sample sizes does
not seem to increase the likelihood of obtaining a stable matrix. Caines and Chan
(1976) found the algorithms of Faurre (1976) to be numerically satisfactory for
matrices @ with eigenvalues of modulus less than approximately 0-85. A similar
thing was observed by Wieringa (1984), who pointed out that serious problems
occur when some eigenvalues are close to 1 (in modulus), whereas good results are
obtained in systems with smaller eigenvalues.

We have restricted ourselves to linear models. The methods are, however, with
some modifications, also applicable to non-linear implicit models by employing
various non-linear filtering techniques, see Henriksen (1979).
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