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A quasi-dynamic optimal control strategy for non-linear
multi-variable processes based upon non-quadratic
objective functionals
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The problem of systematic derivation of a quasi-dynamic optimal control strat-
egy for a non-linear dynamic process based upon a non-quadratic objective func-
tion is investigated. The wellknown LQG-control algorithm does not lead to an
optimal solution when the process disturbances have non-zero mean. The
relationships between the proposed control algorithm and LQG-control are pre-
sented. The problem of how to constrain process variables by means of * penalty -
terms in the objective function is dealt with separately.

1. Introduction

Optimal control of non-linear multivariable processes with arbitrary objective
functionals can be derived using Pontryagin’s Maximum Principle (Pontryagin
1962) or Dynamic Programming (Bellman 1965). In most cases of industrial process
control, the computational effort associated with applying either of these two
methods turns out to be prohibitive. In the case of the Maximum Principle, the
reason lies in the fact that a Two Point Boundary Value Problem (T PBVP) has to
be solved requiring iterative solutions. In Dynamic Programming the dimensionality
problem makes practical applications difficult.

In most cases of industrial process control one would tend to be satisfied with a
less stringent solution which yields optimality under somewhat relaxed conditions. If
the problem initially is defined properly, one may find a strategy of quasi-dynamic
optimal control which under certain assumptions yields a performance which is
close to the optimal, but non-practical solution.

The method proposed in this paper is motivated by the desire to find a control
strategy which optimizes some realistic profit function for the process (earnings
minus cost) in an average sense (steady state) and also gives an adequate supression
of the effects of transient process disturbances in a minimum variance sense. The
quasi-dynamic optimal control-strategy thus contains two parallel strategies oper-
ating simultaneously, one active on low frequency disturbances and the other active
on high frequency disturbances. In comparison with conventional process control
schemes the low frequency control strategy will be equivalent to integral action
except the goal is not to drive the control deviation to zero, but rather to force the
process to an optimum,.
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2. Problem formulation
In many continuous industrial processes for which dynamic, multivariable
control is desirable, the need for control comes primarily from disturbances acting
upon the process. Often such disturbances can be approximated by a sum of two
kinds of disturbances, namely a slow drift and a relatively fast (nearly white noise)
fluctuation around the drift. Based upon this idea, we now assume that the dis-
turbances acting upon the process can be described by the vector
v=v+ Av ()
in which v represents the slowly varying drift and Av is the fast random fluctuation
as indicated for a scalar case in Fig. 1.
The problem is now formulated as follows. The process is described by
k =flx, u v) 2

where
Xx: state vector
u: control vector
v: disturbance vector
f(+): vector of nonlinear functions

and

y = glx, w) &)
where

»: measurement vector
w: measurement noise vector
£(+): vector of nonlinear measurement functions

The process of (2) is to be controlled via the control vector () in such a way that the
objective function L,(x, u) is minimized in the steady state, and the mean of the
objective function L,(x, u) (an objective functional) is maximized with reference to
the dynamic disturbances.

Since according to (3) the state vector is not directly measurable, it is necessary
first to consider the problem of state estimation so as to derive an estimated state
vector X which can be used in the calculations.

Figure 2 is a block diagram of a state estimator based upon (2) and (3). The
estimator has the form of an Extended Kalman Filter (EKF). It includes a model of
the slowly varying disturbance (drift) given by the equation

v=0 “)

AV

t
Figure 1. The fast and slow components of a disturbance.
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Figure 2. Block-diagram of a state estimator.

and it is assumed that Av is white noise with zero mean and known covariance
matrix. Furthermore it is assumed that the measurement noise is zero mean white
noise with known covariance matrix and that its influence in (3) can be regarded as
additive.

Calculation of the estimator gain matrices (K, and K,) in Fig. 2 is based upon
the well established theory of Kalman filtering (Jazwinski 1970). For certain types of
functions (f(-) and g(-)) it may be necessary to consider second order com-
pensation of the estimator to avoid biased estimates (see Henriksen 1980), but this
detail is omitted here.

