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A boundary element solution to the problem of interacting a.c. fields
in parallel conductors

EINAR M. RONQUIST} and TERJE SIRAt

The a.c. fields in electrically insulated conductors will interact through the
surrounding electromagnetic fields. The pertinent field equations reduce to the
Helmholtz equation inside each conductor (interior problem), and to the Laplace
equation outside the conductors (exterior problem). These equations are trans-
formed to integral equations, with the magnetic vector potential and its normal
derivative on the boundaries as unknowns. The integral equations are then
approximated by sets of algebraic equations. The interior problem involves only
unknowns on the boundary of each conductor, while the exterior problem couples
unknowns from several conductors. The interior and the exterior problem are
coupled through the field continuity conditions. The full set of equations is
solved by standard Gaussian elimination. We also show how the total current and
the dissipated power within each conductor can be expressed as boundary
integrals. Finally, computational results for a sample problem are compared with
a finite difference solution.

1. Introduction

To solve skin effect and eddy current problems involving slowly time-varying
fields, the quasi-stationary approximation to Maxwell’s equations is applied. The
assumptions are that the displacement currents can be ignored compared with the
conduction currents,

Both two-dimensional (Chari 1973, Andersen 1977, Salon ef al. 1981) and full
threc-dimensional problems (Carpenter 1977, Ekrann and Sira 1982) have been
studied. Most authors use finite difference or finite element solution techniques.

Salon et al. (1981) present a boundary element solution to the eddy current prob-
lem by using a Helmholtz type equation for the electric vector potential. The magnetic
field is in this case unidirectional, and perpendicular to the two-dimensional, finite
domain in which the calculations are made.

Andersen (1977) presents a finite element solution to two-dimensional skin effect
and eddy current problems. The governing field equations are expressed by the mag-
netic vector potential in combination with the electric scalar potential.

In our paper, we shall apply the latter formulation in solving the problem of inter-
acting a.c. fields in electrically insulated, parallel conductors. We present a boundary
element solution to the two-dimensional problem with an infinite domain partitioned
into subdomains. The media is linear and isotropic with constant electric conductivity
and magnetic permeability within each conductor. The total current in each conductor
is also assumed to be known. The governing field equations are transformed to
boundary integral equations and then solved. The total current and the dissipated
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power within each conductor are usually expressed as integrals over the volume. We
show how these can be transformed into integrals involving only the unknowns on the
boundary.

2. Mathematical formulation
The electric field E and the magnetic field H can be expressed by the magnetic
vector potential A and the electric scalar potential V'

oA
a2 fo W 1
E=———VV 1)

H=Yvxa @)
’.f.

Using the gauge V - 4=0 and Maxwell’s equations, we get
Vid=—ulJ (3)

where

J=oE @)

We want to find equations for A inside a conductor (R) and in the surrounding region
(R©), see Fig. 1.

B R R°
0$0 o=0
TRE TS H=Ho
//////////

Figure 1. Cross-section R of a conductor surrounded by a non-conducting, non-magnetic
region R°.

In our two-dimensional problem, 4, J, E and V¥ are all perpendicular to the in-
plane magnetic field. For that reason, we shall drop the vector notation. Assuming
steady-state, sinusoidal conditions and using complex notation, (1), (3) and (4) give us
the Helmholtz equation for A inside region R

VZA—a?A=—o2¢ (5)

where
o? = iwpo (6)
¢ =—VViw )

In the region R° surrounding the conductor, =0 and the Helmholtz equation reduces
to the Laplace equation

V24=0 (8)
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The tangential component of the magnetic field is continuous across an interface
between two different media. Boundary conditions for the magnetic vector potential
across the interface B between R and R° are therefore given as

(i) A is continuous
. 124 .
(ii) — — is continuous
p©on
Using (1), (4) and (7), we express E and J in terms of 4 and ¢
E=—iw(A—¢) ®)
J=—iwo (A—¢) (10)

We are only interested in the current distribution inside the conductor. Hence, it is not
necessary to know ¢ on the outside. Since ¢ is a unidirectional, curl free vector field,
¢ is a constant within the conductor. This constant can be found from the known total
current / flowing in the conductor. Integrating the current density J over a cross-
section, we get

I= | JdR (1)
R
We are also interested in the dissipated power P inside the conductor. We can write P as
P= [ wdR (12)
R
where
w=c|E|? (13)

Boundary integral formulation
In this section, we express the Helmholtz equation and the Laplace equation in
terms of boundary integrals. We also express the dissipated power P and the total
current I flowing in each conductor as boundary integrals.
The Green function Gy for the Helmholtz equation is found by solving
V2Gy—~a2Gy=8(r—r') (14)

In two dimensions, Gy, is given as

1
Gy= "'g Ko(or) (15)

where
r=|r—r| (16)

In (14), r and r’ are the field and source points respectively. The operator V2 acts on
the field point r. K, is the modified Bessel function of the second kind, order zero.
Using standard technique, the magnetic vector potential at a point reR is written as

