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General analysis of directional ocean wave data from
heave/pitch/roll buoys
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Directional ocean wave data is usually analysed using the so-called linear model
of the sea surface, but experience has shown that the results may deviate sub-
stantially from the predictions of the theory, in particular in the high frequency
range. A general theory is presented here which includes the linear model as a
special case. Properties of commonly used parameters under the influence of
currents and non-linearities are easily explained within the general theory. Some
results from the NORWAVE heave/pitch/roll data buoy operated offshore
Norway are also presented.

1. Introduction

Directional wave spectra are of considerable interest in current offshore and
coastal engineering (Hogben 1982, Torset and Olsen 1982). For most applications
the sea surface is treated as an infinite sum of non-interacting plane waves, each
obeying the dispersion relation for infinitesimal waves. This is the so-called linear
model. As a result of the dispersion relation, it is then possible to speak about a
directional wave spectrum expressed only in terms of the wave number, or alterna-
tively, frequency and direction. There exist various ways of measuring the directional
spectrum, or at least, parts of it. However, it has frequently turned out that the data
does not fit the linear model. This may be due to several reasons. Currents advect the
waves and introduce a non-homogeneous dispersion relation, non-linearities present
in the wave field introduce components that do not fulfil the dispersion relation, and
finally, instrument imperfections further obscure the data interpretation. In the
present paper we shall consider the sea surface under the general assumption of it
being a homogeneous and stationary stochastic field and with special emphasis on
observing the surface with a heave/pitch/roll buoy. Observed deviations from the
linear model may be explained within the more general theory. In the next section
we discuss stochastic models of the sea surface. We then consider the interpretation
of the data from a heave/pitch/roll data buoy and in particular how commonly used
parameters behave under the influence of currents and non-linearities. In later
chapters some applications and results are presented from the NORWAVE data
buoys which have been operating in the Norwegian Sea for the last three years.

2. Stochastic models of the sea surface

Let L2 be a Hilbert space of real stochastic variables. For X, YeL? the expectation,
EX, the covariance, Cov (X, Y)=E({(X— EX)Y— EY)), and the variance, Var X=
Cov (X, X) have their usual meaning. A time varying stochastic surface X(x, t) is a
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mapping from R*x R into L?. The surface is mean square continuous at (x, f) if
Var (X(x, t)—X(x', t'))—>0 when |x—x'| 0 and |t—¢'| 0. We shall assume that
E(X(x, 1))=0. The surface is homogeneous if, for fixed 1, and t,, Cov (X(x,, #,),
X(x3, t;)) is a function of x,—x, only, and stationary if, for fixed x; and x,,
Cov (X(x,, t,), X(x;, t,)) 1s a function of #, — 1, only.

In the following we consider a zero mean, mean square continuous, homogeneous
and stationary surface. This implies that the covariance function, pyx(x, )=
Cov (X(x, t), X(0, 0)), is a continuous, even function. The surface also admits a
spectral representation as follows

X(x, t)=/ | exp (itk + x— wt)) dZ(k, w)

(Gihman and Skorohod 1980, p. 241). Integration without limits here and later is over
wavenumber-frequency space. Z is the spectral amplitude of the surface and is an
L2-valued Borel measure, orthogonal on disjoint sets so that

E(Z(4))=0
E(Z(A)Z(B))=0 if AnB=0, A, BeR*x R
The positive measure y defined by
X(A)=E(Z(4)Z(4))
is the spectrum of X, and

pxx(x, )={ { exp (i(k - x — w1)) dx(k, »)

Since X is real,

Nix! ti=2 Re { §§ exp (i(k - x— wt)) dZ(k, w)}

w0

and
pxx(x, )=2 ” cos (k + x— wt) dy(k, w)

w=>0

The Fourier transformfof a function feL'(R? x R) is defined by

[k, w)——-(2+)3 § §exp (—itk - x— wt))f(x, 1) dx, dx, dt

and may be extended to generalized functions in the usual way. Any generalized
function / such that seL?(y) introduces a linear operation on X by

h*X = II h(k, w) exp (i(k - x— wr)) dZ(k, w)
For example, 2X(x, r)/¢t exists as the mean square limit of the integral

§ § (—iw) exp (itk - x— wt)) dZ(k, )

