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The problem of estimating grades and flotation parameters in a bank of flotation
cells is investigated. From extensive simulation studies with both single-cell and
multi-cell processes, an estimator based on an aggregate model of the bank is
developed to estimate concentrate grades and aggregate flotation parameters.
Specific results from the estimator’s performance in a real flotation plant are
reported.

1. Introduction

Flotation is a process widely used in the mining industries to separate from each
other different minerals, e.g., chalcopyrite, sphalerite, gangue, etc., which are present
in the ore. The process is based upon the fact that different minerals may have different
physical (and chemical) surface properties. By systematically utilizing these properties,
it is possible to separate the minerals from each other.

Flotation is usually carried out as outlined in Fig. 1. A mixture of ground ore and
liquid is fed into a tank or vat. The liquid consists primarily of water, but some
chemicals are added in order to make a group of the mineral particles acrophilic, i.e.,
affine to air bubbles. Air is blown through the vat from the bottom, and because of
their affinity to air, some of the mineral particles will adhere to the air bubbles and rise
to the top of the pulp, where a froth layer is formed. The froth, i.e. the concentrate, is
then finally removed by a mechanical device in order to be dried or, eventually, to be
sent to another flotation process for further refining.

Flotation may be carried out either as a batch process or continuously. In a con-
tinuous process the leftovers from one flotation cell, i.e., the so-called tailings are fed
into another one and so on until most of the valuable minerals have been removed.
It may also be the case, occasionally, that the invaluable minerals are removed whereas
the valuable minerals are left in the tailings (so-called negative flotation).

The chemicals which are added to the pulp will actually make several groups of
particles more or less affine to air, and because of varying particle sizes, even the
particles of one mineral may have different affinity to air. The concentrate will there-
fore generally also contain unwanted minerals.

Many papers, books, and reports on modeling, simulation, and control of flotation
processes have been published, see, e.g., Arbiter and Harris (1962), Fournier and
Smith (1972), King (1975), Olsen (1975), Fuerstenau (1976), and Smith (1975). The
most commonly used models today are based on the concept of so-called flotation
classes, see, e.g., Olsen (1975). This concept originates from the assumption that there
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exists only a countable (usually finite) number of flotation rates, i.e., the material can
be divided into groups or classes, flotation classes, where each class has a specific
flotation rate which is different from the flotation rates of the other. This leads to fairly
simple but, for most practical purposes, quite satisfactory models. It should be noted,
however, that the assumption about a finite number of flotation classes usually is an
approximation. The number of flotation classes will generally more or less resemble a
continuum, which frequently can be approximated by a finite number. For more
comments about this and alternative flotation models, see Olsen (1975).

The assumption about a finite number of flotation classes usually leads to time
varying parameters in the model due to factors such as varying mineralogical proper-
ties, amount of liberation, and particle size distribution in the grinding process.

X Xp

Xs

Figure 1. Schematic view of a flotation cell and a commonly used symbol for a flotation cell.

The rationale for developing an estimator for flotation plant was to synthesize a
controller where the estimator was part of this controller. In order to find a suitable
form of this estimator, comprehensive simulation studies were made to see which
parameters actually could be estimated from normal operating data. These experi-
ments were carried out both for single-cell and multi-cell processes, and the final form
of the estimator was derived from these experiments.

The paper is organized as follows. In § 2 we present the model for a single-cell
process. Several estimators for single-cell processes are derived in § 3 and tested
through simulation studies. The model for multi-cell processes is derived in § 4, and an
estimator for such processes is developed in § 5. Result from the implementation in the
flotation plant at Folldal Verk, Norway, are presented in § 6.
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2. Modeling of single-cell processes

