MODELING, IDENTIFICATION AND CONTROL, 1984, voL. 5, No. 2, 71-101
doi:10.4173/mic.1984.2.1

Lattice form recursive linear least square algorithmst

DONALD M. WIBERG}, FRED BASKIN§
and R. D. LINDSAY§

Keywords: lattices, least squares, recursive estimation, digital filtering, signal
Pprocessing, communications, control systems, noise cancelling, spectral estimation,
signal identification, channel equalization, adaptive arrays.

There are many practical applications of lattice form recursive linear least
square algorithms (called lattices for short) in signal processing, communications,
and control systems. The goal of this tutorial is to help practicing engineers to
decide if lattices are appropriate for their particular projects.

First, a definition of the linear least square problem is given and lattices are
described in a non-mathematical way. Next, the advantages and disadvantages
of using lattices are discussed. Many applications of lattices are presented, as
examples of the types of problems in which lattices can be useful. The rather
complicated lattice equations are then given, and general properties of lattices
are discussed. The tutorial concludes with the results of a number of simulations,

1. Introduction

Fast and stable computation of the solution to linear least square problems is
needed in many applications. The recently developed lattice form algorithms are
fast, numerically stable, and recursive in both time and system order. In this tutorial
scattered material concerning lattice form recursive linear least square algorithms has
been assembled in a manner to emphasize practical application. Computer simulations
are given that show the utility and also the limitations of the lattice algorithms.

Lattice form algorithms minimize the sum of squared errors recursively both in
time 7 and in system order N. Because of the recursive nature in N, the number of
arithmetic operations required to implement the lattice algorithms increases linearly
with N, compared with the quadratic increase with N of other previous algorithms.

The utility of the lattice algorithms is enhanced because their mathematical
lattice structure can be physically realized by micro-electronics. Chips implementing
a lattice algorithm are easily designed. Furthermore, lattice algorithms can be
extended to the vector case to handle multiple inputs and multiple outputs.

Present practical applications of lattice algorithms include speech generation and
recognition, spectral estimation, geophysical data analysis, adaptive antenna arrays,
adaptive channel equalization, noise cancelling, and recursive parameter estimation.

The analytic theory behind lattices is not complex. Lattices are equivalent to the
recursive least square algorithm (Goodwin and Payne 1977) in dynamic effect, and
arc merely a re-organization of the manner in which the equations are solved.
Therefore presentation of the lattice equations is postponed until § 3, and even
there proof is relegated to the references.

Received 22 November 1983.

T This work was done at the Aerospace Corporation, El Segundo, California 90009,
U.S.A., and at the Institute for Teknisk Kybernetikk, NTH, Trondheim, Norway.

I Pro temp. Inst. for Teknisk Kybernetikk, NTH, Tondheim, Norway.

§ The Aerospace Corp., El Segundo, California 90009, U.S.A.

M.ILC. b

72 D. M. Wiberg et al.

1.1. The linear least square problem

Lattice form algorithms solve the linear least square problem. This problem can
be stated in the following way. Given two data sequences {x(0), x(1), ..., x(¢)} and
((0), y(1), ..., y(1)}, find constants cop, €cays -+ Caw to minimize the sum of squares
S(t, N) where

i
S(t, N)= Z [x(“')‘”('w)}’(")'"f(u}’(f-1)"---“’(N}J'(T‘N}]l (1.L.I)
7=0
Lattices can also solve the linear least square problem involving only one data
sequence {1(0), (1), ..., ¥(2)}. In this case the problem is to find constants c¢(1),
Ciars ---» Cevy 1O minimize the sum of squares S(t, N) where

H
S(f, N)= E [_}’(f)‘_C(l)y{f— 1)“_6{2)}’(7—2)— s _(‘(N)}'(T_N)]z (1.112)
=0
Vector-valued lattice form algorithms can be extended to solve the vector-valued

version of the above two problems. For this case x(t) and y(t) are p-dimensional
vectors, i.e.

X)) Y (7)
Hr)= x(z;(f) and y(r)= y(z:(f) (1.1.3)
x(,,;(a-) y{v;(")

the constants C(Oj’ C(lh wany C(N) are pxp mall‘iOES, and the sum of squares S(i, N) is

St N)= 3 |x(z)— Co (D) —Capr—1)— ... = Cappz =D (1.1.4)

in which the notation |x| denotes the Euclidean length of the vector x, i.e.
| x]|* =x"x (1.1.5)

where x7 is the transpose of the vector x.
The goal of the vector-valued version of the one data sequence linear least
square problem is to minimize the sum of squares S(z, N) where

S(r, N)= gﬂ (1) = Capplr—1) = Capp(r =2) = ... ~Cap¥r—N)|2 (1.1.6)

The case where the dimension of x(7) is not equal to the dimension of y(7) can
be reduced to the above vector-valued case with equal dimension by adding zeros
as remaining components to the vector with the lesser dimension.

By differentiating eqn. (1.1.1) with respect to each ¢, for n=1, ..., N, the solu-
tion to the linear least square problem can be shown (Goodwin and Payne 1977)
to be equivalent to the solution of the normal equation

K= ic Y(r)x(r) (1.1.7)
where
Y()=[(0), p(r=1), o0y p(7= NI (1.1.8)

e=[ccop C1ys --s cam]” (1.1.9)

Lattice form recursive linear least square algorithms 73

and

R= ,é, Y(r)¥7(z) (1.1.10)

Therefore, the lattice form algorithms solve normal equations as well as the linear
least square problem.

Finally, lattice form algorithms can be modified to solve the weighted linear
least square problem, that is, the linear least square problem in which the sum of
squares S(#, V) includes a weighting constant A, where 0< A< 1, as follows:

I

S(t, N)= Eo N1 [x(7) = o) —caft—1)— ... —capp(r— N)? (1.1.11)
Although the lattice form algorithm can be included as part of algorithms that
solve a broader class of problems, lattice form algorithms can be used directly to
solve only the linear least square problems of the form of eqns. (1.1.1), (1.1.2), (1.1.4),
(1.1.6) or (1.1.11) and no others.

1.2. Qualitative description of lattice algorithms

Lattice form recursive linear least square algorithms minimize the sum of squares
S(#, N) recursively in time. In other words, given the solution to the linear least
square problem at time ¢, i.e. given the optimum values of ¢ o)1), cax(t), ..., ealt),
suppose two new data points x(r+1) and y(t+1) are added to the data sets. The
time recursive problem is then to find new optimum values co)(t+1), ¢yt +1), ...,
ca(t+1) to minimize S(z+1, N) by somehow using the previous solution to
advantage.

Lattice form recursive linear least square algorithms also minimize the sum of
squares S(#, N) recursively in system order. In other words, at a fixed time ¢, given
the solution to the linear least square problem for system order N, i.e. given the
optimum values of cyo)(t), Cne1)(1) ---» Cnemy(t), find new optimum values ¢y, 1o(1),
en+ 1)) oy Ens 1), Ens1v1(?) to minimize S(f, N+1) by somehow using
the previous solution to advantage.

The recursive nature in both system order and time is shown in Fig. 1, which
also illustrates a reason for calling the algorithm lattice form.