§§ || dx(k, w)< o

Mean square existence does not necessarily imply pointwise derivatives.
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For later use we also consider the operators D,=¢/dx, and D,=0[¢x,. The
Fourier transforms are D, =ik,, D,=ik,, where k=k,i+k,j. Thus,
Pox.x(x, 1)=E(2X]ex(x, 1), X(0, 0))
={ | ik, exp (i(k - x— wt)) dx(k, )
=—2 (| k, sin (k - x— o) dy(k, o)

w>0
Similarly,
posxx(t. )=—2 [ f ks sin (k - x— wt) dy(k, w) |

w0

Pox, oy x(X, 1)=2 II k,* cos (k - x—wt) dx(k, )

w>0

Po,x.p,x(X, 1)=2 Ij k,2 cos (k + x— wt) dx(k, w)

w>0

pD.x_sz(I, 1)=2 Ij klkz cOos (k L) x"'wt) dx(k, (.I'J)

w>0 J

Consider a homogeneous and stationary ocean. The sea surface elevation » and the
fluid velocity potential ® may be written as follows

n(x, 1)={ § exp (i(k  x— ot)) dB(k, »)
O(x, z, 1)={ | exp (i(k - x— 1)) dA'(z, k, )

(Mitsuyasu er al. 1979). If incompressible, inviscid and irrotational conditions are
assumed and the depth is large, then

Vb =0, z<y

and the free surface boundary conditions are

Kinematic condition: UL f — (D e+ Dym,)
°t oz

Dynamic condition: %+ % (©.2+0,2)+gn=0
Moreover, ® ——> 0 (z is positive upwards).

From Laplace’s equation it follows that

®(x, z, ) =] [ exp (i(k « x — wt)) exp (kz) dA(k, ), k= |k
and the kinematic and dynamic surface boundary conditions give to first order
w?=gk

dA(k. w)= —‘f dB(k. w)

The support of dB and dA is consequently, to first order, on the surface w?=gk.
The expansion to third order in mean wave steepness is given by Mitsuyasu et al.
(1979), whereas an expansion to sixth order including only terms leading to energy
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redistribution is found in Hasselmann (1962). The expansion is analogous to Stokes’
expansion of finite amplitude waves and show that higher order terms give non-zero
contributions away from «w?=gk as well as a second order shift of the first order
dispersion surface itself. We shall refer to the first order solution as the linear model.
This is slightly more general than the model introduced by Longuet-Higgins (1956)
who assumes that

n(x, t)= z a;cos (k; « x— wit+¢;)

Here {k;} is spread densely over the k-plane, w,=(g|k;|)"'?, {¢;} are independent
random variables uniformly distributed on the interval (0, 2=), and the amplitudes
are positive random variables, mutually independent and also independent from ¢,.

When dB lies on w? =gk we may define the measure W on the &-plane by W(C)=
B(C x [0, c0]) and write

n(x, 1)=2 Re { § exp (i(k - x—(gk)"?1) dW(k)}
k

(Cx [0, 0] is the cylinder ranging from w=0 to «= oo with base C.)
We shall denote

W(C)= E(W(C)W(C))=x(Cx [0, ]) (2)

the wave number spectrum although this deviates from the definition in Phillips
(1977). When ¥ is absolutely continuous, i.e. d¥V'(k)= (k) dk, ycL'(R?), we may
introduce polar coordinates and write

dY(k)=y(k, O)k dk d6 3)

Since w?=gk, we also have
20?

=8(w)D(w, 6) do db (4)

where
j' D(w, 6) di=1

The function S{w)D(ew, 0) is usually called the directional wave spectrum, whereas
S is the one dimensional wave spectrum or simply the spectrum.

We shall now consider the effect of a uniform current U. Let (x', ") be the co-
ordinates of a system which is moving with velocity U, and (x, ¢) is a system remaining
fixed. Thus,

x=x"+Ut'
t=t'
Assume that the surface in the moving system has the spectral representation

X(x, t)=[ | exp (i(k' - x' — &'t")) dZ' (K', )




Analysis of directional wave data 51

The same surface viewed from the system at rest is
X(x, )=X'(x—Ut, t)
= [ exp (i(k' « x (' + k'« UN)) dZ'(K’, ')
={{ exp (i(k - x— wt)) dZ'(k, — U - k)
=[§ exp itk - x— wn)) dZ(k, ©)
Thus, by virtue of the uniqueness of the spectral representation (Gihman and
Skorohod 1980, p. 241)
dZ(k, w)=dZ'(k, o—U- k)
We may also show that
dy(k, w)y=dx'(k, w—U - k)

