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Robustness analysis of a class of optimal control systems

OLE A. SOLHEIM#}
Keywords: Optimal control systems, robustness analysis.

The paper deals with a class of optimal control systems, where the controller,
in addition to minimizing a quadratic criterion, also shall give the closed-loop
system prescribed eigenvalues. Three methods for analysing the robustness of
such systems under parameter perturbations are discussed: Eigenvalue sensitivity,
singular values and the block Gerschgorin theorem. Numerical examples are
presented to illustrate the different methods.

1. Introduction

A fundamental requirement of any practical feedback control system is its stability
robustness, that is, the ability to maintain stability in the face of modeling errors. The
design of the controller has to be based on a mathematical model of the real process.
There may, however, be errors both in parameters and structure of the model. How
is it now possible to bring such model uncertainties into the design process? Let us
concentrate on one important issue: stability. In order to allow for uncertainties in
the model and also for variations in the process, the design must have a safety margin
as to stability.

When designing multivariable systems in the frequency domain, the robustness
specifications may be included directly in the design process, for example by the use of
phase margins, singular value plots, etc. (Doyle and Stein 1981, Lee et al. 1982,
Lehtomaki ef al. 1981 a, b, MacFarlane 1981).

When designing multivariable systems in the time domain, one method to include
stability robustness in the design process, is to reduce eigenvalue sensitivity to
parameter variations. In Shah et al. (1977) it is shown how the closed-loop eigen-
values can be made invariant to unknown perturbations in system parameters. One
limitation of this method is that only some of the eigenvalues can be made insensitive
to variations in some of the parameters. The sensitivity to the rest of the parameters
may be rather large (see Example 1 in § 3). In Gourischankar and Ramar (1976)
one considers eigenvalue placement with minimum sensitivity to parameter variations.
The same limitations as mentioned above exist here also (see Example | in §3).
Further investigations of reducing cigenvalue sensitivities are described in Heger and
Frank (1982), Howze and Carin (1979) and Sambandan and Chandrasekharan
(1981).

The linear quadratic regulator (LQR) is known to have good robustness properties
(Lehtomaki er al. 1981 a). For example, the eigenvalue sensitivities of systems with
this type of controller are rather low, as is demonstrated below in Example 1. It
is also possible to design the LQR so that desired closed-loop cigenvalues can be
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obtained (Graupe 1972, Solheim 1972, 1980, Taylor and Tuteur 1966) or that they
can be located in desired regions in the complex plane (Andersen and Moore 1971).
Thus we may avoid having eigenvalues too close to the imaginary axis.

Several methods cxist for the analysis of the robustness of feedback systems. In
the present paper we shall deal with three different methods:

(1) Eigenvalue sensitivity (§ 3)
(2) Singular values (§ 4)
(3) The block Gerschgorin theorem (§ 5).

But before going into a detailed discussion of these methods, let us first consider
the design problem more closely.

2. Problem statement
Consider the time-invariant linear process

x=Ax+ Bu
¢y
y=Dx

where x, u and y are n-dimensional state, r-dimensional control and m-dimensional
measurement vectors, respectively.
We use the usual quadratic performance index

Sy f [x"Qx + uTPu] dt 2)

where Q is a symmetric non-negative definite matrix and P is a symmetric positive
definite matrix.

Let us in the first place assume that all state variables are directly accessible. We
therefore set y=x, that is, the measurement matrix D=1.

In addition to requiring the minimization of the performance index, we also
require that the closed-loop system

x=(A+BGD)x=Fx 3
based on the control law
u=Gy=GDx 4)
attains prescribed eigenvalues.

In order to achieve this, the weighting matrix Q, for the state, cannot be freely
chosen, but must be determined so that the prescribed eigenvalues are obtained
(Solheim 1972, 1980).

Let us consider the following parameter perturbations.

(i) Change dA in the process matrix A due to process parameter variations.

(ii) Change dB in the control matrix B due to variations in process and actuator
parameters.

(iii) Change dD in the measurement matrix D due to sensor parameter variations.
The total change dF in the closed-loop matrix F becomes (with D=1)

dF=dA+dB- G+BG - dD (5)
In the present paper we shall consider additive perturbations only.
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The purpose of the robustness analysis is now to indicate the size of the perturba-
tions that can be tolerated without endangering the stability of the system. Or, in
other words, how a given change in the parameters influences the eigenvalues of the
system.

Before we go into a detailed discussion of this problem let us also consider the
case where all states are not directly measurable. In this case a state estimator has to
be included in the controller.