The optimal values of the constants ¢, ¢(2y, ..., €, are not found directly in
the lattice algorithm. However, the optimal values of ¢(y), ¢z, ---» €y €an be com-
puted from other, related, constants k,,, keay, -, ke called reflection coefficients,
which are directly computed in the lattice algorithm. There are lattice algorithms
that recursively compute the constants cy), ¢y, --., €, after computation of the
reflection coefficients. However, for brevity these lattices are not considered in this
tutorial, and the interested reader is referred to Porat et al. (1982). The other directly
computed variables are forward and backward residuals ex(r) and {y(¢) defined by

M) =) — n) (Ot = 1) —éna)(OY(1—2)— ... —Enamy(t)(t—N) ~ (1.2.1)
N =y(t—N)=&'Ners (= N+ 1) — ... — & nemy(O(©) (1.2.2)

where ¢'nery, €'n¢2)s ---5 € newy CODstants are the solution of the related (backwards to
eqn. (1.1.2)) problem of S'(t, N) where

S, N)= Y DE—=N)—cvap(r—N+1)— ...~y (7)) (1.2.3)

=0

D2

74 D. M. Wiberg et al.

increasing order

x(0), y(O) Soln. ot Soln. at Soln. at
—_— time t =0 1 time =0 > time t =0 > """
i order N =0 order N=1 order N =2
n
c
r
e
o] [y i
? x(1), y{1) | Soln.at Soin. at Soln. ot
n > time #=1 > time £ =1 time f=1 F—"
9 order N=0 order V=1 order N=2
'
i
m
re Y r
x(2), y(2) | Soln.at Soln. ot Soin. at
——i-] time 1 =2 > time r=2 = time t=2 - -
order N=0 order N =1 order N=2
| | 1

.
-
. . -

Figure 1. A lattice structure arises from recursiveness in both time and system order.

As a result of the mathematical derivation of the lattice equations, only forward
and backward residuals are needed to propagate the estimation procedure. There-
fore, the contents of the boxes shown in Fig. 1 are simply given as in Fig. 2.

There are also auxiliary equations for updating the reflection coefficients ky(r)
and k,i(7). The auxiliary equations are essentially four more recursion relations to
compute the reflection coefficients.

Figure 2 shows the simplest lattice form, that of the single data sequence (1.1.2).
For the case of two data sequences (1.1.1), only the forward residual for the x-process
is needed in addition to the forward and backward residuals € and { of the y-process.
Therefore, the computational load of problem (1.1.1) is only about one and one-half

eyt ~ naqtt)
]—‘ K1)
Ky
Del . >
TN Lyr-1 NI

Figure 2. Segment of the lattice algorithm for the solution at time ¢ and order N.

Lattice form recursive linear least square algorithms 75

times that of problem (1.1.2). In the vector version (1.1.6), the variables shown in
Fig. 2 become vectors and matrices. Finally, there is virtually no increase in computa-
tional complexity to incorporate a weighting constant A as in (1.1.11).

1.3. Advantages and disadvantages of lattices

The main reasons for using lattice form algorithms are the following: (1) with
the exccption of very low order problems, they require fewer computations to solve
the recursive linear least square problem than other algorithms that are presently
used; (2) they are numerically stable; (3) they are easily implemented on micro-
electronic chips; (4) if the input is sampled, they make efficient use of the inter-
sample time to obtain as high an order estimate as possible; and (5) they can be
incorporated easily into their algorithms that solve a broader class of problems,
such as a-stationary (Levi-Ari and Kailath 1981) and parameter estimation (Astrom
and Mayne 1982) problems. We shall now discuss each of these five main reasons
in the order given.

At the present time, Householder (Goodwin and Payne 1977) and other algorithms
that are numerically stable are used to solve the non-recursive linear least square
problem. For use in a recursive manner, the ¥ vector of eqn. (1.1.8) and the R matrix
of eqn. (1.1.10) must be recomputed for each time point, which is not feasible for a
large number of time points. Therefore, it has been necessary to use the recursive
least square method (Goodwin and Payne 1977) which is not in lattice form. Un-
fortunately, that algorithm requires the solution of an N dimensional matrix Riccati
equation for which (N+1)N/2 coupled non-linear recurrence equations are required.
In contrast, the lattice algorithm requires 6N non-linear recurrence equations.
Consequently, for a system of order N=30, the Riccati equations requires 465
recurrence equations, whereas the lattice requires only 180. Therefore, lattice
algorithms are used to decrease the number of computations required for high order
solutions to the linear least squares problem.

Lattice form algorithms are input/output stable because they describe the stable
physical process of the reflection of waves travelling through layered media (see § 4).
Numerical stability often results from this input/output stability, and the lattice
has been proven to be numerically stable (Ljung and Ljung 1984). Another form of
the lattice algorithm exists, called the normalized lattice, but it has been proven
biased (Samson and Reddy 1983) and our simulations indicate that it is numerically
unstable. Therefore the normalized lattice is not considered this tutorial.

The lattice structure depicted in Figs. 1 and 2 can easily be implemented by
micro-electronics. One chip can hold a digital realization of one order section of the
lattice (a “rung” of a *ladder ”), with the inputs to the chip being e(t) and {(¢) at
each order. The chips can be connected together to form a ladder, where the number
of chips used equals the maximum order of the system. The inputs are entered at the
bottom of the ladder, with each increase in system order corresponding to a rung
on the ladder. The residuals are processed up the ladder, with the highest order
residual being the ladder output. Intersample time can be efficiently used, with each
new data point x(r), y(¢) entering at the bottom of the ladder as the data arrives in
real time,

The linear least square lattice can be embedded as part of other algorithms that
solve a broader class of problems. Often a valid method of solving a non-linear prob-
lem is to iterate on a sequence of linearizations of the problem. One such iteration

76 D. M. Wiberg et al.

occurs in system parameter estimation (Astrdm and Mayne 1982). Also problems
that are in some sense close to the normal equation (a-stationary (Levi-Ari and
Kailath 1981)) can be solved using lattices.

If an application does not require recursive minimization of a linear least squares
criterion, the lattice form algorithm should not be used unless a clever method of
embedding exists as discussed above. For example, the Kalman filter is the most
effective solution of the general state estimation problem, and the lattice algorithm
can be applied only to a very small subclass of state estimation problems (see § 2.7).

1.4. Literature concerning lattices

Gauss (1809) originated least squares about 1794 and used it to compute the
orbit of Ceres in 1801. One hundred years later, Yule and Walker (1927) derived
the normal equation for the linear problem. In 1947 Levinson published an algorithm
for recursive solution of the Yule-Walker equation that contains the basic elements
of the lattice algorithm. Kalman filtering (Kalman 1960) was originated in 1960,
at the same time that Widrow (1960) published his approximate solution to the
recursive least squares problem. Widrow’s approximate gradient algorithm was
later adapted to lattices by Griffiths (1977) and Makhoul (1977). A lattice form
recursive linear least squares algorithm was first mentioned (Morf er al.) in the
literature in 1977, and an ever growing stream of papers has appeared since then.
The survey papers by Lee ef al. (1981) and by Friedlander (1982) summarize current
literature and give pertinent references. The material in this tutorial is expanded
upon in Wiberg et al. (1983).

1.5. AR and MA representations

Consider one data sequence {y(0), y(1), .., ¥(t)} that has an autoregressive (4R)
representation

YO =coyyt— 1D +cay(t—2)+ ... + cany(t— N)+w(t) (1.5.1)

where w(t) is a white noise process. Suppose the coefficients ¢y, €2y, ... vy are
unknown. Then a method of computing the estimates ¢é(2), €2,(f)s ---, Eam(t) is to
use the single process lattice, as illustrated in Fig. 3. Figure 3 shows that when each
estimate é(f)=cg, for i=1,2, ..., N, then the numerator polynomial in the delay
operator Z~! cancels the denominator polynomial, and the residual produczd by the
lattice, ex(?), is equal to w(r) and therefore e,(¢) is white. For this reason, single data
process lattices are sometimes called whitening filters. Also, notice that the physical
process to be whitened, y(¢), is an AR process, and the lattice algorithm describes
ex(7) as a moving average (MA) of y(¢), the lattice input.

wit) 1 yit)
=1 -N
1—6“12 _..."C(N)Z

epnlr)

2 -1_ - =N |
1 c“],Z aen C(N)z

Physical process W Lottice algorithm

-
-

- e

Figure 3. AR-process y(¢) filtered by a single data sequence lattice.