The transformation may be visualized by considering x" as a mass distribution.
Obtaining y from y' is equivalent to moving slices (in (k, ) space) orthogonal to U
vertically the amount U - k. From (2) it follows that ¥ remains invariant as long as the
support of ¥ does not intersect w=0. The latter case obviously corresponds to the flip
in apparent propagation direction when U - k is larger than . The (symmetric) wave
number spectrum defined by Phillips (1977) is completely independent of U in ac-
cordance with the fact that this spectrum may be obtained from an instantaneous
observation of the surface (Phillips 1977, p. 102). The transformation of spectra in
the case of the linear model is somewhat awkward since x is singular, i.e. supported
by the surface {(k, &); w=U - k—+/(gk), or o=U - k+ +/(gk)}. A full treatment may
be found in Kitaigorodskii et al. (1975), or Forristall er al. (1978). However, as long
as the support of y does not intersect =0 we have

S(w)Nw, 0) do d0 =k, Ok dk db

= k(e 6), OYK(w, 6) ——— dev B ®)
| r’.'(uf('k |

where >0, U is along the k,-axis, 6 is the angle between U and k and
w-Uk cos 8 —(gk)''? =0 (Kitaigorodskii 1975, eqn. 2.4).

3. Directional parameters computed from heave/pitch/roll data

A floating buoy has six degrees of freedom: heave, sway, surge, yaw, roll and
pitch. In the linear theory of buoy behaviour in a regular wave

n=Re [4 exp (i(k - x— wi))],

the complex amplitudes of the degrees of freedom {£;}¢_, are related to the wave
force excitation coefficients {X,}5_, by

6
Z E— (M y+a;) +iwb+c;)=AX, (6)
=

(cf. Newman 1980. § 6.15 to 6.21).
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The mass matrix {M,,} contains the mass and moments of inertia, {a;;} is the added
mass matrix {b;;} the radiation and viscous damping, and {c;;} are the stiffness
coefficients. The added mass and damping coefficients are in general dependent on
w. In a random sea one assumes that this relationship holds also for the spectral
amplitudes. Below we consider buoys which are rotationally symmetric with respect
to the vertical axis. Thus, the only cross-couplings that remain are sway-roll and
surge-pitch (Newman p. 308). If the horizontal motions are neglected, eqn. (6)
becomes completely decoupled and the relations between the buoy’s heave, pitch and
roll (B, B,, B,), and the sea surface are as follows:

B(1)={ § h(w) exp (—iwt) dB(k, »)
Bdt)=] § dfw) exp (—iwt) (ik.) dB(k, w)
BA1)=] § d(w) exp (—iwt) (ik,) dB(k, w)

where the buoy is situated at x=0, and (4, d,, d,) are the transfer functions.
We find from eqn. (6) that

Hw)= i
T M+ Gpy) + icobp+ Co

where subscript 5 denotes heave. The relationships for d, and d, are similar. If
mooring effects are negligible, then d,.=d,.

The first step in analysing data records from the buoy is to form all auto and
cross-spectra from A(t), B(t), and B,(t). Since, for example

Cov (B1), B(0))= | exp (—iwt) dw [fdx(w)h(_wj ! ky dx(k, w)]

the phase of the cross-spectrum between B, and B is equal to the phase of id.h.
Moreover, the cross-spectrum between 8, and B, should be real if d,=d,. In fact, for
the NORWAVE buoy we shall see, in the next section, that these properties have been
used in deriving the transfer function for pitch and roll. If we assume that the correct
transfer functions have been found, the six auto and cross-spectra of B, B, and B,
give us from eqn. (1) the following integral properties of the wave spectrum y for each
frequency w>0:

Sp(w)= ;! dx(k, o)
Sef(e)= !‘! ky dy(k, »)

Slw)= § ky dylk, w)

k

L (7)

Sxx(w)= ! klzdx{ks ‘-’J)
k

Sy(w)= :'! ky2 dylk, o)

Sy (w)= ,;‘ k.k, dy(k, w)
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For the special case of the linear model in deep water and with zero current, we
obtain the following well known relations using egns. (2), (3) and (4).