According to the above problem formulation the desired control vector is one
that maximizes (or minimizes) an objective functional which is the mean of L,(x, u).
A common choice of L,(*) is the quadratic form

Ly(x, u) = Ax"QAx + Au"PAu )

where Ax and Au represent deviations caused by Av. Thus the control vector will
consist of two components

u=u+ Au

where & is derived from the steady state optimization of L,(x, ) and Au is derived
from (5).

The algorithms for generating Au are well known in the theory of Linear-
Quadratic-Gaussian optimal control (LQG-control) (Athans 1971).

3. 'The quasi-dynamic optimal control strategy

Figure 3 is a block diagram of the quasi-dynamic optimal control strategy
(QDOC) which is a combination of the LQG-strategy generating u and a steady-
state profit optimization strategy (SSO) generating a.

In the LQG-strategy based upon (5), the perturbation Ax of the state vector
around a slowly varying mean is needed. Figure 3 shows a multivariable highpass
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Figure 3. The quasi-dynamic optimal control strategy (QDOC).

filter which extracts Ax from x leaving the mean value X. The feedback control
matrix G should in general be made state and control dependent (G(x, &), but in
some cases may be approximated by a constant matrix.

The matrix M, appearing in the multivariable highpass filter is diagonal with
elements corresponding to the bandwidths as desired. For simplicity it may well be
assumed that these bandwidths are identical so that the elements of M become
identical. Furthermore the bandwidths will be strongly related to the speed of con-
vergence of the steady state optimization system shown in Fig. 4 and to be described
in the next section.

Figure 4. The steady state optimizer (SSO).
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4. The steady state optimization algorithm

According to the problem formulation, the slowly varying component (&) of the
control vector must be chosen in such a way as to maximize (or minimize) the
objective function L,(x, u). Since the mean values of Ax and Au will be zero, the
optimization should be based upon L,(%, &).

According to the Maximum Principle, dynamic optimal control is determined by
maximizing the Hamiltonian

H(x, u) = Ly(x, u) +fT(x’ u, v)p (6)
in which p is the co-state determined by the differential equation
_ 0H(")

In most cases the final value p(t,) is given as a boundary condition. This equation,
together with (2) with given initial conditions, leads to the Two Point Boundary
Value Problem.

The optimal control vector (u,,) is that which gives H(-) a maximal value. In the
unconstrained case u,, can be determined by the equation derived from

OH(")
u

Since we are looking for the steady state solution of (7) as an approximation to the

slowly varying case, we must find the solution of

_oH() _
ox

0 ®)

= 0 ®
Since the solution of (7) in general requires the integration of the equation back-
wards from a given final value, we now realize that the problem has become very
much simpler since we may replace (9) by
JoH(*)

p = —_— = 10

p=+—7—=0 (10)
which yields exactly the same steady state solution as (9).

The difference is that (10) is integrated forwards to find the steady state solution.
Actually the p appearing in (10) is only equal to that appearing in (6) and (9) in the
steady state, but for convenience the same notation is used.

Applying (6) in (10) yields the differential equation which determines p in the

steady state
() ()Y
pP=—7 +( ox )p—'ﬂ (11)

The optimal control is determined by (8) which is solved by ‘iteration’ by replacing
it with the differential equation

OH(*)
ou

In (12) I'" is a matrix (preferably constant, but often chosen as the Hessian of the
system) which assures good convergence of u.

Tit—0 (12)
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Applying (6) to (12) leads to

OH(-) oL\() , (o)
u  Ou ( )p fa—0 &

The contents of (11) and (13) constitute the solution to the steady state optimization
problem when x is replaced by X and u by & The solution is shown in the block
diagram of Fig. 4. The following functions appear in this diagram:

OL,(-) a known function of ¥, # and the parameters
dx  of the objective function (prices etc.)