Lattice form recursive linear least square algorithms 77

Now consider the two data sequence, in which the given process x(t) is to be
expressed as a moving average of the other given process y(r), i.e.
x() =)+ eyt — 1)+ ...+ cay(t—N)+w(t) (1.5.2)

Then x(r) is MA of y(t), and y(¢t) is an arbitrary process, i.e. y(¢) could be a general
ARMA process. This is pictured in Fig. 4. Optimally predicting £,(t) as MA in
¥(¢) will then minimize the linear least square problem of egn. (1.1.1).

y(t)) s xm]-:-) Xn(1)
oyt e '+._.+c(N)Z > Lattice Sl AN

Y

Physical process * Lattice algorithm

—

Figure 4. The x(r) data sequence is a moving average of y(¢) in a two data sequence lattice.

2. Application of lattices

This section discusses briefly some industrial applications of lattice form linear
least square algorithms. Speech generation, speech recognition (spectral estimation,
signal identification), geophysical applications, adaptive antenna arrays, adaptive
channel equalization (adaptive line enhancement), and recursive system parameter
estimation are current uses. Lattices are not directly useful for the general case of
state estimation and non-linear systems. Finally, noise cancelling is considered.

2.1. Speech generation

Computers, rather than recordings, can now be used to generate speech sounds.
Talking toys, such as ‘ Speak-N-Spell °, and user messages, such as the ¢ voices’ of
telephone operators, use lattice filter networks (not recursive least square, but in
lattice form) to produce a remarkable likeness to human speech. Computers using
lattices have replaced recordings because information can be stored much more
efficiently with lattices. Sampling an analogue recording would require two times
the 20000 cycles of highest heard pitch to be stored for one second of speech.
Lattices reduce this information storage requirement by a factor of more than one
thousand, because only the value of the reflection coefficients need be stored for
each speech sound.

The reason for this efficiency is that lattice filter networks model the process of
human speech. Human speech is produced by modifying an acoustic white noise
(corresponding to the * s * sound) or a single frequency sinusoid (pure tone) produced
by the larynx. The tone or noise is modified by appropriate constrictions in the
throat that cause the sound waves to reflect in the correct way to produce a certain
speech sound. But, as explained in § 4, lattices model the reflection of waves. There-
fore, a single set of reflection coefficient values plus the white noise and sinusoid
amplitudes and frequency determine a human speech sound. A table of sounds can
be assembled and looked up by a computer program that creates speech.

2.2, Speech recognition (spectral estimation, signal identification)

In contrast to the speech generation process, a speech recognition problem has
unknown reflection coefficients that must be estimated from the data. Therefore,

78 D. M. Wiberg et al.

speech generation is only a lattice form filter, whereas speech recognition is a recursive
linear least square algorithm in lattice form. Perhaps it is a lucky accident that the
recursive linear least square solution can be put in lattice form.

Given speech data {(0), y(1), ..., »(1)}, the speech recognition problem is to
compute reflection coefficients recursively in system order to minimize the sum of
squares S(t, N) of eqn. (1.1.2) such that the Nth order forward residual eA(7) is the
sum of white noise and a single pitch sinusoid. This is the inverse of the speech genera-
tion process just previously described, in which white noise plus a single pitch sinu-
soid is the input and speech is the output.

Once the reflection coefficients are computed, the sound whose reflection coeffi-
cients values are closest to the computed values is chosen. Thus, people can talk to a
computer.

Speech is an AR process, and the coefficients of any AR signal can be estimated.
Since the coefficients are estimated recursively in order, system order determination
techniques can be used. In filtering terminology, the process is equivalent to AR
spectral identification.

2.3. Geophysical applications

Sound waves reflecting from the boundaries of layered media of different sound
transmissivities can be modelled by an AR-process, as discussed further in §4.
Therefore, a least squares fit of the reflection coefficients can be performed upon
seismic data, obtained as pictured in Fig. 5.

%f? Explosion Microphone %
/" > M @
- - L:j,—l-'-l“-‘-_“""\“'\“A

Figure 5. Sound waves reflecting off layered media.

Values of the reflection coefficient can be compared to known values of different
media interfaces, for example, to that of water to oil. Obtaining a reflection coefficient
value about equal to that of water—oil could mean discovery of oil if the next reflection
coefficient had a value close to that of oil to rock.

Lattice form recursive linear least square algorithms 79

2.4. Adaptive antenna arrays

An array of antennas leading to a radio receiver is pictured in Fig. 6, with a
signal coming from one direction and a jamming noise coming from another
direction,

S
Tty

G,

s =
SES

Recei

Figure 6. An adaptive antenna array.

The grains Gy, G, ..., Gy from each of the N antennas are adjusted to minimize
S(t, N), the least square sum defined by

S(t, N)= z:'u (r(7)— G15:1(7)— ... — Gusp(7))? (24.1)

where r(f)=a reference signal and s,(?), ..., sy(t) are the signals from each antenna.
The reference signal can be obtained from a number of sources, depending upon
the exact application. The above equation (2.4.1) can be put into the least squares
formulation of eqn. (1.1.4) by defining

() =(81(2), 52(2), .., sn(£))T (24.2)

x()=(@(1),0,...,0)7 (2.4.3)

Then the antenna gains G,, G,, ..., Gy can be approximated as the top row of
the C, matrix,

The above example results in a least squares problem of order zero. For such a
low order problem, lattice algorithms are not needed and a direct solution is avail-
able. However, applications in adaptive arrays often require much more complex
computation, for which lattice algorithms are useful.

and

2.5. Adaptive channel equalization

Adaptive channel equalization, also known as adaptive line enhancement, is used
in communications to minimize the distortion of a signal transmitted over a channel.
An equalizer is installed in the channel as shown in Fig. 7. The output of the equalizer
is cop(t)+c,y(t—1)+...+cxy(t—N). A known ° training ’ signal x(¢) is transmitted
as the input to the channel. The equalizer is supposed to make its output appear as

80 D. M. Wiberg et al.

close as possible to the training signal x(?), i.e. the equalizer must choose ¢, €1 -+, Cn
to minimize S(f, N) where:

S, N)= 20 () —cay(D—cpr—D—mez—N)? 251

which is eqn. (1.1.1). The estimate for the true values of the constants co, ¢y, .-+, Cn
must converge quickly, so that the training signal can be as short in duration as
possible. This permits the channel to have other messages as inputs for a longer
duration before the training signal need be sent again to update the estimates of
Cos Cps «oes Cpe

x{) - yiry)
Communications channel Equalizer >
Known Meansured
input output

Figure 7. A communications channel with an equalizer.

Satorius and Pack (1980) simulated the response of the lattice form recursive
linear least square algorithm used as a channel equalizer. They found the lattice to
be much more quickly convergent than both a lattice form of the gradient algorithm
and the tap delay form of the gradient algorithm, which were in previous use as
channel equalizers.

2.6. Recursive system parameter estimation

A method developed by Astrom and Mayne (1982) illustrates a possible use of
lattice algorithms in system parameter estimation. In this case the system parameter
estimation problem is non-linear. The lattice algorithms can be embedded in a larger
algorithm, and the overall algorithm solves the non-linear problem as a sequence of
linear approximations.