2%
Sinl(w)=S(w) J D(w, 0) df=S(w)

2 2n

Sen(@)=S(w) — { cos8D(w, 8) db
£ o
wZ 2n

Syn(w)=S(w) " § sin6D(w, 6) d6
0

! ®)

4 2n

Se@)=S(w) =5 [ cos?6D(w, 6) d6
g0

w* I
Sw(w}= S(w)? I Sinzeﬂ(w, 9) dé
0

4 27

Sx,,(w)=S(w)§ g cosl sinbD(w, 6) db J

(Longuet-Higgins er al. 1963, Borgman 1979).
The conventional procedure is now to consider the Fourier series of D,

D(w, 9)=51;? [1 +2 ni {a(w) cos (n8) + b,(w) sin (ne)}]

from which it follows that
a,(w)=Sul(@)/(S(w)w?/g)
by(w)=S,i(@)/(S(w)?/g)

- )
ay(@)= (Sl @)~ S, (@) [(S(w)w?[g?)

baw)=25,,(@)/(S(w)w?/g?) ]
Long (1980) advocates the use of the identity
Sxw) + S, @)= S(w)w?/g)?

to define w?/g in eqns. (9), and since this appears to have several advantages, we shall
follow Long (1980) and define

dl . Sxkl(S(Sxx + Sn‘))lfl |

dy = Syul(S(Sex+S,y))'7?
L (10)
ds = (Sxx"‘ S,.,),J'(Sxx + Sy.v}

d4 - ZSIJ'JI (Sx.r + S!‘y)
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In addition, we define the dispersion ratio
R=((Sxx+S,,)I(S"*(?[g)) (11)

Unless dy is confined to a surface |k|=k(w), the d-parameters are not Fourier
coefficients of a directional distribution. Note that all the d-parameters are of such a
form that they are independent of the amplitude transfer functions of heave, pitch
and roll. Furthermore, d; and d, are also independent of the phase transfer functions.
Thus, d; and d, and all directional parameters computed from them are completely
independent of the transfer function errors for a symmetric buoy. Write for simplicity

{g(w)>= ! gk, w) dx(k, w)/ .! dx(k, )

Then from eqn. (7):
dy = ko Ik M2 )

d2= <k2>f<k2>“2

d3=(<k12>*<k23>)f<k2> - (12)

dy =2k k2 >[<k?)

R=<k*>'V(?[g)

From Schwartz’ inequality it is evident that
(13

(d1‘+d22)€l}

(ds*+d2)<1

The mean wave directions 6, and 8, and spreading o, for each frequency are now
defined by
6, =arctg (d,/d,)

6, =4 arctg (da/ds) (14)

o2 =21 —(d\>+d,*)""?)
(Long 1980).

Some of these parameters, originally derived from the linear model turn out to
have meaningful interpretations in the general case as well. 8, is simply the direction
of ¢k(w)), whereas oy, may be expressed in terms of | (k)| and (k?>'/2. Contrary to
the spreading expressed in terms of the unnormalized Fourier coefficients given in
(9), o, is always defined as a result of egn. (13).

Whereas the support of dy and the unnormalized Fourier coefficients are sub-
stantially influenced by a current, the d-parameters show a less sensitive behaviour.
Consider a wave number spectrum of the form yi(k, 8)=k~*D(0, x) which leads to a
frequency spectrum proportional to ™3 in the absence of currents. For D there are
various possible choices but we choose here the Poisson kernel due to its particularly
simple expression

1 = =
D(ﬂ,x)=-j-[l+2 ) x"cosn&]— x* O<x<l
™ n=1

~ 2x(1—2x cos 6+ x2)
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In Fig. 1 the change in direction 6, and Poisson parameter x=(d,? +d,2)"/? due
to current is shown. Note, for example, that <k, is computed as follows

kf ek i e
(ky(w)>= | kcos Oy(k, 6) |— | k db ]' Yk, 8) a—k k db, k=Fk(8, w)
g w i w
(cf. egn. (5)).
x x x
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Figure 1. Change in mean wave direction 8 and Poisson parameter x caused by a uniform
current U, «= Uwfg. The angle between current and mean wave direction is shown
on the abscissa.,

The parameter « is the ratio between current magnitude U and the linear phase
velocity g/w, = Ue/g. It is seen that at least for low frequencies, the effect of currents
(with physical magnitudes) on 6,, x, and hence for o, =(2(1 —x))'/2, is negligible.
The dispersion ratio as shown in Fig. 2 is strongly influenced, however. The effect on
R of a current equal to 0-5 m/s is shown in Fig. 3, for a current direction along and
opposite to the mean wave direction.