0L\(-) a known function of X, # and the parameters
ou  of the objective function

af( ).

: a known function of ¥, # and »

3f()

: a known function of x, & and @.

If the matrix df(-)/@x is non-singular, (11) may be solved directly yielding the steady
state value of p

_ (TN T L)
p= ox ox

Applying the solution of (14) to (13) leads to the block diagram of Fig. 5.
Developing a closed expression for

)
ox

may however be difficult in some cases. Therefore the original form of (11} is recom-
mended even though the solution of (14) may exist in principle.

(14)
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Figure 5. The steady state optimizer when ( f(_ )) is singular.




Quasi-dynamic optimal control strategy 201

A common case which makes the matrix Jf(-)/éx singular, is that the process
model has open integrators; i.c., no inherent self-regulation. In such a case the solu-
tion shown in Fig. 4 must be used. Open integrators will then also appear in the
block for determining p. This may be interpreted as the application of controllers
with integral action (i.e. I-controllers or Pl-controllers).

The above derivation of the strategy for determining the optimal steady state
control vector (#) does not take into consideration questions of stability of the
resulting feedback loops. These questions must be dealt with separately using stan-
dard feedback control theory. For instance in order to arrive at a stable system, the
multiple open integrators employed in (12) could be replaced by multiple PI-
controllers which would yield the same steady state solution. Further discussion of
methods for ensuring stability in the optimization loops appears in the next section.

5. Examples

Some simple examples will illustrate the principles presented in the preceding
paragraphs.

Example 1

Consider the process shown in Fig. 6. It consists of a stirred tank into which
there are two controlled flows (1, and and u,) and from which one flow (v,) is drawn
through a pump. The two incoming flows are chemical components which react in a
simple manner. Component 1 is assumed to be acid with a concentration ¢, = v,
and component 2 is a base with the concentration —c, = v,. When these com-
ponents are mixed, they will produce a liquid solution whose concentration (x,) we
will regard as a state variable to be controlled. Since the concentrations of the two
components are uncontrollable and may vary, they are regarded as disturbances.

The mass balance in the tank determines the level (x,) of liquid, which is to be
controlled. The system is described by two differential equations

1
Xy =Z(“1 + U, — v3) (15)

A 1
Xy = F (b1 Uy —vu; — v3X,) (16)

X V3

Figure 6. A simple mixing process.
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in which
A: cross-section of tank
¥: nominal volume of liguid in tank (assumed constant)

In this case we assume that both state variables (x,, x,) are directly measurable and
that we are not particularily interested in the high frequency control referred to
previously as LQG-control. We will only consider the steady state optimization
strategy.

Many different types of objective functions (L,(*)) can be formulated for this
simple process. One such function may have the form

Ly(7) = o4(x, — xy0)® + 0a(X3 — X200 + B1vyuy — Prvruy (17)

a, expresses the penalty associated with the derivation of the level in the tank from
a reference level (x,0). &, similarly expresses the penalty associated with the devi-
ation of the concentration of the mixture from a prescribed concentration (x;). The
cost of component 1 is assumed proportional to a factor f, its concentration v, and
its flowrate u,. A similar relationship is assumed for component 2.

From (16)-(17) we derive the following expressions

(m)T= ’ t{?) (18)
& 0 -3
LA L B
SCEN |4 4| _|A
(3") B ™ I A “
122 AV
dLy(") _ [2“1("1 - xm)]
ox 20,5(x; — X30) 20
0L4(*) =[ 5191] 21
ou —Byvz ey

These equations, applied to the steady state optimization strategy illustrated in Fig.
4, lead to Fig. 7 which is a control diagram combined with an elementary block
diagram of the process. As can easily be seen, the upper loop contains three open
integrators whereas the lower loop has one open integrator. Furthermore, in the
controller there is cross coupling between the upper and lower loops. If the dis-
turbances (v, v,, v5) are measurable, they should be used directly in the proper
computing blocks in the controller of Fig. 7. If they are not measurable, they should
be estimated in a scheme similar to that of Fig. 2 and the estimates used instead of
measurements.

