MODELING, IDENTIFICATION AND CONTROL, 1985, voL. 5, NO. 4, 179-195
doi:10.4173/mic.1984.4.1

A gyrocompass for maritime applications based upon
multivariable control theory
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A gyrocompass is designed using multivariable control theory. The compass can
be implemented with an inertial platform or as a strap-down system. Measure-
ment noise caused by vessel acceleration is modeled and feedforward is taken
from vessel speed. Though the model is of order 9, it has only three unknown
parameters of which one can be chosen a priori. Parameter estimation is dis-
cussed. For simulation of the compass, a non-linear surface vessel model with 6
degrees of freedom and wave excitation is used.

1. Introduction

In maritime navigation the need arises for an accurate compass that is not dis-
turbed by magnetic fields. A compass that satisfies these requirements is the gyro-
compass, which indicates north by measuring angular velocity and the direction of
the specific force. The specific force is acceleration minus gravity.

A maritime gyrocompass should be designed to indicate north in the presence of
vessel accelerations, and it should not be dependent on velocity or position mea-
surements,

Traditionally, maritime gyrocompasses have been made with a gyroscope with
two degrees of freedom, mechanical feedback and hydraulic damping (Wrigley et al.
1969). The Sperry and Anschutz compasses are of this type. These compasses are
sensitive to vessel acceleration. Alignment is slow, as the compass error can be
described as a damped oscillation with a period of 84 min.

A better compass can be made by using an inertial platform (Wrigley et al. 1969)
with two gyros with one degree of freedom and two pendulums, By means of a
digital control system, feedforward from vessel speed and even the centrifugal forces
can be implemented, and multivariable control theory can be applied in the place of
the conventional Schuler-tuning in two decoupled loops (Wrigley et al. 1969).

Instead of an inertial platform system, a strap-down system can be used
(Schmidt 1978). Here, the sensors are mounted directly on the vessel. To instrument
a gyrocompass as a strap-down system, three gyros with one degree of freedom and
three pendulums are required.

Compared to the conventional gyrocompass, these more advanced compasses
are more expensive, but due to the recent development in sensors and low-cost
computing power they are interesting.

The fibre-optic laser gyro (Ezekiel and Knaussenberge 1978) has the potential to
become significantly cheaper than traditional mechanical gyros of the same accu-
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racy. This will make strap-down systems especially interesting as such a system
would have no moving parts, which may increase the reliability of the system.

An inertial navigation system (Britting 1971, Leondes 1970, Maybeck 1979) is a
very accurate north indicator. Such a system requires accelerometers instead of pen-
dulums and three gyros with one degree of freedom also in the platform case, and
measurements of vessel velocity or position are needed to dampen the system.

In this paper, a multivariable,stochastic control system is designed for a gyro-
compass implemented as a platform system or as a strap-down system. In § 2 sto-
chastic models of the compass and the environment are presented. Estimation and
control are discussed in § 3, and parameter estimation is discussed in § 4. The
compass is simulated with a vessel model with six degrees of freedom and wave
excitation in § 5.

2. Modeling

2.1. The instrumented coordinate frame

In a gyrocompass, we want to align the instrumented coordinate frame with the
local level frame which has axes in the north, east and down direction. The instru-
mented axis aligned with the north axis will then indicate north.

A coordinate frame can be instrumented with an inertial platform. In an inertial
platform, the sensors are mounted on a controlled member which is torqued with a
commanded inertial angular velocity @, (Fig. 1). The controlled member is sus-
pended in gimbals controlled by torque-engines. Feedback is taken from the gyro-
scopes, which are inertial angular velocity sensors.

In a strap-down system, a coordinate frame is instrumented by computing the
coordinate transformation matrix from the vessel frame to the instrumented frame.
This is done using gyro measurements.

We now consider a gyrocompass with an inertial platform with three gyros with
one degree of freedom or a strap-down instrumentation. The only difference between
the mathematical models for these two systems is the effect of component noise,
which is discussed in § 2.4.

We denote the inertial coordinate frame by i, the earth frame by e, the local level
frame by n, and the instrumented frame by k.

w .
o Inertial W :
+ platform
Measure-
ment
Measurement
noise

Figure 1. Block diagram of inertial platform.
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The k frame is nominally aligned with the n frame. The k frame has an inertial
angular velocity
Oy =4+ v, M

where @, is the angular velocity of the k frame relative to the i frame, u is the
control vector applied to the inertial platform and v, Is process noise in the inertial
platform. The dominant term in v, is the gyro measurement noise.