Using the asymptotic properties of auto- and cross-spectra, Long (1980) derived
the approximate probability distribution of the estimates {d;} of the d-parameters.
If the spectral estimates, have been computed with sufficiently many degrees of
freedom, {d,} will be jointly Gaussian with mean {d,} and a covariance matrix V
which is given by Long (1980, Table 1). Although Long assumed the linear model in
his derivations, it is important to note that the statistical theory applies to the general
case without modification. For a valid model the quantity

pr=(d—d)"V-"d—d)

will be approximately y?-distributed with 4 degrees of freedom. This provides an
acceptance/rejectance test for chosen models of the directional spectrum.
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Figure 2. Variation of dispersion ratio R with «= Uw/g and the angle between current and
mean wave direction for x=0-9.
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Figure 3. Change in R due to a current equal to 0-5 m/s along and opposite io the mean
wave direction.

Approximate statistical properties of parameters computed from {d;} may be
obtained by use of the Taylor expansion technique as shown in Long (1980). We
close the present section by showing an example of the variability of 6,, §,, and £
(Figs. 4 and 5). The width of the confidence intervals is inversely proportional to the
square root of the degrees of freedom used in the spectral estimates if the bias and the
deviation from the normal distribution is negligible.
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Figure 4. 909 probability intervals for 6, (solid line) and 6, (dashed line) as a function of
Poisson parameter x (32 degrees of freedom).
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Figure 5. 99% probability intervals for %, =(d,2+d,%)"* (solid line) and
#3=(ds2+d,2)"/* (dashed line) as a function of Poisson parameter x (32 degrees of
freedom).

4. The NORWAVE heave, pitch and roll buioy

The NORWAYVE buoy is a medium-sized wave buoy which combines the ability
to measure wave directionality with a variety of meteorological measurements. It was
originally developed jointly by the Christian Michelsens Institute in Bergen and the
Continental Shelf Institute in Trondheim and is now manufactured and marketed by
Bergen Ocean Data. The buoy consists of a discus shaped hull of diameter 2-5m
with a cylindrical instrument section, a subsurface stabilizing steel leg with a ballast
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weight and a mast for supporting meteorological sensors (cf. Fig. 6). The mooring
system (Fig. 7) was designed with the aim to reduce the forces on the buoy produced
by frictional, inertial and elastic mooring line effects. The buoy’s instrument section
contains a standard Datawell heave, pitch and roll sensor (Hippy 40), although
latterly this has been replaced by the Hippy 120 for better low frequency accuracy.
The time series of heave, pitch and roll as well as mean wind speed and direction, air
and sea temperature and air pressure are all logged on a Sea Data digital tape recorder
at a recording interval of 3 hours. The buoy is equipped with an Argos satellite
transmitter which allows near real time information and has proved invaluable on a
number of occasions for detecting errors and instrument malfunction. In June 1982
one of the buoys was fitted with a microprocessor which allows various wave
parameters such as significant wave height and the wave frequency spectrum to be
transmitted by satellite.

r

MET. SENSORS
ARGOSP.T.T.
MAST
1
-
]
T
c——=1
I 1
25m : ELEC"II',-
X F
1
1
1

.

+—— SEA SURFACE TEMP. SENSOR

LEVEL 1250 kg

COUPLING HOUSING

TOTAL WEIGHT: 1250 kg

BALLAST WEIGHT: (~200 kg)

Figure 6. The NORWAVE buoy ODAS-490.
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Figure 7. Typical mooring system for the NORWAVE buoys.

A series of intercalibration experiments have been carried out to cross-check the
various wave and meteorological parameters measured by the buoy. A conventional
Datawell Waverider was used as a reference for the heave power spectra and inter-
calibration of the meteorological parameters were carried out during June-
September 1980 using measuremeénts from a drilling platform which was operating
nearby (Audunson et al. 1982).

NORWAVE buoys have now been in operation offshore Norway for 3 years so
that a large data set already exists. During this period the buoys have survived under
severe conditions with mean wind speeds over 32 m/s and sea states with significant
wave height as high as 14 metres. Extreme waves over 20 metres have also been
measured. The data set which has been used here comes from measurements with the
NORWAVE buoy ODAS-490 made on Haltenbank (65°N, 7-5°E) during 1980 (Fig. 8).