A()=—a?¢ | GydR+ | (A%—G,, BA)dB an
R B on 0

where 9/2n denotes the normal derivative out of the conductor (region R). Integrating
(14) over the region R and using the divergence theorem, we get

Alr)= (l—-[——dB)gE» j(A-a-(E—G,, )dB (18)
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Inserting for Gy and 2Gy/on where

66’" 303 af
Sl B 19
cn or on 2w Kl(”) s =

eqn. (18) is written as

A(r)=(!—i ] Kl(ar)oos;de)Mij A K,(ar) cos ¢ dB
211‘3 2‘#3

1 o4
s ,;‘ = Ko(r) dB  (20)

where K, is the modified Bessel function of the second kind, order one, and cos ¢ is
the direction cosine.

When r is a point ry on the boundary B, we use the same method as in Salon et al.
(1981) to remove the singularities.

A(r,)=(1—3 § Kl(ar}cos:,ltdB) $+> § A Ky(ar) cos y dB
TR TR
1, 04

Correspondingly, for the Laplace equation, the Green function G, satisfies
V2G=8(r—r") (22)

and has the two-dimensional solution
|
G.=—1Inr (23)
2

The magnetic vector potential at a point reR® outside the conductor can then be written
as
oG oA
= =
A(r) B].'( P G,_a!)dB (24)
where 2/on® denotes the normal derivative out of region R® with boundary B°.
In Fig. 1, where there is only one conductor, the boundary B° consists of the
boundary B plus a boundary B, at infinity. The contribution of the integral from

B_, will be zero, so we can put B° B. We also have 2/on®= —2/on.
When r is a point ry on the boundary B°, we get, after removing the singularities,

A(r3)==- [} ( il ;:;, In r) dB 25)

Since J can be expressed as a divergence by (3), the total current 7 can also be written
as a boundary integral. Using (11), (3) and the divergence theorem, the total current [
is written as

=—- j — dB (26)
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If we can express w in eqn. (12) as a divergence, we can also write the dissipated power
P as a boundary integral. We define the vector S directed in the plane as

S=Ex H* 27

where * denotes the complex conjugate. Taking the divergence on both sides of eqn.
(27) and using Maxwell’s equations, we get

w=—ReV.S (28)
Inserting (27) and (28) in eqn. (12) and using the divergence theorem, we write P as
B

where Hy is the tangential component of the magnetic field along the boundary B.
Using (2), Hy can be written as

104
Hy === o 30
i i on @)

Inserting for E and H| from (9) and (30), we get
@ oA*
P=——Re | i(4—¢)—dB 31
" Re [ i(A—4) &)

If the current distribution can be approximated with a line current [ at a point r;, we
can evaluate the integral in (24). Let B, be the boundary of region R,, a circular,
conducting region with radius € placed at r,. Using (24), (26) and the continuity
relation (i), we get

- aGL aA Pof
= A——Gp— =— - 32
A(r)= lim .é[. ( P ,,ano) dB = In |r—rg| (32)
for a point reRO.
Numerical formulation

We now turn our attention to the problem of computing 4, 34/2n and ¢ in the
more general case involving several conductors. We approximate the boundary
integral equations (21), (25) and (26) by a set of algebraic equations.

We shall use the following notation, see Fig. 2. The subscript m refers to conductor
no. m. We have M conducting regions R, with boundaries B, (in Fig. 2,
B3;=B3"uUB;™"), and K non-conducting, non-magnetic regions R,° with boundaries
B,°. A boundary B, will always be a part of the total boundary B=B,u ... UB, U ...

L L
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UB,,. For example, the boundary B,° of region R,% in Fig. 2 is B,°=B,UB,UB;~
while the boundary B,° of region R,° is B,°=B;* (the boundary at infinity does not
contribute to the integral). The normal derivative out of region R,, and R, is denoted
by &/an and 2/an® respectively.

We approximate the boundary B by N straight line elements Al, i=1, ..., N.
The values of the magnetic vector potential (4,, A,°) and its normal derivative
(94,/2n, 24,°[2n°) on the two sides of an element Al, are assumed to be constant along
Al, and equal to their values in the mid-point of the element.

Figure 3. Approximating the boundary with straight linc elements.