We have in the previous section given a brief description of flotation processes.
In this section we shall present a model of a single-cell process based upon the concept
of flotation classes. A schematic view of a single-cell process is shown in Fig. 1. Assume
the material in the pulp can be divided into » flotation classes, and let x,, x;, and x,
(all n-vectors) denote the grades (concentrations) of the different flotation classes in,
respectively, the pulp (i.e., the tailings since perfect mixing is being assumed), the
concentrate (i.e., the froth layer), and the feed. Furthermore, let V', denote the pulp
volume, ¥’ the froth volume, g, the feed flow rate, and g, the tailings flow rate. Finally,
let k, ; and k, ;, respectively, denote the flotation and drainage rate constants of
the jth flotation class. Defining

kp=(Kkyp 15 oo kpu)'s  ks=(ksss -, ks n)T, K,=diag {k,}, K,=diag{k} (1)

we obtain, by considering the mass balances in the cell, the following model described
by Itd stochastic differential equations

dx, ()= — (K,,+1 I) xp(t) dt +oKx (1) dt +l xAt) dt+dB(t) 2)
Tr s
dxs(t)=l K,,x,,(t)—(Ks+]—_Z 1) x(t) dt +dB(t) 3)
o 0‘-7;
where
o, Ve
_QJ‘, f_ gy ’ B V’v

and where {8,(t)} and {B(¢)} are (zero-mean) Wiener processes with covariance
parameter matrices V,(7) and V(#), respectively.

The feed grade vector x (1) is assumed to be a stochastic process with independent
increments and slowly varying, i.e., approximately constant mean value function
X(t). The model of x(¢) then takes the form

dx () =dP (1) @

where {8,(1)} is a (zero-mean) Wiener process with known covariance parameter
matrix V).

Due to factors such as varying mineralogical properties, amount of liberation, and
particle size distribution in the grinding process, both flotation and drainage rate
constants will be time varying. Although it is generally acknowledged that these
parameters depend, among others, on x, and x,, viz., k,=k,(x,, x;) and
ky=k{(x,, x;), we shall assume all these parameters to be slowly varying with inde-
pendent increments. The model for these parameters thus becomes

dk(t)=dBi0),  dit)=dBel?) ®)

where {8,,(1)} and {B,,(¢)} are (zero-mean) Wiener processes with covariance parameter
matrices Vi (f) and Vi (t), respectively.

In the actual flotation plant which is investigated, we can assume the parameters
7 and « to be constants because the relative changes in these parameters are very small.
Also, the relative changes in the parameter y are very small, but this parameter is very
close to 1 (see Fig. 7). so that the relative changes in 1 —y, which enters Egn. (3), may
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be quite large. We shall therefore consider the parameter y to be time varying, and the
model for it is taken to be

dy(t)=dB (1) (6)

where {B,(r)} is a (zero-mean) Wiener process with variance parameter V(t).
We are now ready to define the augmented state (x) and plant noise (8) vectors for
the cell

xT=(xpT’ -xs-rs xf'l"’ kas k.srs 'Y), B=(Bprv BST’ BIT’ l:prv Bksr’ ﬁy) (?)

where the dimensions of both of the vectors are equal to 52+ 1. The model, consisting
of Egns. (2)-(6), can now be written in the compact form

dx(t)=f(x(r)) dt +dp(1) ®)

where the definition of the vector function f is obvious from the context.

Two sets of measurements are being carried out. The first set consists simply of
measurements of the feed and tailings flow rates, and they are carried out at a fairly
high sampling rate. By a simple transformation we can consider this to be a scalar
measurement of the form

y1(t)=q,(1 — () + w1 (1) ®

where {w,(,)} is a zero-mean white Gaussian sequence with variance W,(f;).

The second set consists of measurements of the grades in the feed, tailings, and,
which at the design stage was believed, the concentrate (it later turned out that
measurements of concentrate grades were not available). The model for these measure-
ments takes the form

a(t:) = Hx (1) +wa(t)) (10)
ya(t;)=Hx t;)+wi(1;) (1)
va(ts) = Hx{t))+wa(t;) (12)

where {wy(1)}, {ws(t;)}, and {w,(#,)} are zero-mean Gaussian sequences with
covariance matrices W,(t,), Wsl(1;), and W,(t,), respectively. All these measurements
are carried out at a low sampling rate. None of the measurements, including y,, are
generally carried out simultaneously.

By subtracting g, from y, in Eqn. (9), we can rewrite this equation as

yi(t) = =g /(@) +wi(%) (13)
We can then, in an obvious manner, rewrite Eqns. (10)~(13) as
Yt =D(:)x(ti) +wti) (14)

where y(t), D(t.). and w(t,) depend on which measurement is being carried out,
c.g., y(t*)zyl(f&), w(l‘k)=w1(l‘k), and D('fl‘.)=[0! 0, 0, 0, 0, —q_f] if the measurement
is of the type given by Eqn. (9).