2.7. Direct state estimation
Dynamical processes are often described in state space form:

x(t+1)=Ax(¢) + Bu(t) + w(r)}
Y()=Cx(2)+e(n)

where x(r) is an n-dimensional state vector, u(f) is an m-dimensional control vector,
w(t) is an n-dimensional zero mean white noise (‘ process noise ”) of variance Q,
y(1) is an /-dimensional measured vector, e(f) is an /-dimensional zero mean white
noise with variance R (‘ measurement vector’), and 4, B and C are matrices of
compatible dimension, possibly depending on time t. A controlled ARMA process
can be put in the form (2.7.1) by choosing

"‘al l 0 sas 0 bl C]
A=|—-a, 0 1 ... 0], B=|by|. wt)=]|cs|w() (2.7.2)
. t:n

---.1:1,t 00 .. 0 b,
C=(1 0 ... 0) and e{t)=w(t)

2.7.1)

Lattice form recursive linear least square algorithms 81

The controlled ARMA process can only be solved directly by lattice algorithms
if ¢4, ¢, ..., ¢,_, are all zero, because otherwise estimation becomes a non-linear
problem. Therefore, general state estimation can NOT be solved directly by using
lattice algorithms and a Kalman filter (Meditch 1969) with improved numerical
properties (Bierman 1977) must be used.

2.8. Estimation of non-linear system parameters

Lattice form recursive linear least square algorithms can NOT be used directly
for non-linear systems. For example, the autonomous non-linear state space
representation

x(t+1)=£(x(r))
() =g(x(1))+w(r)

where f(x) and/or g(x) are non-linear in x, and w(¢) is a white noise, does not admit
direct solution by lattice algorithms.

(2.8.1)

2.9. Noise cancellation

Consider the simple example illustrated in Fig. 8. A signal is transmitted over
one telephone wire, but not over another, parallel, telephone wire. Lightning strikes
both wires, producing the same noise in each wire. At the receiving end, a simple
noise canceller recovers the signal by subtracting the noise from the signal plus

noise.
\N Noise
No signal —W— Recovered
%

ICAAAATER V| [T Pvave N Noise
Signal Signol canceller
plus
noise

Figure 8. A simple example of noise cancelling.

The preceding example is perhaps the simplest case of noise cancelling. In more
complicated cases, for example when a large distance separates the parallel telephone
wires in Fig. 8, the noises on each wire are not exactly equal but are statistically
related. In such a case the noise canceller becomes an estimator of the noise on the
signal line given the noise on the line with no signal. This situation is illustrated in
Fig. 9, which is the general configuration for noise cancelling.

82 D. M. Wiberg et al.

Noise cancelling is defined in Fig. 9. There are two random processes u(t) and
o(f) that are inputs to the noise canceller. The input u(t) is known to contain the
signal s(f) plus other noise r(t). The input (¢) is known NOT to contain the signal
s(t), but (¢) is statistically related to r(z). Only »(t) can be used to form an estimate
#(t) of the noise r(¢) in u(t), producing the signal estimate §(¢) as

Sy =u(®)~#()=u()—f@(), ..., 0), 1) 29.1)

This equation defines noise cancelling.

sl dluhzg() @ SN = uln =7

+
vir) »] Estimator ,_j/?(r]-f(v(!]....,vto).ﬂ

Figure 9. The noise cancelling configuration.

Noise cancelling is different from signal estimation in the following manner.
In signal estimation, both random process 1(f) and u(f) can be used to find (1), i.e.

$@O)=g@(®), ..., w(0), W), ..., (0), 1) (2.9.2)

whereas noise cancelling must take the form of eqn. (2.9.1).

In eqn. (2.9.1), the function f of v(¢) that forms the estimate #(f) can be selected
optimally to minimize var (3(¢)—s(t)), the signal error variance. This can be done
without knowing s(¢) by minimizing var §(t). Decompose the inputs u(f) and v(f)
into two separate processes each as

u(t)=s(0)+r(t) (2.9.3)
o) =n(1)+w(t) (2.9.4)

Here s(t), n(t) and w(z) are independent, and r(r) is somehow correlated to (7).
Then from (2.9.1)

var §(f)=var [u(t)—#(t)] (2.9.5)
Using (2.9.3) gives
var §(t)=var [s(t)+r(t)—#1)] (2.9.6)
Since r(r) and 1(¢) are independent of s(t), and #(¢) is a function of o(f) only
var §(t)=var s(¢)+var [r(t)—#(1)] 2.9.7)

Since s(f) is a fixed signal, minimizing var §(f) minimizes var [r(f)—#(¢)]. But sub-
stituting (2.9.3) into (2.9.1) gives

§(@t)=s(t)+r(t)—#) (2.9.8)
Rearranging and taking variances gives
var [s() —5(t)]=var [r(t)—F#(1)] (2.9.9)

Therefore, minimizing var §(f) is equivalent to minimizing var [s(z)—$(t)] in the
noise cancelling configuration.

Lattice form recursive linear least square algorithms 83

If the function f that is the estimate of #(7) in (2.9.1) can be approximated as a
linear combination of the past N values of u(¢), i.e.

) =cov(t)+ cyv(t— 1)+ ... +epp(t—N) (2.9.10)
and if a time average can be used to approximate the statistical average, then
]

Y, [u(r)=#r)P

=0

t var §(t)

¥
Y [(7)—cot(r)+ (7= 1)+ ... 4 cav(r— N)J? (2.9.11)
=0
which is to be minimized by choice of ¢y, ¢4, ..., cy.
This linear least squares sum must be minimized recursively in time, which lattice
algorithms can do. Furthermore, noise cancelling has been found to be equivalent to
optimal estimation in the case where signal variance is infinite (Wiberg et al. 1985).

3. Lattice recursion relationships

This section contains the equations (recursion relationships) for both the one
and two data sequence lattice algorithms. The equations are presented in full
generality: for vector-valued data sequences and with a forgetting factor. The proofs
are to be found in the references, as indicated.

3.1. Notation

For clarity, the following notational conventions are used throughout this
tutorial. Capital letters denote matrices, bold letters denote vectors, and lower case
letters denote scalar quantities. System order is indicated by subscripts, and com-
ponents of a vector are subscripts in parenthesis. For example, the forward residual
€ for a vector-valued data sequence in an Nth order lattice at time ¢ is

€T()=(eney(1), enay(t), ---s enemy(t)) (3.1.1)

The cap T superscript denotes transpose. Then €(f) is an N-dimensional column
vector.

Random processes are defined on a probability triple (sample space, Borel field,
and probability measure). However, because only linear systems are considered, the
sample variable will be suppressed. For example, w(t) will denote either the value
of a sample function of the random process w at time ¢ or the random variable formed
by the random process w at time . The meaning should be clear from the context.

3.2. The one data sequence lattice

Figure 10 is a vector-valued version of Fig. 2. Figure 10 illustrates the basic
recursion relation between the forward and backward residuals €y(¢) and Ey(¢) and
their values for one order higher, ey, ,(f) and Gy, (). Mathematically, Fig. 10
illustrates the order-update relationships

€y +1(t)=en(t) — KyS()Cp(t—1) (3.2.1)
Cn+1(8) =Tn(t— 1) — Kpnt()en(?) (3.2.2)

84 D. M. Wiberg et al.

epn(t)
I—- Ky (1)
Kyt
Del | >
NG &> G0t =1 N byt

Figure 10. A segment of the vector-valued lattice.

If the one data sequence input to the lattice {y(0), (1), ..., ¥(¢)} is a sequence of
p-dimensional vectors, i.e.