No reliable calibration data exists for the directional data from the buoys, but two
important corrections are implemented. Firstly, we use the manufacturer’s correction
for the electronic phase and amplitude distortion due to the double integration of the
heave accelerometer signal. Secondly, we correct for the apparent resonance of the
pitch/roll movement at around 0-3 Hz. To do this, we have assumed that the buoy
behaves like a forced linear resonator in response to the surface wave slope. This
works well for suitable choices of the eigenfrequency and damping ratio. The
transfer function is checked from the cross-spectral phases between heave and the
slopes. The best fit eigenfrequency and damping ratio turn out to be slightly depen-
dent on the sea state. The corrections appear to work well from 0-05-0-4 Hz.
However, this test strictly speaking only checks the phase of the transfer function,
and in § 6 we shall see that the inferred amplitude transfer function still seems to be
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gl
'ﬁi};&h

Figure 8. Map showing the measurement location at Haltenbank, and the angles predicted
by the data to correspond with the coastal shadow. Shaded area signifies the fetch-
limited sector.

slightly incorrect. In the following, the wind and wave directions are taken to be from
the direction of origin.

In addition to internal data checks the physics provide various external checks.
If we use the JONSWARP relations (Hasselmann er al. 1973) we find that the wind
wave spectral peak is limited to frequencies above 0-14 Hz for 10 m/s offshore winds,
and above 0-17 Hz for 5 m/s winds for the buoy position on Haltenbank. In Fig. 9
we have plotted the frequency of occurrence of mean wave directions for individual
frequencies in three frequency bands for the December 1980 data set. In addition, the
frequency of occurrence of wind directions is plotted for comparison. It is evident
that for the low frequency band there are very few occurrences of mean wave direc-
tion in an arc of directions which corresponds almost exactly with that of the ‘coastal
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Figure 9. Frequency of occurrence plots of mean wave directions for December 1980
{249 samples).

shadow’ (35°-205°) despite the fact that the wind often blows offshore (Fig. 8). The
fact that the data shows the coastal shadow well at the expected directions gives
added confidence to the data. In fact, the use of this data check has in the past shown
up an incorrectly mounted compass.

A second external data check which may be carried out is concerned with the
arriving swell at the measurement point. The wave energy at Haltenbank during the
period from the 24th to the 27th December 1980 was found to be dominated by swell
and this data has been analysed in more detail in order to determine whether the
estimated mean wave directions may be correlated with possible generating winds as
seen from the surface weather charts. This strong swell signal was easily related to
the wind fields associated with a low pressure system whose centre had remained
fairly stationary over Iceland from the 21st to the 25th. A weather ship to the south
of Iceland had further experienced wind speeds between 30 and 45 knots for most of
this period and in the general direction of Haltenbank. The swell directions measured
by the buoy were found to be mainly between 230° and 250°. These directions
correspond with the ‘window’ between the North West coast of Scotland and the
Faroe Islands thus giving strength to the supposition that these waves were generated
in the Northern Atlantic to the South of Iceland. A ridge line analysis (Snodgrass et
al. 1966) has also been carried out. This is based on the fact that the energy associated
with higher frequency waves propagates at a slower rate than for lower frequency
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waves according to the linear deep water group velocity. Knowledge of this enables us
to predict with some accuracy the distance and time of origin of the arriving swell.
From the best fit ridge line it may be determined that the distance was approximately
1400 km with a time origin at 1400 GMT on the 24th. This agrees well with the
weather charts. A more detailed description of the physical interpretation of the data
will be published elsewhere.

Scatter plots of wind direction versus mean wave direction, 6,, are shown for all
the data from 1980 on Fig. 10. From virtually no correlation at 0-1 Hz, the correla-
tion increases steadily up to 0-4 Hz. The remaining observed scatter is presumably
due to a combination of scatter in the wind direction measurements, veering wind
situations and situations where the wind is not sufficient to influence the waves below
0-4 Hz. Veering wind examples showing the time lag between the wind direction and
the wave direction in various frequency bands were discussed in Audunson et al.
(1982).
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Figure 10. Correlation between wind and wave directions at various frequencies. 1851
records from 1980.
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5. Directional characteristics of wave generation spectra