3. Design of an estimator for a single-cell process

At the first stage of the design procedure we were quite uncertain about how good
estimates of the unknown parameters could actually be obtained. The following
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methods were investigated through extensive simulation experiments (Olsen and
Henriksen, 1976, 1977):

Extended Kalman filter

Second-order non-linear filter

Maximum likelihood method

The results from these simulation experiments are reviewed in the sequel.

Extended Kalman filter
The form of the extended Kalman filter is given in Jazwinski (1970). Let £(¢|1,)
denote the estimate of the augmented state vector x(t) at time >, given the set of
observations Y(t,)={y(to), ¥(t1), ..., y(tx)} where y(#;) is either y,(t;), y2(t:), ya(t;), or
va(t;). The predictor between observations takes the form
(| 6)=f(R(t| 1)) 15)
P(t| )= AP(t |t )+ P(t| 6 )AT + V(1) (16)
where P(t|#,) is the covariance matrix of x(f) given Y(z,). ¥(r) is the covariance matrix

of the Wiener process {B(t)}, whereas 4 is the matrix of partial derivatives of f (f being
defined by Eqns. (2)-(8)) with respect to x at x=2%(¢|#,), viz.

.o
A=F (®(z] 1)) an

The filtered estimates are given from

R(tear [ a1 =R(es 1 [0+ Ktis DDt 1) = Pt 1 | 8] (18)
P(tys |ty 1) ==Kt )D(t s 1) 1P (i1 | 1) (19)

where
Pt i o[ 6) =Dty )R(ts 1 | 1) (20)

K(‘k‘l- 1 )=P(tk+ 1 llh)DT(t&-l- l)[D(tk-I- l)P(r&+l 1 !k)DT(tR+ l)+ W(‘JH- 1 )]# ! (21)

and where W(tiy1)=Wi(tus1) i y(tis 1) =y1(ts 1)y Wltii1)=Wiltisr) if y(tes1)=
¥2(tx+1), and so on.

Typical samples from the simulation experiments with the foregoing estimator are
shown in Figs. 2 and 3. The estimates of the grades in both the feed, the tailings, and
the concentrate are quite good, but this is not surprising since they are all assumed to
be measured. Also, the estimate of the parameter y is extremely good. However, the
estimates of both the flotation rate constant (k, ;) and the drainage rate constant
(k,.,) are quite bad, and these parameters are obviously quite poorly observable. This
is caused by the fact that a linear combination of k,, ; and k; ,, i=1, ..., n, expresses
the net flow of material from the pulp to the froth layer, and only the net flow of
material can in a reasonable manner be estimated from the available observations.

The so-called net flotation rate constants express the net flow of material to the
froth layer and are related to the other variables by the expression

N‘_kp.l‘xp.l_“ks,ixs,i, i=1....n (22)

Xp.i

and these parameters can be quite accurately estimated as seen in Fig. 3 (d). We have
in this figure also shown the value of &, , with k, , =0 in the estimator, and it is seen
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Figure 2. Simulated and estimated grades (by volume) of a single-cell process.

to be very close to N, (in fact, from Eqn. (22), N,=k, ; if k,;=0). Eqn. (22) expresses
the linear combination of k, ; and k; ; which is properly observable, viz.

kp,iXp,i— ks, i X, 1= NiX,,; 23)

where k, ;= N, and k, ;=0 is one of the possible solutions.
According to the simulation experiments it was apparent that only net flotation
rate constants could be properly estimated with this type of estimator.

Second-order non-linear filter

There exists actually two forms of this filter, the truncated second-order non-linear
filter and the Gaussian second-order non-linear filter, see Jazwinski (1970). Although
some apparent discrepancies between these two filters have existed (this has recently
been solved by Henriksen, 1982), they turn out to be identical for the type of process
models (second-order non-linearities in the state equations and linear observation
equations) which is being used in this paper.
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Figure 2-—continued.