Generally, the transformation between two coordinate frames is given by three
Euler angles. For infinitesimal rotations, the order of the rotations need not be
specified. We therefore define a vector 0 of the angles between the k and n frame
assuming that the angles are small. We now have

d
—0 =0 2
ar, ok v
Wwhere subscript i on the time differentiation operator denotes differentiation in the i
frame. w,, is given by

0Oy = Oy — 0, (3)
Now
d d
—_— E - 4
dt,o dt,,0+w"'xo @)
where x is the vector cross-product operator. Combining (2)(5) we get
d
—0=-0,x0+tu—-0,+v, %)
dt,

We now coordinatize (6) in the n frame. We let x, = [0y, g, Op]" where 8y, 6 and
0y are the components of 0 in north, east and down direction (Fig. 2). Further,

@+ cosL] [y
o}, = —~L =| Qe
Qp

—(w;e + l) sin L

DOWN
Figure 2. Definition of angles 8, 0, and 6,,.
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where o, is ®,, coordinatized in the n frame, @;, is the magnitude of the earth’s
angular velocity, ! is longitude and L is latitude. This gives

-il=Allx1+“+v (6)
where
0 Qp —O
Ay = |- 0 Qy 7
QE _QN 0
and
—QOx
o= -0 |+1, @®
—Op

2.2. Measurement model

The direction of the specific force f relative to the k frame is measured by pendu-
lums. fis given by

f=a-g

where a is acceleration and g is gravity. Coordinatized in the n frame, f can be
approximated by

ay 0
fu = 1 dg + 0
ap -9

where ay, ag and ap, are the components of @ in the north, east and down direction.
Assuming the angles x,, x, and x; to be small, we have

1 X3 — X
ff=1-x 1 x| f"
xz _xl l

where f* is coordinatized in the k frame. The measurements are approximated by

g 0 0 -"GE_
_ 9
¥y [0 g O]xl +[ x| +w )

where w' is measurement noise.

2.3. Process noise

As stated above, the dominant term in v, in (8) is the gyro measurement noise or,
as it is more commonly called, the gyro drift.

We see from (6) that a stationary gyro drift, v, in the east direction causes a
stationary compass error given by

bpo = — 020/ -

This means a compass error of 2 mrad per meru drift where 1 meru is a milli earth
rate unit.
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For a laser gyro, the drift can be modeled as a slowly changing bias plus white
noise (Maybeck 1979). A slowly changing bias can be modeled as a Wiener process.
Unfortunately, a state presenting the bias in the east direction would be unob-
servable.

For a platform system, we therefore model the gyro drift as

n;
ny
m]

X4
v,=10

X5

i4 _
X5 B hs

where n,, ..., ns are independent noise processes. To get an estimate of east gyro
drift, the platform can be rotated 90° about the down axis when the north gyro drift
estimate has converged (Brock and Schmidt 1970). We will then have a calibrated
gyro in the east direction.

For a strap-down system, the model will be slightly more complicated because
the gyros are mounted directly on the vessel. Here, both nominally horizontal gyros
will contribute to the north drift. After some changes of course, an estimate of both
gyro drifts can be made.

(11)

24. Measurement noise modeling

In the measurement model, acceleration in the north and east direction enters as
noise. The classical approach to this problem is Schuler-tuning in mono-variable
loops (Wrigley et al. 1969).

An accurate model of vessel accelerations would be non-linear, of high order and
with many unknown parameters. We therefore seek an approximate model which
satisfies our requirements.

The vessel accelerations consist of wave-induced accelerations and accelerations
due to speed or course corrections.

The vessel acceleration due to course corrections can be compensated by feed-
forward from the gyros and the log. Wave-induced accelerations and accelerations
due to speed corrections must be modeled.

An acceleration model that is often used is

. 1

G=—a+n
where n is white noise. In this problem, this acceleration model is not adequate. We
notice that the stationary value of the acceleration is non-zero. For a surface vessel
this is highly unrealistic. Also, this model will give an acceleration component in the
range of frequencies of the state vector x,, i.e. around the Schuler frequency (84 min
oscillations).

We should therefore choose a second-order model

Inw o S
Ny (9= st 4+ 2wy s + vt (12)
S = 5o

ng s% + 2{wg s + 0
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where anw(s) and agy(s) are wave induced accelerations in the north and east direc-
tion, respectively, and ng and ny are independent white noise processes. Here, we
have assumed north and east acceleration to be uncorrelated, as this gives a time-
invariant system. A more accurate model is hard to find for a general vessel. The
natural frequency @, and the damping ratio { are dependent on vessel parameters.
This model has a zero at the origin, and the stationary component of ayy, and agy, is
therefore zero.