Y(O=0w®), Y (1), ---s Y1) (3.2.3)

then the forward and backward residuals €,(¢) and €(¢) are also p-dimensional vectors.

The gains Ky¢(t) and Ky&(r) must then be p x p matrices. These gains are functions
of quantities computed at the previous time instant. Specifically for the single data
sequence lattice, denote the forward and backward residual sample variances Ry(f)
and Ry&(¢), and the sample partial covariance Ax(#). The reason for this terminology
will be apparent from the mathematical derivation given in Lee et al. (1981) and
Friedlander (1982). These quantities must be introduced here in order to compute
the gains K,*(t) and Ky&(r).

Ky*(t)=0y 11 (D[R (1— D] (3.24)
KN‘(I)=AN+ 1T(t)[Rﬂc(r)]_l (3°2-5)

Note that Ay, ((£), Ry(f) and Ry&(¢) are all px p matrices. Additionally, Ry® and
Rat are symmetric, and initially are chosen equal to a given matrix R.

The final quantities that must be introduced are the scalars, 8,(t), ax(t) and A.
Bx(t) and «(¢) are the square of the sine of the angle between subspaces, as explained
in Lee et al. (1981, p.634). (0x(f) is used for Lee’s cos? 0,,,, and o, () for
cos? 6, ,...) However, here both 8y and ay can be viewed simply as a correction
factor to the time updates for A, R® and R{. The scalar A, where O0<A<], is the
forgetting factor. As was explained by eqn. (1.1.11), incorporation of the forgetting
factor A gives less weight to older data. The forgetting factor A permits the tracking
of possible changes in the AR coefficients.

The recurrence relations are presented below. For each new data point p(r),
cycle through the order recurrence relations up to the given maximum order of the
lattice NMAX. The one data sequence lattice can be concisely described as follows:

Input parameters:

NMAX—maximum lattice order
TM AX—maximum time
y(t)—data point at time ¢
A—exponential forgetting factor
R—initial residual variance

Lattice form recursive linear least square algorithms 85

Variables:
€,(1), T,(r)—forward (backward) residuals
R.(t), R5(r)—forward (backward) residual sample variances
A,(t)—sample partial covariance

0.(2), o,(t)—subspace angles
The following order recursions are performed once for each time step (¢=0, ...,
TMAX).
At the zeroth order of the lattice:
o(1)=To()=x(t) (3.2.6)
Ro(1)=Ro%(t)= AR (t— 1)+ p(t)y™(?), with R;5(—1)=R (3.2.7)
Bo(1)=1 (3.2.8)
For orders n=1 to min (NMAX, TMAX):
" Bna (=20, (1= 1) +€, ()8, T(t—1)/6,(1) (3.2.9)
" Appy(—=1)=0 and ET(—1)=0 (3.2.10)
On s ()= 0,(1)—E,T(— D[RE(E—]G, (1— 1) (3:2.11)
with .
RH(—1)=R (3.2.12)
€ (=€)~ A, \(D[RE(t— D], (r—1) (3.2.13)
Cnr 1(D)=8(t— 1) =4, ,"(D[RA)] e, (1) (3.2.14)
R, 1()=RA1) =D, {(DIREE—1)]7'A, ., (D) (3.2.15)
Ry MO =RHt— 1), , TOIRA()] A1 (D) (3.2.16)

Nore: If any of the quantities 6,(t), R,(t) and R,¥(t) does not have an inverse, or is
somehow close to being not invertible, see Porat er al. (1982). In the scalar case,
this non-invertibility reduces to replacing the inverse by zero.

In another form of the one data sequence lattice, the residual sample variances
are recursed in time, not in order. This alternative form has advantages in the vector
valued case where the algorithm of Gill et al. (1975), mentioned in Miller and
Wrathall (1980, p. 138), can update R,(¢) and R,i(¢). The algorithm of Gill et al.
(1975) should always be used in the vector valued case to update eqn. (3.2.7). The
alternative lattice recursions are:

1, if n=0
()= (3.2.17)
On—1(t)— €0y "(O[Ry115(0)] "€y (1), if n>0
RA(t)=AR(t—1)+¢,(1)e,"(1)/6,(1) (3.2.18)
RE(1)= AR,H(t— 1) + L ()8, T (1) oe(2) (3:2.19)

with initial time conditions for all » as
Cun—1)=0, A, (n—1)=0, RH—1)=0, REn—1)=R (3.2.20)
The values of T,(7), R,t(¢) and A,(¢) are not needed before t=n—1.

86 D. M. Wiberg et al.

3.3. The two data sequence lattice

For the two data sequence lattice, the inputs are the vector-valued data sequences
{x(0), x(1), ..., x(©)} and {3(0), »(1), ..., p(r)}. Assume both x(¢r) and p(r) are of
dimension p, and if they are not, the vector of the lesser dimension can be filled up
with zeros to make the dimensions of x and y equal. The two data sequence lattice
uses the same equations as the one data sequence lattice given in §3.2, plus the
following.

Input parameters:
x(f)—corresponding data point at time ¢

Variables:

¢€,*(t)—forward residual in x
AX(t)y—sample partial x covariance

The following additional recursions are performed once for each time step (r=
0, .., TMAX).

Initially:
e, (t)=x(t) (3.3.1)

AX(1)=0, forn>t (3.3.2)

For orders n=0 to min (NMAX, TMAX):
AX)= A (1 — 1)+ € T ()0 (33.3)
&X()=6,_ ()= AFOIRHD]E(1) (3.34)

Of course, €,*(t) is a p-vector and A *(¢) is a p x p matrix.
In the case of noise cancelling, the residual after the highest order desired €y x™(f) -
equals §(f), the estimate of the signal in the x process.

3.4. Derivation of the lattice algorithm

The proofs are presented in Friedlander (1982) and Lee ef al. (1981). Also see
Ljung and Soderstrom (1983) for a complementary development of lattices, including
some proofs.

4. Properties of the lattice structure

This section discusses various properties of the lattice structure. First it is shown
that the reflection of waves travelling through layered media results in the lattice
structure. This gives physical meaning to the reflection coefficients, and a physical
basis for the inherent stability of lattices. The relationship between AR and MA
representations, and how to approximate ARMA processes, is the last topic of this
section.

4.1. Reflection coefficients

Ladder networks have a physical interpretation in the transmission and reflection
of waves through a layered medium as presented in Claerbout (1976). Consider an
upward directed sinusoidal wave of unity amplitude, reflecting off, and transmitting

Lattice form recursive linear least square algorithms 87

through, a boundary between layers of different media (Fig. 11). The normalized
amplitude of the reflected wave, c, is called the reflection coefficient. The amplitude
of the transmitted and reflected waves sum to one, which is the amplitude of the
incident wave. However, because the waveshape is reversed upon reflection, ¢ is of
opposite sign, so that:

t+(—c)=1 “.1.1)

Transmitted wove,

amplitude = ¢
Medium 1
Boundory
Medium 2

Reflected wave,
amplitude = ¢
Incident upward waove,
omplitude =1

Figure [1. A wave reflecting off a layer boundary.