The rationale for trying out a second-order non-linear filter was the fact that all
non-linearities was of second order in the process model. If all probability distributions
could be assumed to be fairly symmetrical, a near-optimal non-linear filter for the
system could be developed because third order central moments, which appear in the
covariance equation of the optimal filter for such models would drop out.

The only difference from the preceding filter turns out to appear in Eqn. (15),
which now has to be replaced by

Rt | 1) =8t | 1))+ fx(R(1 | 8))es Pt 1] 24

where f,.=2/oxT - (¢f[exT) and ¢s denotes the column string operator, see Vetter
(1970, 1973).

The performance of the second-order non-linear filter turned out to be almost
identical to the extended Kalman filter, i.e., most of the results were not discernible.
The foregoing figures could therefore also very well be the results from a simulation
experiment with the second-order non-linear filter.
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Figure 3. Simulated and estimated flotation parameters of a single-cell process.

Maximum likelihood method

The simulation experiments showed that both of the preceding recursive estimators
were unable to estimate the flotation and drainage rate constants. In a paper by
Hallingstad and Szlid (1976) it was reported that the maximum likelihood method
(ML-method) yielded far better estimates of certain variables than the extended
Kalman filter. It was therefore decided to investigate the performance of the ML-
method on flotation processes.

The ML-method, which is basically an off-line method (although approximative
recursive ML-methods have been developed), has certain limitations when applied to
flotation processes. The result of an ML-estimator is a parameter vector which mini-
mizes the likelihood criterion on a set of past observations. When the parameters are
time varying, as they cettainly are in flotation processes, ML-estimates will have to be
computed for relatively short time periods. Periods of four hours are long in this
connection, and are considered to be an upper limit in the present application. On the
other hand, the X-ray analyser is quite slow with a sampling interval of approximately
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Figure 3—continued.

20 min. There are, therefore, only a few samples available for the ML-estimation
scheme.

The use of ML-estimation in dynamic systems was developed many years ago by
Kashyap (1970). The unknown parameter vector is assumed to be 0=(k,7, k),
whereas the parameter y is assumed to be known. This can be justified from the
simulation experiments (Fig. 3 (¢)) which actually reveal that we can consider § to be
equal to y in this connection. The model now takes the following linear form (Eqns.
(2)~(4) and (14))

dx(t)= A(0)x(t) dt +dp(t) (25)

V(&)= D(1)x(t,) +w(t) (26)

where y(t,) now is either y,(f). ¥a(fi), or y4(ty). Note that the definitions of x(r) and
B(t) are different in this case since parameters are not included in the state vector.
Some of the elements in the matrix A(6) are linear functions of the unknown para-
meters.
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In the papers by Kashyap (1970) or Mehra (1971), it is shown that the maximum
likelihood estimate of 6 given by

f=Arg (Nlax P((to), ..., y(ty)|6)) @n

is found by minimizing the likelihood functional

N
J=}% kEO [€" ()R (ti)e(1i) + log (det R(1,))] (28)

where {¢(,), k=0, 1, ...} is the innovation process, viz.

(1) =y(t) = Pt -1, O)=y(8) — D(t)R(ty | 151, 6) (29)

for a given parameter vector 6, whereas R(f,) is the covariance matrix of the innovation
process, viz.

R(t)= E{e(ti)e" (1) | 14— 1, 6} (30)

«(7,) and R(1,) are computed from the following set of equations. The predictor between
observations has the form

f(t|t, O)=AOR(| 1y, 6), >0, 31
P(t|t,, 0)=AO)P(t|1,, 0)+ P(t|1,, O)AT(O)+ V(1), t>1, (32)

where V(¢) has been changed according to the new definition of (¢).
Finally,

Rtear | tia 15 O =Rty 1|ty )+ Kty ety s1) (33)

Pty s |t rs 0)=[1— K(tys )D(ty 4 )IP(t541 | 1y, 6) (34)
where

K(tis 1) =Pltis 1 |t DT (64 )R (s 1) (35)

R(ty 4 1) =Dty s )P(tics 1 |ty O)DT (14 1)+ Wty s 1) (36)

Simulation experiments with the ML-estimator turned out, however, to be quite
disappointing, see Olsen and Henriksen (1977). There was no change in this estimator’s
ability to estimate the flotation parameters compared to the two previous ones, and
Figs. 3 (a), 3 (b), and 3 (d) are quite representative also for the ML-estimation.