2.5. Vessel

For simulation of the compass, a 6-degree-of-freedom non-linear model of a
surface vessel is developed. The vessel is excited by an ITTC wave-spectrum (Price
et al. 1974). The wave forces and moments are calculated for a block-shaped hull as
in Blanke (1981). The vessel is equipped with a PD autopilot.

3. Estimation and control

The system is discretized by the Euler method with some modifications in @
and Qp, and sampling time T is chosen as 1 second. The resulting system is

x(k + 1) = Ox(k) + Au(k) + v(k) + Qn(k) (14)
y(k) = Dx(k) + wk) (15)
xT = [6y, Og, Op, X4, X5, Anp> X7, ANE> X9
[ Tt oo ]
] 1 1
Dy ! 00 ! 0 :0
0 T 1
I I '
oG e iCE ey bkl bt
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e e e
o' 0 !0 ' Dy
‘Dll=‘[+AllT
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1
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Process noise is n with covariance
E[n(k)n(l)"] = Néy
N = diag (n,4, ..., nss)
and measurement noise is w with covariance
E[w(k)w(l)'] = W,
W = diag (w1, w22)

The model is linear and time-invariant and there are only three unknown par-
ameters, namely, latitude L and two wave-motion parameters { and w2, even
though the model is of order 9.

The Kalman filter equations are (Maybeck 1979)

X(k) = x(k) + K(k)[y(k) — Dx(k)] (16)
K(k) = (kD' [DX(K)DT + W] ! (17
%(k) = [I — K(k)D]X (k) (18)
x(k + 1) = DE(k) + Au(k) + v(k) (19)
Xk + 1) = dX (D" + ONQT (20)

where %(k) is the a posteriori estimate of x(k), (k) is the a priori estimate of x(k),
X (k) = E{[x(k) — %(K)J[x(K) — £(k)]7}
X(K) = E{[x(k) — X(K)][x(k) — %(k)]"}

and K is the filter gain matrix.
A very simple control law is one that gives

ik + 1) =[Opk + 1), Ok + 1), Ok + )T =0

at every sample.
The control vector is therefore chosen as

u(k) = GR(k) — vo(k) vay)
where
ET 0, |
G- _|®ul0 00
10 T, |
07 0 10]
Now
- Axk + 1)| [ — KD)® 0  Ax(k) i
I:i'(k+l)]_[ i {5+Z(}]_i(k):|+nmsc (22)




186 0. Egeland

lg &w

SYSTEM |

Figure 3. Block diagram of gyrocompass.

where Ax = x — #(k), ¥ = [x], x4, x5]7 and AG and ® are the upper left of AG and
@, respectively.

We see from (22) that the eigenvalues of the system are given by the eigenvalues
of (I-KD)® and ® + AG.

With the control vector given by (21), ® + AG will have three eigenvalues at the
origin due to the reset control and two eigenvalues at z = —1 due to the gyro drift
states.

One might expect that this reset control law would give a noisy compass error
because of vessel acceleration measurement noise. However, the measurement noise
is estimated and compensated for by the Kalman filter.

The compass is shown in Fig. 3.

4. Parameter estimation

As mentioned in § 3, the model has only three unknown parameters, L, @§ and (.

The relative damping { in the wave model is vessel dependent, and in most cases
{ could be chosen a priori. g could be chosen as the natural frequency of the vessel
or it could be identified on-line. The latitude L has to be identified on-line to detect
motion in the north or south direction.
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We model the parameter vector 0 = [L, wg]” as a stochastic process
O(k + 1) = B(k) + n,(k)

where vg(k) is zero mean white noise with covariance ¥, = E[v,v1] = diag (vy4, U32).
A recursive least squares estimate of (k) is then given by (Ljung 1981, Saelid et
al. 1983)

Ok + 1) = 0(k) + Kok + Delk + 1) (23)
Kyk) = P (K)T + W(K)P(K)PT(K)]* (24)
Pk + 1) = [T — Kg(k)¥(K)]P(k) + Vi(k) (25)

Here (k) is the a posteriori estimate of O(k), K,k) is updating gain,
&(k) = y(k) — y(k) is the innovation, y(k) is the predicted measurement and W(k) =
—0g(k)/0 is the sensitivity matrix. P(k) = E[(6(k) — 8(k)){6(k) — B(k))"] where B(k)
the a priori estimate of 8(k).

The inclusion of the noise covariance matrix Vj(k) in (25) gives the parameter
estimation algorithm a tracking capability. This will generally be a better solution
than a forgetting factor (Astrom et al. 1977) which may result in exponential
blow-up of the covariance matrix P(k) in periods of little or no excitation.