The same situation occurs for a downward incident wave, which is denoted with
primed superscripts:

t'+(—c)=1 (4.1.2)

The energy associated with any wave is the square of the wave amplitude times Y,
a proportionality factor dependent on the medium. Equating the energy in the
upward incident wave to the energy in the reflected and transmitted waves gives

Y212=Y202+ Y1t2 (4.1.3)

Using (4.1.1) to substitute for ¢ in the above equation and solving for ¢ gives a value
for the reflection coefficient ¢ as

LYt
Y, + Y,

(4.1.4)

Repeating this argument for the downward incident wave, or more simply inter-
changing Y, and Y, in the above formula, gives

e'=—¢ (4.1.5)

Now consider two waves incident on the same boundary (see Fig. 12). Call the
upward incident wave amplitude U and the downward incident wave amplitude D',
Then the amplitudes of the resultant wave U’ and D are

U=c¢'D'+1U

(4.1.6)
D=t'D'+cU

88 D. M. Wiberg et al.

Eliminating ¢’, ¢’ and ¢ in terms of ¢ from (4.1.1), (4.1.2) and (4.1.5), and then solving
for U and D gives the relationship of the amplitude in one medium to that in the next.

U 1 1 \/U
el -
D ¢ 1/\D

D' U

U [

Figure 12. Two waves incident on the same boundary.

Now consider wave travel through a number of layers, with equal travel time in all
layers. Let T be the two way travel time, and define

z=exp (joT) (4.1.8)

Then multiplication by 4/z is a delay of 7/2. Within the kth layer (Fig. 13) the down-
ward directed wave at the top of the layer is denoted D,, and the upward wave is
U,. At the bottom of the kth layer these variables are primed, as shown. Because
the downward directed wave is delayed by 7/2 in travel through the medium, then

D’k=DR'\/Z (4.] .9)
and similarly for the upward wave
U=U'n/2 (4.1.10)

o lu
N -

Figure 13. Reflection in the kth layer.

k-th loyer

Combining (4.1.7), (4.1.9) and (4.1.10) gives the formula for the waves in one layered
medium in terms of the waves in the next layered medium.

Dy sy 1 ¢z *\ /Dy
_ l‘f @.1.11)
Uy (I+e) o z7t U

Now compare this equation with the lattice order recursion depicted in Fig. 3.
Calling the delay operator z~*, from this figure it can be seen that

€yt 1 —kyez™t\ [en
)=()() 4.1.12)
T+t "kN; z~! (9%

Lattice form recursive linear least square algorithms 89

Therefore, if kyt=ky¢, this agrees with the previous equation except for the multi-
plicative scalar 4/z/(1 +¢,). Because no energy is gained in the reflection of a wave
travelling through layered media, the process is passive and therefore stable. Of course
the reflection coefficient |c,| <1, so that the stability condition for the lattice is
| kn® knt| < 1. Due to the series connection of order recursions (4.1.12), the necessary
and sufficient condition for input-output stability of the lattice recursions is that
| kn¥(2)kn*(2)| <1 for all £ and N.

4.2. System representation of the lattice

Consider the lattice order recursion at a specific time instant 7, with input y(¢)
and output ¢,(t), the forward innovations of order ». The lattice for this situation is
pictured in Fig. 14.

() eol?) M~ afn o~ el €,—q(1) 6t
e
) \d
Ke(F) K kS
Lol
K5(#) k3(#) katn)
3 3 3
z-1 +;— s e 71
/
Lolt-1) 51 gyr-n Lol Cpg(r-1) [0

Figure 14. The lattice recursion in order.

The feed-forward nature of the lattice with n delays z~* indicates that it is equi-
valent to an nth order moving average (MA) model, otherwise known as a tapped-
delay line or finite impulse response model.

elt)=coy(®)+c y(t— 1) +...+c,y(t—n) 4.2.1)
It is difficult to compute the values of the tapped delay coefficients €Cps C1y vavy Cp
in terms of the reflection coefficients k¢, k,&, s kf, k£ for large n. Porat et al.

(1982) present a method for updating the tapped delay coefficients in which the
number of computational operations is proportional to n.

4.3. AR, MA and ARMA representations

The previous section described an MA representation (4.2.1) of the lattice, in
which p(#) is the input and «,(7) is the output. In 4R process generation (§2.2) (1)
is the input occurring as white noise and y(¢) is the output. The lattice recursions of
§ 3 occur only in the MA representation and are shown in Fig. 15.

White noise 1 AR-process
otz 4. +c,z7"

€n(f}

~ g A _n
Co+C1Z +...+CnZ

Physical process Lattice

Figure 15. AR processes are inputs to single data sequence lattices.

90 D. M. Wiberg et al.

However, for the two data sequence lattices of eqn. (1.1.1), consider an x process
that is MA in terms of y, the other process.

x(@)=coy®)+cy(t—1D+...+cy(t—n) (4.3.1)

Neither x nor y need be white.
Fast ARMA processes can be adequately approximated by MA processes.
Consider the AR process x driven by white noise w as follows

() —ecx(t — 1) =w(t) (4.3.2)
Then taking z transforms gives
x(z)=w(2)/(1—az"") (4.3.3)
Expanding the fraction in z~* gives
x(2)=(+oz"* +a’z72+...)w(z) (4.3.4)

If || <1 this series can be truncated to obtain an adequate MA representation.

&(N=y(1)—Fi(1)

Error
o

-2

AL = (Nylr—1)

\/\}\ A : {\ Af\ ALA A0\ A AaALeA AN
TAATRTAL IR T

Estimation
(o]

|
N
T

|
E
—

y(1)=0.Ty(t=1)+ 0.49y{r-2) + w(t)

-
1

2, A{\ I\.AUMAAMA afia
& V\! \]V Vi v v U \!V

-4 1 | l | I 1 |] 1 J
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 16. A first order lattice filtering a second order AR process.

Lartice form recursive linear least square algorithms 9]

5. Simulation results

This section gives the results of simulations of data sequences filtered by recursive
linear least square algorithms in lattice form, as described in the previous sections.

5.1. Simulation of one data sequence lattices

A number of simulations were carried out involving a one data sequence lattice
(whitening filter). Figure 16 shows a first order lattice attemptmg to whiten a second
order AR process. The second order AR process that is the input to the lattice is
shown at the bottom of the figure. The forward innovation €,(t) shown at the top
is the output of the first order lattice. The first order estimate yl(!) obtained by
subtracting the top graph of «,(r) from the bottom graph of y(¢), is shown in the
middle.

Figure 17 shows the same simulation as Fig. 16 except that a second order lattice
was used in place of the first order lattice. The output of the second order lattice is
the forward innovation e,(f) shown at the top of Fig. 17. The autocorrelation of this

(1) =y(1)=7,(1)

§; J\M\ANM M,\A/‘ T A
L LA R Ay

P =Nyt -1+ E,(1y(1-2)

2
‘EOZ\AA }\ﬂ Mnn N A AsA AL A
2 lVU\}VV vukuwvvv T
L

_:: YN =0.7y(t-1)+0.49y(t-2)+ w(?)

20| L {\ MMA/\ AAA/\/\/\/\/\JL
EERTA

L] J
0] 1] 20 30 40 50 60 70 80 90 100
Time

Figure 17. A second order lattice filtering a second order AR process,

92 D. M. Wiberg et al.

«,(t) is compared with that of the first order forward residual €,(r) of Fig. 16 in
Fig. 18. Notice that e,(r) appears white, whereas e,(t) is not white.

Since sine waves obey a second order AR relationship, they can be identified by
a single process lattice of order greater than one. A sine wave of period 50 samples
with a small additive white noise was generated as pictured at the bottom of Fig. 19.
This generated data was the input to a second order single data sequence lattice,
whose output was the forward innovation e(f) pictured at the top of the figure.
The estimated signal, §,(¢) shown in the middle of the figure, was obtained by sub-
tracting €,(¢) from y(1).

A similar result was obtained for a square wave, as shown in Fig. 20. Since
constants obey a first order AR relation, a first order lattice could have been used.