In Fig. 7 dashed lines indicate modifications to the steady state state opti-
mization algorithm which will assure stability of the system. Each open integrator in
the controller is bypassed with a proportional branch, the gain of which must be
selected so as to assure stability. The number of parameters (N) to be selected, is
determined by

N=2r+2 (22)
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where r = dim(u) and g is the number of eigenvalues of the matrix df(-)/0x with
value zero.

The matrix I' ! appearing in the block-diagram of Fig. 4 is seen to have been
made diagonal in the block-diagram of Fig. 7. This means that the system of Fig. 7
does not necessarily have the most efficient convergence. A full matrix instead of the
diagonal elements K ,; and K ,, will facilitate more rapid convergence, but makes
the system more complex.

The transfer-matrix of the open loop multivariable system shown in Fig. 7, will
become

Y9 = ~2HOHOHL)| o f] @3
in which
Hs) = (s! - 3’;&'))' 1 % 4)
which is the transfer matrix of the process
and
Hi) = [hgfl)(S) h::(s)] S

where h,,(s) and h,,(s) are the controllers solving (12).
Applying the models of the example (23) will become

B 7

23 [ + (o)

Ho(s] = 2 e =

B (01 hys(s) — vz hgo(s)! —uz;)—z (@1 hya(s) + v3 hyo(s))
rws(s+—’) Vz(s +F3)

(26)
From (26) it is seen that by making
v

hys(s) = ;j hg1(s) @7

H (s) will become a diagonal matrix.

oy (l + ﬂ) 0
v,
A sz hgl(s)

H®=-2|----—--—----—"F----5-—=g=mm- (28)

—
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When the matrix H(s) is made diagonal, the upper and the lower part of the system
in Fig. 7 are decoupled, thereby making the design of the controllers particularly
simple. Since the controller h,,(s) is required to have an integration, it is seen from
(28) that the upper loop will contain three integrations.

If the integrator in the upper left half of Fig. 7 is replaced by a Pl-controller (as
indicated with dashed lines), and furthermore

1+ T,s
horl9) = Ky —- N 29
and T;3 = T, the loop transfer matrix will become
01\ Kpi Kpall + Ty 8)% )
1+— 0
al( " Uz) ATH s E
Hy(s)= —2- - oo ommm oo
n
Loy vz(l + —:—‘) Kl + Ty )
0 E % BV
1 v3 T, s(l +— s)
| i Vs i
(30)

Now it can be seen that the lower loop can be made stable by choosing the par-
ameters K,, and T, of the Pl-controllers properly. For instance, choosing T;; =
V/vy and

v3

Pl = v
Uyl Uz(l + _l)
U2

will give a reasonable stability margin in the lower loop. With these parameters, the
upper loop will be made stable if the controller gain K 5 is made large enough. For
instance choosing

K

oy vy v, A
Kpa =10 oy v3 Ty
yields an adequate stability margin.

As can be seen from the above elementary analysis, the parameters of the con-
trollers will be dependent upon the actual cost factors of the objective function and
of the disturbances v,, v, and v,. If these quantities are only slowly varying (which
in this example is a realistic assumption), the simplified derivation of the controllers
above is applicable.

Example 2

To further illustrate the structure of the steady-state optimal control strategy the
process

X =Ax + Bu+ Cv (31)
and the objective function
Ly(*)=x"Qx + u"Pu (32
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are chosen. Assuming in this example that A4 is non-singular, the steady-state solu-
tion of (31) will become
x=—A"YBu + Cv) (33)
Applying (33) to (32) yields
L(*)=u"B"A QA 'Bu+ 2u"BTA"TQA 'Cv + v"CTA QA 'Cv + 4" Pu
(34)

The steady state optimal control () as a function of the disturbance (v) is deter-
mined by

al:s:i.) = 2[(BA TQA !B+ P+ BTATQA 'Cv] =0 (35)
yielding
= —(BTA"TQA'B+ P) 'BTATTQA ' Cr (36)

Applying the quasi-dynamic optimal control strategy of (13) and (14), and shown in
Fig. 5, will give a steady state control structure as shown in Fig. 8.