A promising solution to the blow-up problem is to keep the diagonal of the
covariance matrix P(k) constant by an appropriate choice of V(k). The algorithm
will then at every sample forget as much information about each of the parameters
as it receives (Saelid et al. 1983).

The sensitivity matrix W(k) = — de(k)/d can be computed from

dAx(k)
20

Y(k)= —D

where Ax = x — x.
In a simulation experiment, »? was chosen a priori, and L was estimated by
approximating the sensitivities with

where Ax;, = x;, — X, = x,. From
xy(k + 1) = @, x;(k) + u(k) + vo(k) + Qn(k) (26)
uk) = — @y, &,(k) — do(k) @7

thre (Dll = q)l I{L)“ 611 = (Dl ]_(L), vo = vo{L) and 30 - vo(f:), WE sce lhat thc Sensi'
tivities can be computed recursively from

OAx;(k +1) OAx,(k)  od oK i,
of =®[I — KD,] [ I [I — KD,}x(k) — @ i D, x(k) — I
g 0 0
where D, = [ 0 g O:I'

As 0K /AL is complex to compute for time varying K, the term is set to zero. The
results from this simulation are given in § 5.

Note that the problem of parameter estimation in closed loop (Goodwin and
Payne 1977) is solved by inserting (27) into (26).
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5. Simulation

The gyrocompass was simulated by means of the program system EXKALM in
CYPROS (Tysso 1980). The simulated system is shown in Fig. 4.

The parameters of the vessel simulator are approximated parameters for the
Norwegian coastal liner * Midnattsol” which is 104 m long.

Alignment from x,(0) = [—0-00005, 0-0001, 0-01] radians, that is, a compass
error of 5° was simulated. The vessel was stationary for 20 min (1200 sec.), and then
accelerated to 10 m/s in the east direction. Significant wave height was 1 m. Vessel
speed and course are shown in Fig. 5.

The inertial platform was simulated with white noise gyro measurement error of
covariance 4-4 + 107°, that is, no constant gyro drift. The specific force direction
measurements had a covariance matrix

W = diag(1-10™%, 1-10 %)

Latitude was 57-3° (1 radian) north.

These parameters were the simulated ‘real-world’ parameters. The estimator
had correct values in the noise covariance matrices and correct latitude. w, in the
wave estimator was chosen to 0-3 rad/sec. Relative damping { was chosen to 0-2.
The noise covariances in the wave estimator were

E(n}) = E(nd) = 1
The initial value of cov(x) was assumed to be
X(0) = 001 diag(1,1,1,0,0.1,1,1,1)

The compass error, x5, is shown in Fig. 6. The error is reduced from 5° to 1° in
20 min. The acceleration of the vessel after 20 min has little influence on the
compass error.

VESSEL
MODEL

INERTIAL | Y 0L,
PLATFORM (- !

||

PARAMETER
ESTIMATION

r

ESTIMATOR

Figure 4. Simulated system.
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Figure 5. (a) Vessel speed first run (expanded time scale); (b) Vessel course first run
(expanded time scale).
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Figure 6. Compass error during alignment (solid curve) and positive convolution curve for
compass error in a Sperry gyrocompass (marked with circles).
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Figure 7. Estimated measurement noise (solid curve) and innovation (marked with circles) of
the y, measurement (expanded time scale).
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Figure 8. (a) Kalman filter gain k,, ; (b) Kalman filter gain k5.
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In a conventional Schuler tuned gyrocompass of the Sperry type, the compass
error is given by

2w, 2L()
i cos L 5% + 2w s + w?

o) =

where 6(s) is the Laplace transform of the compass error, @, is the Shuler frequency
which corresponds to an oscillation with period 84 min and { is the relative
damping of the compass (Wrigley et al. 1969).

The convolution curve for the damped oscillation of 6 is shown in Fig. 6 fo
{ = 0-2. We see that the conventional gyrocompass is inferior to the gyrocompass
based upon multivariable control theory during alignment. Here, the effect of wave
induced noise is not considered for the conventional gyrocompass. This means that
the alignment of this compass will be even slower than shown in Fig. 6.

In Fig. 7, the estimated measurement noise and the innovation for the y, mea-
surement is shown. We clearly see that the high frequency wave-induced noise is

(m/s) (a)
25.0F

20.0F

15.0F

10.0

500 1500 23500 3500 (s)

(rad) 1)
2.0t

1.0F

0.5

-0.5 | 1 | ] |
: 500 1500 2500 3500 (s)

Figure 9. (a) Vessel speed second run; (b) Vessel course second run.
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estimated and compensated for, while only the high frequency part of the acceler-
ation from 0 to 10 m/s is compensated for.