5.2. Simulation of two data sequence lattices

A number of simulations were carried out involving a two data sequence lattice
(noise canceller). The bottom of Fig. 21 shows a slow sinusoidal signal plus a small
noise as one data sequence x(r), and the same small noise as the other data sequence
W{). The sinusoidal signal’s estimate §(#) by a second order lattice is shown at the
top of the figure. Note that it takes slightly more than one sinusoisal period to

o
1

o
(&)
T

by N A A

Autocorrelation function of (1(}‘)
ACF

o] 4 B 12 16 20
Log time
Lattice of order 1 with order 2 AR input

S of
o
v
k)
.5 05
©
gu.
N
00
§RVNAY VN \ TV
©
[
5 —-05F
o
e
=
4 .0 1 | 1 |]
(0] 4 8 12 16 20

Lag fime
Lattice of order 2 with order 2 AR input

Figure 18. Comparison of the autocorrelation of the residuals of figures.

Lattice form recursive linear least square algorithms 93

2 et =yt =y
? fo) WWW%WWH”M
w
—2L
4 [~ A ~ ~
yplt) = cy(y(t-1+ ca(ty(r-2)
2 -

Estimation
o

|
™
I

|
s b
1 |

y(t) = sin 27t/50 + w(t), o, = O.1

\

-2+

Figure 19. Sinusoidal input to a second order lattice.

recover the sine wave signal. In cases of low noise, the signal plus noise appears to
be as accurate as the estimated signal over this first period of the sinusoid.

Figure 22 shows the same situation as Fig. 21, except in high noise. In this case
the signal is almost completely masked by the noise, as can be seen at the bottom of
Fig. 22. Since the noise is cancelled, the same signal estimate 5(¢) is produced as in
Fig. 21.

Figure 23 shows a higher frequency sinusoid in the signal than Fig. 22. Again, it
takes slightly more than one sinusoidal period to recover the sine wave signal.
Because the frequency is higher, it appears that the noise canceller converges faster,
but sinusoidal signal recovery appears to depend on frequency much more than
absolute time.

Figures 24 to 31 simulate noise cancelling from a square wave signal. First order
two data sequence lattices attempt to cancel the noise in Figs. 24 to 27. Figure 24
shows the cancellation in low noise, while Fig. 25 shows the same recovered signal
in high noise. This is the same situation as in Figs. 21 and 22 except for a square
wave rather than a sine wave. Figure 26 shows that the lattice is unable to recover

94 D. M. Wiberg et al.

21 e =y(N =1
$o
w
-2L
4 i ~ A Fa)
Yo(t) = ¢y (N ylt~1) + co(ty(1-2)
2 —
g
'g 0 i, rﬂ hw‘r.“‘?"‘ h"/—wf-‘\vw _—
B
w
-2
-4L
&
y(1) = square wave + w(t), o = 0.1
2F
—_ o
o
wy
_2 —
-4] | 1 |] E 1 I i)
(0] 10 20 30 40 50 60 70 80 90 100

Figure 20. Square wave input to a second order lattice.

the signal when the noises in the two data sequence inputs are independent. Figures
24 to 26 give the same results as if one data sequence had merely been subtracted
from the other. Figure 27 shows how a higher order lattice can be effective when the
noise on the signal is 2 moving average of the other data sequence.

Figures 28, 29 30 and 31 show a sequence of increasing order lattices cancelling
noise that is ARMA in the other data sequence. A poor estimate of the signal results
from the second order lattice shown in Fig. 28, just as in the independent noise case
of Fig. 26.

An increase in order to four gives some barely discernible steps in Fig. 29. These
steps are rough but quite recognizable when the order is increased to six, as in Fig. 30.
The tenth order lattice, depicted in Fig. 31, sharpens the square wave a little bit
more than the sixth order lattice of Fig. 30.

Lattice form recursive linear least square algorithms 95

- N =501 =x(t)-x(H) = x{r}-Eomym-E,(r)y{r—l}—é‘a{ tiy(r-2)

S ~___

-2
-4 | | 1 1 | 1 | 1 1]
0 10 20 30 40 50 60 70 80 90 100
Time
T
x(t) = s(1) + wlt) = sin 27#/50 + wir) o, =0.1
2| !
g 0 v_h..v A AL At "r_'“ _.J‘\n-— RS Al S— —
-2 F yit) = w(t)
-4 I] 1 L] 1 I ! ! |
0 10 20 30 40 50 60 70 80 S0 100
Time

-4 1] | I

] I 1
(o] 10 20 30 40 50 60 70 80 90 100
Time

x(t} = s(t} + w() = sin 2w#/50 + w(t) o, =1.0

2
m I.
BIRAY
yit) = wit)
-4 1 | | 1 | | |]] i
0] 10 20 30 40 50 60 70 80 90 100

Figure 22. Noise cancellation for a slow sinusoidal signal in high noise.

D. M. Wiberg et al.

4r
X1 =501 = x(1) = x(N = x(1) - & nyN =G Nylt=N=Cylylr=2)
d o
CEEANERAT LA AN ATAN
MV AVALVAAVALVALVIRVARVERAVARV)
_2 L
-4 | 1 | | | | | | 1
0 10 20 30 40 50 60 70 80 90 100
Time
4 —
x(t) = s(t) + w(t) =sin 2mt/5+ w(t) 0,=0.1
2+
2o
o
v
i y(r) = wit)
-4] | |]] | |]] T
0 10 20 30 40 50 60 70 80 90 100
Time
Figure 23. Noise cancellation for a fast sinusoidal signal in low noise.
4 =
€X(1) =51 = x(1 - 2 = x(1) = Sl Dyl 1) =yl =1)
2 L5
5‘ o - ot —~—
w
_2 -
-4] | 1 1 | 1 | 1 L |
0] 10 20 30 40 50 60 70 80 20 100
Time
4 —
x(1) = square wave + wir) o =0.1
2F
g 0
w
o} y(t) = wlt)
-4 | L 1 1
0

1 1 1 | 1 |
10 20 30 40 50 60 70 BO 90 100
Time

Figure 24. Noise cancellation for a square wave signal in low noise.

.

Lattice form recursive linear least square algorithms

71 = 81} = x(1) = X(#) = x(1) = Egl Iyl 1) = Sy Pylr—1)

nan W net W

20 30 40 50 100
Time
x(t) = square wave + wit) &, =1.0

Figure 25.

eflr) =

M,AN\ m”

Noise cancellation for a square wave signal in high noises.

Sr) = x(1) = K1) = x(#) = Ef)y (1) ~Cyly(t-1)

/WI .. AAAW

i

y(f) = wlir)

oy =1.0

| | I L I
30 40 50 80 70 80 90

|
Time

Figure 26. Noise cancellation for a square wave signal with uncorrelated high noise.

eX(1) = 5(1) = x(1) = (1) = x(#) = Col Ny (1) = EyIylr=1)

2_

ST NN) W el P
o ~r "l — ———

w

_2..

-4 | | L | 1 | 1 | | |
0 10 20 30 40 50 6 70 80 90 100
Time

4_

x(#) = square wave + wlt) + w(r—1)

ow =10

L l 1 1 1 i 1
0 10 20 30 40 50 60 70 80 90 100
Time
Figure 27. Noise cancellation for a square wave signal with MA correlated high noise.
4 —
e3(n = 8(r) = x(1) = R(1) = x(1) = Eo(NyLN) = E(Nyl1-1) = E(Ny(r=2)
2 -

Signal
(@]

ML

-2+

—] | i]] i | | |
0 10 20 30 40 50 60
Time

]
70 80 90 100

x(#) = squore wove + n{f)

n(r) + 0. 7n(t—1) + 0.49n(t—2) = w(r)

Figure 28. Noise cancellation of second order for a square wave signal with ARMA
correlated high noise.