If the matrix P is non-singular, the steady state optimal control from Fig. 8 will
become

Uy, =P 'BTATTQOx (37
which when applied to (31) and assuming x = 0 will give
X = —(A+ BP'BTATTQ)"'Cv (38)
and further by the application of (37)
Uo = —P 'BYATQ(A + BP 'BTATQ) 'Cv (39)

(39) and (36) are identical expressions. This can be shown by applying the Matrix
inversion lemma to either of the two expressions and thereby yielding the other. The
expression of (36) is the most attractive because it does not require P to be non-
singular.

=

20 }—=-AT |~ BT

Figure 8. Steady state optimizer for system of (31)32).
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The same result can be obtained by observing the two differential equations of
Fig. 8 simultaneously

¥=Ax + Bu + Cv (31)
it=T"Y(—2B"A""Qx + 2Pu) (40)

The steady state solution of (31) which is (33) applied to (40) will in the steady state
give (36) directly. This solution applies even if P = 0 leading to a control structure in
the form of multivariable integral feedback control.

The steady state optimal control derived above, is not equal to the ordinary
LQG-control because the theory of LQG-control assumes that the disturbances (r)
have zero mean. In a real situation this is not at all realistic and may lead to non-
optimal results. Figure 3 indicates how the proper steady state optimization and the
LQG-control may be combined.

6. Penalty functions in optimal control
Frequently the need arises for expressing amplitude constraints on both control
variables and state variables in process control systems. For different reasons related
to safety, properties of materials or simply convenience, it may be desired that
certain process variables shall stay within given limits.
Ui min S U S U (41)

I, max

Xj, min < Xj < Xj may 42)

Actually such sharp constraints are not physically reasonable in many cases and
may be regarded as a simplified way of expressing a softer transition of the probabil-
ity of loss of performance.

An alternative to the type of constraints expressed in (41} and (42) is to include in
the objective function terms expressing penalty associated with the violation of
given constraints together with the terms expressing profit. One such type of penalty
function which has proven to be very effective, is
Xmax + Xemia |

YT
x)=|— (43)
Xmax — Xmin

2

N is an even number, the value of which determines the sharpness of the penalty
function as illustrated in Fig. 9 for N =4 and N = 32. When penalty functions of
the type (43) are added to the objective function L,(x, ), as employed in the deriva-
tion of the quasi-dynamic optimal control strategy in the previous sections, the
control vector will be forced in such a way as to keep the system within its con-
straints. Since in the control strategy there will be terms of the form
(JC _xmax._" Xmin Nt
ap(+) 2N 2
0x B Xmax — Xmin Xmax — Xmin (44}

2
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Figure 9. Penalty function as given in (43) for N =4 and N = 32.

and similarly for penalty functions related to u, the feedback loops will have very
high local gains near the constraints. This may result in problems of stability if no
precautions are taken. One solution to this problem is to adjust the gain in the
loops at appropriate locations according to expressions of the type

2 N-2
Xmax — xmin) Xmax — *min

(a’p(-))“ _ ( 2 2
ox? NV =1 | Fowe + i
2

Since the expression of (45) will acquire large magnitudes in the domain between the
constraints, a certain maximal value should be assigned to the quantity. (45)
expresses a simplified version of the statement regarding the matrix I" in (12) which
could be chosen as the Hessian of the system.

(45)

7. Conclusions

In the structural design of process control systems, both the dynamic and the
static behaviour of the system play a role. The dynamic structure may be established
using available LQG-theory whereas the static structure requires another basis. The
paper develops a systematic approach for the structural design of process control
systems based upon objective functions which may express the net profit rate of the
process.
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