The Kalman filter gains k,; and k3, are shown in Figure 8. We see that during
alignment the gains are high. The gains then converge to a lower value in stationary
state. As the system is linear and time-invariant, the Kalman filter gains can be
pre-computed and stored, e.g. by curve-fitting.

Stationary behaviour of the compass was studied. Vessel speed was 10 m/s, the
course was in the east direction with a 90° change of course to the north direction
after 20 min. The compass had feedforward from vessel speed, and therefore no
dynamic north phenomenon appeared (Wrigley et al. 1969). Significant wave height
was 10 m. Vessel speed and course are shown in Fig. 9.

The initial compass error was 0-5°. The compass error is shown in Fig. 10. We
see that the change of course after 20 min. gives an impulse of 0-5°, but apart from
that the compass does quite well.
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¥

1

-0- | ] 1
oige8 500 1500 2500 3500 (s)
Figure 10. Compass error second run.
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Figure 11. Deterministic compass crror in a Sperry gyrocompass.
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In a conventional Sperry gyrocompass, the change of course at this speed will
result in a damped oscillation as shown in Fig. 11.

Without feedforward from vessel speed, a gyrocompass will have a stationary
compass error of 0-1° per knot in the north direction. This means stationary error of
—2° after 1200 seconds in Fig. 11. Feedforward from vessel speed can be implement-
ed in a Sperry compass, but usually it is not.

If we add the effect of noise from waves with a significant height of 10 m, we see
that the gyrocompass based upon multivariable control theory is far better than the
conventional gyrocompass.

The estimated measurement error and innovation for the y, measurement is
shown in Fig. 12. Again we see that high frequency noise is well taken care of.

Identification of the latitude L was simulated during alignment. The estimate of
L converged after 10 min., Fig. 13.
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Figure 12. Estimated measurement noise (solid curve) and innovation (marked with circles)
of the y, measurement.
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6. Conclusions

A gyro compass based upon multivariable control theory has been designed and
simulated. Through simulation it is shown that alignment of the compass is faster
than the alignment of a conventional Sperry compass. The compass also behaves
well in rough sea, and the feedforward from centrifugal forces reduces the response
to course changes. It is shown that the latitude can be estimated and the compass
run adaptively.

REFERENCES

AstroM, K. J., V. Borrisson, L. LyunG and B. WiTTENMARK. (1977). Theory and application
of self-tuning regulators. Automatica, 13, 457.

BLANKE, M., (1981). Ship Propulsion Losses Related to Automatic Steering and Prime Mover
Control. Dissertation, Servolaboratory, Technical University of Denmark.

BRITTING, K. R., (1971). Inertial Navigation Systems Analysis. (Wiley—Interscience).

Brock, L. D. and G. T. ScamipT. (1970). General questions on Kalman filtering in navigation
systems. In C. T. Leondes (ed.) Theory and applications on Kalman filtering. NATO
AGARD AG-139.

EzekieL, S. and E. KNAUSSENBERGE, (1978), (eds.). Laser Inertial Rotation Sensors, Pro-
ceedings of the SPIE, 157.

Goopwin, C. G. and R. L. PAYNE. (1977). Dynamic System Identification. (Academic Press:
New York).

Leonpes, C. T. (1970), {ed.). Theory and applications of Kalman filtering. NATO AGARD
AG-139.

LiuNG, L. (1981). Analysis of a general recursive prediction error identification algorithm.
Automatica, T1, 89-99.

MAYBECK, P. 8. (1979). Stochastic models, estimation and control, Vol. 1 (Academic Press: New
York).

PRICE, W. G. and R. E. D. BisHoP (1974) Probabilistic theory of ship dynamics. (Chapman and
Hall: London).

SaELID, S. and N. A. JEnsSen. (1983). Adaptive ship autopilot with wave filter. Modeling,
Identification and Control, 4, 1.

SarLID, S., N. A. JEnssEN and J. G. BALCHEN. (1983). Design and analysis of a dynamic posi-
tioning system based on Kalman filtering and optimal control. I.E.E.E. Transactions
on Automatic Control, 22, 331-339.

SAELID, S. and B. Foss. (1983). Adaptive controllers with a vector variable forgetting factor.
Proceedings 1.E.E.E. CDC, San Antonio, 1488-1494.

Scumint, G. T. (1978) {ed.). Strap-down Inertial Systems. NATO AGARD L5-95.

Tysso, A. (1980). CYPROS—cybernetic program packages. Modeling, ldentification and
Control, 1, 1.

WrRiGLEY, W. et al. (1969). Gyroscopic Theory, Design and Instrumentation. (M.L'T. Press:
Cambridge, Massachusetts).