Using the notatjon as shown in Fig. 3, we approximate (21) as

24
A‘-——'(l— E a”) ‘#ﬂl+ E a‘JAJ'l'Zb‘J'gi (33)
i i i L
where i, jeB,, and
o
ayy=— § K,(aryy) cos §y; dl (34)
”M,
1
biy=— | Kolory) dl 35)
A
Correspondingly, egn. (25) becomes
04,°
A‘O= ZduAjo'i' Zeu—é'% (36)
J#i i [
where i, jeB,° and B,° < B=B,;UB,U ... UBy. In this equation
1 0
dy=— | M dl 37
wa T
1
ey= —;ﬁ!‘ln Fij dl (38)
Approximating (26), we get
» Al,%=—pnlm,m=l, ey M 39
€B,, on

All the elements, except for b;; and ey;, are computed by using standard Gauss quadra-
ture. An expression for the element b, can be found in Salon et al. (1981), and e, is
evaluated analytically.
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Using the boundary conditions (i) and (ii), we get
A=A (40)

— e~ L @1

We insert for 4,° and 24,°/2n° from these equations in (36). On each element Al we
then have two unknowns, namely the vector potential A; and its normal derivative
0A,/on. We also have two equations for each element, one from the interior problem
inside a conductor, eqn. (33), and one from the exterior problem, eqn. (36). The
interior problem for a conductor involves unknowns only from the boundary of the
conductor. The exterior problem on the other hand, couples unknowns from several
conductors.
We define the unknowns as

x=A,, i=l, .., N
Xypi= aAIfan, i‘—_l, anny N (42)
x2N+m=¢m’ m=19 -",M

Using (33) and (36) on each node on the boundary and eqn. (39) on each conductor,
we get an equation system with 2N+ M unknowns.

Fx=g (43)

The solution x is found by standard Gaussian elimination. From x we can compute E
at the boundary (eqn. (9)), and the dissipated power P,, within each conductor. After
discretization, eqn. (31) becomes

0A,*
Pp=—2Re ¥ ,-(A,._qz.,,)a_’m,, m=1, ... M 44
Bm by .

To find A= A4, at a point p inside conductor no. m, we use eqn. (20). After discretiza-
tion, we get
04,
A,=(I—}Ea,,) ‘i”m'!'%;amﬁ:"‘i;bu-é; 45)
I
where peR,, and jeB,,.

Special attention is needed if the point p is near the boundary. The relative varia-
tions in the distance r,, can be significant for the nearest elements. When evaluating
the integrals a,; and b,;, we may also be fairly close to the singularity in K, and K 1-
The effective distance from the singularity depends on the ratio r/8 where 8 is the skin
depth. The skin depth is related to the constant « by the equation

a=V2il[s (46)
From Abramowitz and Stegun (1965) we have
Ko(er)=Ko(V2i1r/8)>—In(V217[8) as r->0
Ki(er)=K,(V2ilr]8)> 8[rv/2i) as r>0
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We have separated out the singular terms and integrated them analytically for r/8<h
where h is a suitable factor, for example h=1. The remaining integrands are then
integrated by standard Gauss quadrature.

From A, we can find E, and J,.

3. Numerical results

The sample problem, see Fig. 4, involves three conductors surrounded by a circular
shielding. The conducting regions have skin depth =0-667 cm at an angular frequency
w=2m50 rad/s. The total current flowing in each of the three conductors is 1 A with
phases 0, 2z/3 and 4=/3 respectively. The total current in the shielding is 0 A.

Figure 4. Sample problem where p;=2 cm, p;=5 cm, and p;=6 cm. In the conducting
regions, =357+ 107 (Qm)~*, p=po=4w 10-"Hm™".

Using a finite difference method (FDM), we compute the dissipated power
P, in the shielding as a sum over the volume and get P,=8-26+10"¢ W/m. The
solution domain is here p<p,=3p3, and the boundary condition is given at p,, as
2A|on=pl|2mp,, =0 because the total current is zero. The number of unknowns in the
domain is 900.

We approximate the three conductors with line currents and divide the boundary
of the shielding into 64 elements (32 on each side). We compute P, as a sum along the
boundary by using (44). The result is P,=8-50 - 10~¢ W/m.

As a comparison, we let the three conductors have a radius of 1 cm and divide
each of the three boundaries into 16 elements. Using BEM we get P,=8:50 - 10~° W/m
while the dissipated power in each of the three conductors is P,=6-35-10"* W/m.

We also compute |E| along a cut in the shielding by using BEM. In this case
6=60° and p, <p < p3, see Fig. 4. In the Table the results are compared with the finite
difference solution. Here r is the shortest distance from an internal point to the
boundary, and Al is the length of an element. For the results given as BEM 1, the
singular terms in K, and K, are integrated analytically, where as in BEM 2 they are
not. We see that the agreement between FDM and BEM 1 is very good, while the
accuracy for BEM 2 is poor for points close to the boundary.
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r[8 0-00 015 0-45 0-75 0-45 0-15 0-00
riAl 0-00 010 0-33 0-50 0-33 010 0-00
FDM 1-088 0-923 0-827 0-772 0-737

BEM 1 1-21 1-074 0-918 0-826 0:772 0-735 0724
BEM 2 1-21 0-934 0-912 0-826 0-760 0-557 0-724

The electric field | E| (106 V/m).

Figure 5 shows | E| around the shielding for p=(p2+p3)/2. For symmetry reasons,
only computed values for 0< < 120° are given. The results using BEM and FDM
shows good agreement.

0.9 —— BEM

{1075 vim)

Electric tield [E|
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Figure 5.
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