The frequency spectrum of a developing wind sea has been studied by numerous
investigators, for example Hasselmann er al. (1973), and an analysis of some direc-
tional data from the JONSWAP experiment is also given in Hasselmann et al. (1980).
The wave field will receive energy from the wind as long as the wave phase velocity is
smaller than the wind velocity, i.e. for frequencies f>f,, =g/(2n W) where W is the
wind velocity (here measured at 4-2 m). For most of the data collected in the open
ocean there will generally be a mixture of wave fields of different ages and directions,
and in order to select a subset of data where the wind sea is predominant, only spectra
where the frequency of the spectral peak, f,, is greater than f, are included here.
Figure 11 displays the observed Poisson parameter x vs. f/f, for 0-5<f/f,<2 for sea
states where the significant wave height is less than 2 m. The agreement with the
data in Hasselmann et al. (1980, Fig. 3) is fairly good (s=x/(1 —x)). When the mean
and standard deviation of £ are computed as a function of f/f, an interesting fact
emerges. The spreading in the estimates of x for f>f, is almost exactly equal to the
inherent statistical spreading in the estimation procedure (cf. § 3) whereas the spread-
ing for f<f, is significantly larger (Fig. 12). This should indicate that x is a unique
function of f/f, for f/f,>1. The spreading for more severe seastates (Fig. 13) is
somewhat larger, however. Due to the scarcity of data, Fig. 13 contains some spectra
where the wind speed is not quite as high as to ensure f, > fy.

Since x appears to be an almost unique function of f/f, it may be of interest to
look more closely into the shape of the distribution. If we denote r, =(d,2+d,?)'/?
and r,=(ds%+4d,?)"/?, the Poisson distribution fulfils r,=r,2 whereas a wrapped
normal distribution (Mardia 1972) gives r,=r,%. A plot showing the relationship
between r, and r,'/? for a series of common angular distributions including the
cos?*-distribution of Longuet-Higgins et al. (1963), the wrapped normal and the
von Mises distributions (Borgman 1979) is shown in Fig. 14. The bound
ry>ry—(2(1—=r,))*/? is a lower bound for all positive distributions. Somewhat sur-
prisingly none of the commonly used distributions fit the data particularly well, most
measurements falling between the wrapped normal and the Poisson distribution,

05 0.1 15 20
f/ip

Figure 11. Observed Poisson parameter x as a function of f/f, from 60 records with
significant wave height less than 2 m and wind speed, W> g/(2=f,).
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Figure 12. Observed spreading of x vs. the mean value of x for the data in Fig. 11. The solid
line represents the spreading corresponding to Fig. 5.
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Figure 13. Observed Poisson parameter x vs. f/f, for 60 records with significant wave height
larger than 3 m and f, >(g/(2=W)—0-2 Hz).

Fig. 15. Both of these distributions belong to the class of wrapped stable distributions
(Mardia 1972), and a wrapped stable distribution of index «= 1-5 would actually fit
the data reasonably well. Such a distribution has the Fourier series

D(9)=-21— (l+2 i x" cos nﬂ)
T =i

but unfortunately no simple closed expression for D(6) exists. It seems probable that
simpler distributions exist which fit the data equally well.
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Figure 14. r, vs. rz'"? for several directional distributions: A: wrapped stable distribution
of index 1-5, B: Lower bound for r,!/2, P: Poisson distribution, S: cos?* distribution,
VM: von Mises distribution, WN: Wrapped normal distributton.
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Figure 15. Observations of r; vs. r2'/* for the records in Fig. 11.
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6. Deviations from the linear model

For heave/pitch/roll buoys deviations from the linear model are most easily detec-
tected by the root mean square wavenumber (k2>'2, or equivalently, from the
dispersion relation ratio R (eqns. 11 and 12).

Apart from the shallow water effects there are three main reasons causing this
ratio to deviate from unity. First of all we have the pitch/roll response of the buoy.
The NORWAVE buoys have only been checked for the phase transfer function of
pitch and roll (cf. § 3). Fortunately, the d-parameters are independent of the ampli-
tude transfer functions of pitch and roll as long as they are equal, but as is easily
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seen from the definition, R is linearly dependent on the pitch/roll amplitude transfer
function. The second effect that causes R to deviate from unity is current advection,
also treated in § 3. Finally, there is the question of non-linear contributions to the
wave field. The existence of ‘bound’ components in the wave field has been a question
of much controversy over the last few years (Phillips 1977, Dudis 1981). It has been
found, at least for steep laboratory waves that components with higher frequency
than the spectral peak propagate with the phase velocity corresponding to the
spectral peak frequency, that is, the wave field is non-dispersive for the higher
frequencies.

However, other studies which have used buoys find the dispersion relation to be
fairly well satisfied. A simple explanation of this seemingly contradictory behaviour
has recently been given by Dudis (1981) who shows that the difference appears to be a
question of definitions rather than physics. If we follow Dudis and consider a uni-
directional spectrum of the form

W (02
$alw) - 8 (k—-c-) + () - S(k—?)