The conclusion that can be drawn from these experiments is that the grades in both
the feed, the tailing, and the concentrate can be quite accurately estimated with on-line
estimators, whereas only net flotation rate constants can be properly estimated with
any of the three estimators that were tested. Naturally, the extended Kalman filter,
which is the simplest one, was selected for further simulation experiments with multi-
cell processes.

4. Modeling of multi-cell processes

Most flotation processes actually consist of a bank of flotation cells where the
tailings from one cell is fed into the next one and so on, see Fig. 4. The model for such a
process is based on the model which was developed for a single-cell process. Let
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Figure 4. Multi-cell flotation process.

superscript i, e.g., x,/, denote a variable in the ith flotation cell. Using the same kind
of notations as in the single-cell model, we obtain

Y

dx (D= —(K,,‘ +F l) x, () di+ o K xS (e) dt
I

+i,x,,"‘(t)dr+dﬁ'(n, i=1, .., N (37)
Tr

1 1—5 .
dxs‘(r)=; K,'x, (1) d‘_(K""'F; I) x () di+dBi(), i=1,.., N (38)

where N denotes the total number of flotation cells. Furthermore, we have defined
x,°=x,. The remainder of the model takes the form (see Eqns. (5)~(6))

dic,' (t)=dPy(t), dx (D)=dB'() (39)
dy (1) =B, (r) (40)
where 3!, 7%, and «' are defined in the same way as in the single-cell model (e.g.,
' =qp‘1’?p' ~1).
In addition to the equations above we have to add the equation
dx, () =dB (1) (41)

which is identical to Eqn. (4) since x,° =x;.
Eqns. (37)-(40) can compactly be written in the form

dx'(t)=f'(x'(¢)) dl+—li x=Y) de+dpi(t), i=1,...,N (42)
T

where the definitions of x‘, f!, and B' should be obvious from the context, e.g., the
vector xf contains the subvectors x,, x,', k,, k., and . The total number of states is
equal to (4n+ 1)N+n.

It was originally assumed that measurements of the feed and tailings flow rates,
and of the feed, concentrate, and tailings grades could be carried out. The observation
equations then take the form

N
yilt)=—qy H Y (1) +wity) (43)
Ya(t) = Hx, (1) + wa(ty) (44)

( 1- ﬁ' ﬁ‘(rj)) %

-1
ya(t)=H (x,‘(r;)(l—ﬁ‘(u))kljl .6*(:,)) +ws(t;)  (45)

ya(ty)= pr”(fi) + Wd,(f:) (46)
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Figure 5. Simulated and estimated aggregate grades (by volume) and parameters of a multi-
cell process.

5. Design of an estimator for a multi-cell process based on an aggregate model

From the simulation experiments it was obvious that the drainage rates could be
dropped in the estimator’s model. Furthermore, since no measurements were made of
neither the feed, the tailings, nor the concentrate of each cell in the multi-cell process,
it became apparent that the internal state of each cell could not be estimated from
measurements of the feed, the tailings and the aggregate concentrate of the whole bank.
It was therefore decided to use a single-cell aggregated model of the process in the
design of an estimator for a multi-cell process, see Olsen and Henriksen (1981).

The aggregate model is identical to the model which was developed in § 2. The
relationships between the variables in the aggregate single-cell model and the variables
in the multi-cell model are as follows

N N
Q9=qnﬂr QI=on’ Vp= E fo’ Vs= E V,‘, poan (47)

i=1 i=1
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Figure 6. Estimated (and measured) grades and estimated aggregate net flotation rate
constants of the first rougher bank at Folldal Verk, Norway. (@) Estimated and
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NJ"—_) = N -
Xp.s" Z Kt

i=1

N
E v kn..i‘ xv.ji -V kit %55 1

flotation class j=1, ..., n (53)

where ~ denotes an aggregate variable (scalar or vector) in the multi-cell model,
i.e., ¥, denotes the aggregate concentrate grades, X, ;, ks ;, and N, denotes, respec-
tively, the aggregate flotation, drainage, and flotation rate constants for the jth
flotation class, whereas 7 actually is identical to y because g," =g, and ¢,° =g,
Based on the foregoing aggregate model, an extended Kalman filter for the multi-
cell process was developed. The form of this estimator is identical to the one which was
developed for the single-cell process (Eqns. (15)-(20)). The observation equations have

the form given by Eqns. (10)~(14).
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Figure 6—continued.