4
i 4(1) = 5(1) = x(t) = X(1) = x(1) -Eolf]y(f)—...-34“))'(!-4}

EOWMVM/\ A f'/\j\N\f\ Mn!\'

VV VVV L4 M V#\‘[

1 1 |
0 10 20 30 40

1 1 1]
50 60 70 80 S0 100
Time

x{#) = squore wave + n(t) n{t) + 0.7n(t—1) + 0.49n(t—-2) = wlr)

e} 10 20 30 40 50 60 70

Figure 29. Noise cancellation of fourth order for a square wave signal with ARMA

correlated high noise.
g~
€g(1) = 5(1) = x(1) = R(1) = x(1) — El1)y(#) = ...— Eg(t)y(+—6)
2 -
._2 =
-4] |] | | !] | |]
0 10 20 30 40 50 60 70

80 90 100

Time

x(#) = square wove + n(t)

n{t) + 0.7n(t—1) + 0.49n(1—-2) = w(#)

yiN=win o,=10
-4 |] | | | |

]
0] 10 20 30 40 50 60 70
Time

Figure 30. Noise cancellation of sixth order for a square wave signal with ARMA correlated
’ high noise.

100 D. M. Wiberg et al.

4 —
€= 51 = x(1) = K1) = x(1) = Ef (1) = ... =)l t)y(1—10)
2 L,
2 0] —_——— g L m JE SN m e
i.%. T —— =7 -1 oy
_2 -
—4 | 1 | | | 1 | 1 L |
(o] 10 20 30 40 50 60 70 80 90 100
Time
x(t) = squore wave + n{t) n{t) + 0.7n(f—1) + 0.49n(+-2) = wlt)
Al

5
|
—
]
<
é_;_

yit) = wit)
I

—4 | I
o} 10 20 30

Figure 31. Noise cancellation of tenth order for a square wave signal with ARMA cor-
related high noise.

6. Conclusions

Linear least squares parameter estimation can be applied to a number of important
industrial problems. Lattice algorithms permit the exact solution of these problems
in cases where previously only approximate solutions could be used because of the
size of the system. Very high order systems result from multiple-input, multiple-
output problems, and lattices are especially useful in these cases. The difficulty with
using approximate solutions has been that poor performance has resulted because
of the approximation. The difficulty with the exact recursive least square algorithm
used previously is that the computational burden and the resulting round-off error
accumulation becomes too high for large systems, a shortcoming which is avoided
by lattices. However, lattices can solve only the linear least-square problem, and are
not suitable for general filtering applications.

Perhaps micro-computer chips implementing the lattice will be available in the
near future. Until these are available, mini-computers can easily by programmed
with the equations given in this tutorial to implement the lattice in practice.

REFERENCES

Goopwin, G. C., and Pavng, R. L. (1977). Dynamic System Identification, Experimental
Design and Data Analysis (Academic Press, N.Y).

Lattice form recursive linear least square algorithms 101

Lev-Ary, H., and KaiaTs, T. (1981). Schur and Levinson algorithms for nonstationary
processes, Proceedings of I.E.E.E. Conference on Decision and Control, Dec. 1981,
pp- 860-864.

AstroM, K. J., and MaYNE, D. Q. (1982). A new algorithm for recursive estimation of
controlled ARMA processes, Proceedings of IFAC Conference on Identification and
System Parameter Estimation, Washington, D.C., June 1982, pp. 122-126.

BIERMAN, G. J. (1977). Factorization Methods for Discrete Sequential Estimation (Academic
Press, N.Y,).

Gauss, K. F. (1963). Theoria Motus Corporum Coelestium, 1809, translated as Theory of
The Motion of the Heavenly Bodies Moving Abour the Sun in Conic Sections (Dover,
N.Y.).

YuLe, G. U. (1927). On a method of investigating periodicities in disturbed series, with
special reference to Wolfer’s sunspot numbers. Phil. Trans. A, 267, 226.

Levinson, N. (1947). The Wiener RMS (root-mean-square) error criterion in filter design
and prediction. J. Math. Phys., 25, 261-278.

KaLMan, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic
Engineering, 82, 342-345.

Wibrow, B., and Horr, M., Jr. (1960). Adaptive switching circuits. I. R.E. WESCON Conv.
Record, Pt. 4, pp. 96-104.

Morr, B., Dickinson, B., KalLatH, T., and VIEIRA, A. (1977). Efficient solutions of co-
variance equations for linear prediction. LE.E.E. Trans. Acoustics, Speech, and
Signal Processing, 25, 429-435.

Lee, D. T. L., Morr, M., and FRIEDLANDER, B. (1981). Recursive least squares ladder
estimation algorithms. I.E.E.E. Trans. Acoustics, Speech, and Signal Processing, 29,

627-641.
FRIEDLANDER, B. (1982). Lattice filters for adaptive processing. Proc. I.E.E.E., 70, 829-867.
FRIEDLANDER, B. (1982). Lattice methods for spectral estimation. Proe. I.E.E.E., 70, 990~
1017.

Satoruus, E. H., and Pack, J. D. (1980). A least squares adaptive lattice equalizer algorithm,
Naral Ocean Systems Center Technical Report 575, Sept. 1980, San Diego, California
92152, U.S.A.

PORAT, B., FRIEDLANDER, B., and Mor¥, M. (1982). Square root covariance ladder algorithms.
LEEE. Trans. autom. Control, 27, 813-829,

Mepitch, J. S. (1969). Stochastic Optimal Linear Estimation and Control {(McGraw-Hill,
New York).

GiLL, P. E., MURRAY, W., and SAUNDERS, M. A, (1975). Methods for computing and modi-
fying the LDV factors of a matrix. Mathematics of Computation, 29, 1051-1077.

MILLER, W., and WRATHALL, C. (1980). Software for Roundoff Analysis of Matrix Algorithms
(Academic Press, New York).

Liung, L., and SobersTrOM, T. (1983). Theory and Practice of Recursive Identification (MIT
Press, Cambridge, MA).

CLAERBOUT, J. F. (1976). Fundamentals of Geophysical Data Processing (McGraw-Hill, New
York).

WIiBERG, D. M., Baskin, F., and LiNpsay, R. D. (1985). On the dynamics of recursive least
squares and lattices, 7th IFAC Symposium on Identification and S ystem Parameter
Estimation, York, United Kingdom, July 1985.

Lsung, S., amd Liunc, L. (1984). Error propagation properties of recursive least squares
adaption algorithms, 9tk IFAC Congress, Colloquium on System Identification,
Budapest, 1984. An extended version will appear in Automatica.

SamsoN, C., and Reppy, V. U. (1983). Fixed point error analysis of the normalized ladder
algorithm. LE.E.E. Trans. Acoustics, Speech, and Signal Processing, 31, 1177-1191.

GrurriThs, L. J. (1977). A continuously adaptive filter implemented as a lattice structure,
Proc. 1.E.E.E. Conf. Acoustics, Speech, Sig. Proc., Hartford, C.T., May 1977, pp. 683—
686.

Maktout, J. (1977). Stable and efficient lattice methods for linear prediction. 1.E.E.E.
Trans. Acoustics, Speech, and Signal Processing, 25, 423-428.

WiserG, D. M., Baskin, F., and Linpsay, R. D. (1983). Lattice form recursive linear least-
square algorithms, especially for noise cancelling, Aerospace Report No. ATR-
83(9975)-2, The Aerospace Corp., El Segundo, California 90009, U.S.A.