P

where ¢, is the non-dispersive and ¢, the dispersive part, one can easily prove that R

in this case is
(@), +r\"?
R= (—T) » r=dp/dn

A graph of R as a function of w/w, where ¢,=g/w, is shown in Fig. 16. Note that
r in general is dependent on w. Judging from Mitsuyasu et al. (1979) there are cases
for steep waves and frequences w>2w, where R is substantially smaller than 1.

124R
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Figure 16. Variation of R for various values of r= ¢p/¢n.

The NORWAVE data has so far not been analysed with the above mentioned
effects in mind, and in what follows only very preliminary results are shown. Figure
17 shows the mean dispersion ratio for the data from March to October 1980. The
data set is sorted into three groups according to significant wave height which R
appears to be slightly dependent on. The somewhat puzzling behaviour around
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Figure 17. Mean dispersion ratio for 1400 records from March—-October 1980.

0-3 Hz is almost certainly due to an imperfect pitch/roll transfer function. The drop
around 0-4 Hz could of course be due to non-dispersive contributions, but may also
be caused by the buoy response to the waves. Note that 0-5 Hz corresponds to
approximately 6 m waves which is comparable to the buoy diameter (2-5 m). At low
frequencies the ratio increases drastically above unity. A plot of R vs. the normalized
frequency f/f, is shown in Fig. 18. Below f, it appears that {(k2)!/2 is approximately
constant, but since the wave spectrum itself drops very fast on the low frequency side,
this effect may be caused by some kind of leakage in the estimation procedure. In
Fig. 19 the mean dispersion ratio has been computed using only frequencies above f,.
Moreover, the data set is divided into two groups: March-October 1980 and
November-December 1980. In fact, on 8th November, the buoy lost a 50 kg chain
weight which was not subsequently replaced. This altered the buoy’s pitch/roll
eigenfrequency and damping (Audunson ef al. 1982). Although the new eigen-
frequency and damping ratio have been used in the present analysis, the amplitude

1.54 1 —— Hs <2m
\ —-—2m< Hs<&m

0.5

f/fo

Figure 18. Same data as shown in Fig. 17 expressed in terms of f/f,.
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Figure 19. Mean dispersion ratio. Only including points where f>f,.

transfer function still appears to be slightly incorrect. It is also a question if a linear
transfer function approach is sufficient for the finer data analysis.

Current measurements were not available from the location of the buoy during
1980. The buoy is also situated at a location with small tidal currents. However, from
surface current measurements carried out at IKU it has been found, in agreement with
other studies, that the wind transfers a proportion of its momentum to set up a drift
current with a magnitude of around 2-3% of the wind speed and in a direction
approximately 45° to the right of the wind. We have therefore considered wave data
collected during rather strong winds (>5 m/s) in order to investigate the effect of
wind induced currents. The results are shown in Fig. 20. For each frequency band the
mean wave direction has been computed and compared with the wind direction
+45°, From the graph it is apparent that the mean dispersion ratio is lower when the
mean wave direction is along the current direction. The effect is not very pronounced
since even a wind of 10 m/s should not produce higher currents than 0:20-0-30 m/s.

0.8

01 0.2 03 04
f(Hz)

Figure 20. Mean effect of wind induced currents. Data from November and December
1980 where the wind speed is greater than 5 m/s. #=mean wave direction, CD = wind
induced current direction. ——: |§—CD|<45°, —~-: [§—CD | >90°.




Analysis of directional wave data 69

7. Conclusion

Of the many methods to measure directional wave data, the heave/pitch/roll
data buoys offer a relatively cheap method for obtaining data in remote areas. Data
tests using external geographic features such as the ‘coastal shadow’ and remote
storms have shown that the buoys will provide reliable wave directions. The spreading
around the mean wave direction also appears to be consistent with other studies.
The general theory indicates that the data from the buoys contains more information
than is usually extracted in the conventional data analysis. The theory also gives a
tool to analyse the properties of commonly used parameters under the influence of
currents and non-linearities. Measured deviations from the linear model, such as
those caused by currents, may well be used to measure the current magnitude and
direction, but this requires further work.

Several NORWAVE heave/pitch/roll data buoys are presently operating offshore
Norway where they provide long term wave data for climatological purposes as well
as near real time sea state information for forecasting and operational use.
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