Typical samples from the simulation experiments with this estimator are shown in
Fig. 5. The figure shows that the estimator is indeed able to estimate tailings grades,
aggregate concentrate grades, and aggregate net flotation rate constants, whereas
aggregate flotation and drainage rate constants could not be properly estimated (not
shown in the figures). Actually, the simulation experiments revealed that the behaviour
of the aggregate estimator was very similar to the behaviour of the estimator for a
single-cell process, and they confirmed our belief that an aggregate estimator (based
on a single-cell aggregate model) would be the most proper form of an estimator for a

multi-cell process when only feed, tailings, and aggregate concentrate grades are being
measured.

6. Results from implementation in a real flotation plant
The estimator which was developed in the previous section is part of an adaptive
controller for the first rougher bank in the flotation plant at Folldal Verk, Norway.
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This is a four-cell process where a copper mineral (chalcopyrite) is separated from a
zinc mineral (sphalerite) and gangue. One flotation class is used for each mineral, so
that we actually have only two flotation classes. The number of state variables in the
estimator is therefore equal to 9 (because drainage rate constants could be left out),
whereas the number of states in the original (nonaggregated) model is 38,

A very interesting point of the implementation was the fact that the concentrate
grades could not be measured on-line. A seemingly essential measurement would
therefore be missing, and we were quite uncertain about how the estimator would
perform. On the other hand, this made the implementation of the estimator quite a bit
more interesting since the concentrate grades could then only be measured by manual
samples, a rather tedious and time-consuming task.

Recordings of the operation of the estimator made 20-21 November 1980 are
shown in Figs. 6 and 7.

Figure 6 (@) shows the estimated concentrate grades of copper and zinc. Also
shown in this figure are the results from chemically analysed manual samples (black
dots). The agreement between the estimator and the manual samples is quite good.
It should be noted that the uncertainties in the manual samples are rather large,
because the flow rate measurement are very uncertain.

It is obvious from Fig. 6 (a) that the flotation process separated the two minerals
quite well, and this fact is indeed supported by Fig. 6 (), which shows the aggregate
net flotation rate constants of the two minerals. Figure 6 (c) shows the estimated
copper grades in the feed and the tailings together with the measured copper grades,
i.e., the outputs from the X-ray analyser. The dynamic behaviour of the estimator is
seen to be quite conservative due to the fact that the outputs from the X-ray analyser
may be extremely uncertain. We can estimate the settling time from Fig. 6 (¢) to be
approximately one hour. Figure 6 (d) shows the estimated zinc grades in the feed and
the tailings. They are, as shown, almost equal because very small amounts of zinc are
actually being removed. Figure 7 shows the estimate of the parameter y plotted in a
scale from 0-9 to 1-0. It seems to be rapidly changing, but plotted in a scale from 0-0
to 1-0, it virtually becomes a constant. The value of 1 —y, however, varies significantly
in relative terms.
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Figure 7. Estimate of the parameter y of the first rougher bank at Folldal Verk, Norway.




Design and implementation of on-line estimator 17

Despite the fact that one seemingly essential observation (measurement of the
concentrate grades), was not available in the actual implementation, the estimator
worked well and gave satisfactory estimates of aggregate states and parameters in the
process.

7. Conclusion

An on-line combined state and parameter estimator for a multi-cell flotation pro-
cess has been developed through extensive simulation studies. The estimator is based
upon an aggregated single-cell model of the plant because the simulation studies
revealed that only aggregate states and net flotation rate constants could be properly
estimated by measurements of the feed, the tailings, and, possibly, the concentrate
grades. Results from the estimator’s performance in a flotation plant show that it
works satisfactory.

The reported estimator is part of an adaptive controller for the first rougher bank
at Folldal Verk, Norway. Details about the design of this controller are given by
Andersen et al. (1979). Some experiences from implementation and operation of the
controller are reported by Kaggerud (1983).
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