Let # represent the estimated state. With the control law

u=G%R (6)
we get the total closed-loop system

Mol -

where K is the estimator gain, and subscript m indicates matrices used in the estimator.
Introducing the estimation error Ax=x— £ the system (7) may be expressed as

X A+BG -BG x x
ax |=| (B-B,)G | —(B-B,)G ax | =F| ax
+(A—KD)—(A,—KD,)}  +(A,—KD,)

®)
When the model used in the estimator exactly matches the process, (8) simplifies

NIEIES NERI

Assuming changes in 4, B and D of the process (no changes in the model used in
the estimator), the changes in F and F become

to

[ dA | dBG
dF =] ©)
| KdD} 0
dA+dBG | —dBG
dF = (10)
| dA+dBG—KdD' —dBG}

From (8 a) we note that the eigenvalues of the total system F consist of the eigen-
values of the closed-loop system (A + BG), plus the eigenvalues of the estimator (A—
KD). These two parts may therefore be designed separately. In the same way that we
may design an optimal feedback system with prescribed eigenvalues, we may also design
an optimal estimator with prescribed eigenvalues (Solheim 1972). This means that
we have full control of the stability of the total system, that is, when the real and the
nominal parameters agree.

For the subsequent investigations the analysis will be greatly simplified if all
eigenvalues are real. Using the above mentioned design method (Solheim 1972) this is
easily achieved.
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3. FEigenvalue sensitivity
A small change d4 in a matrix 4 produces a small first order change in the eigen-
value A, (see for example (Faddeev and Faddeeva 1963))

dAj=n; dAm, (1)

where n, is an eigenrow and m, is an eigenvector of A corresponding to A;.
The sensitivity coefficients may be obtained from (11) by partial differentiation

2
2 (12)

ki
where a,, is an element of A.
Consider now the closed-loop system (3) with the perturbations (5). The change in
the closed-loop eigenvalue A; becomes

where n; and m, are, respectively, an eigenrow and an eigenvector of F.

We mentioned above that no method exists for the inclusion of eigenvalue sensi-
tivities directly in the LQR design. Such controllers have, however, rather good
properties in this respect as is demonstrated below in Example 1. We compare here
with two other methods where reduction of the eigenvalue sensitivity is part of the
design process.

Example 1
Given the system

0 0 1 1 0 0 01

The eigenvalues of the closed-loop system are specified as: —1, —2, —3. Using an
LQR this is achieved with the weighting matrices

4-9 57 -94

10
R . 0= 571 76 —103
9 i

-94 —10-3 18-4

The sensitivity coefficients of the dominant eigenvalue A, = —1 are shown in Table 1.
To evaluate the robustness properties of the optimal controller, we propose the
following method. With a given optimal controller we compute the sensitivity
coefficients of the dominant eigenvalue of the closed-loop matrix F. The sign of the
coefficients indicates in which direction the eigenvalue will move for a change in
the corresponding parameter. Using estimated maximum magnitudes of the para-
meter variations, and sign chosen so that all variations will move the dominant
eigenvalue towards the imaginary axis, a set of ‘worst case’ parameters is obtained.
We then compute the eigenvalues of the perturbed system. If the stability is not good
enough we may specify new nominal eigenvalues and repeat the analysis until we
arrive at a satisfactory system. The procedure is illustrated below in Example 2.
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Example 2
Given the system

L

The eigenvalues of the closed-loop system are specified as —35, —8. Using an LQR
this is obtained with

62:2 156 —6-37 =26
0= ) NG
15-6 109-0 —0-52 -3-63

The sensitivity coefficients of the dominant eigenvalue at —5 are shown in Table 2.

Parameter

ady az, az; by, by, dy, d,, dy s

Without
estimator
Example2 -0-12 —0-87 1-12  0-37 —3-63 1-24 —4-5

With
estimator
Example 3 —-075 2-26 —293 2:26 9-47 11-73

Table 2. Sensitivity coefficients for the dominant eigenvalue A, = —35.

Assuming a 209, variation in all parameters in A, B and D, and choosing the sign
of the variations so that a ‘worst case’ is obtained, we get

—-04 0 02 O 02 0
AA= , AB= , AD=
—0-2 02 0 -02 0 -02

The eigenvalues of the closed-loop system [(4 +AA)+(B+AB)G(D+AD)] become
—3-2, —11-48.

If the eigenvalue at —3-2 is not acceptable, we may try another design with, for
example, nominal eigenvalues at —6, —10. With ‘worst case’ perturbations we get
for this new system the eigenvalues —3-92 and —13-94.

Next we consider a system with a state estimator, eqns. (7) or (8). Let us denote
the change in an eigenvalue of the feedback part of the system by d\F. We may split
this change into two parts so that the influence of the estimator is more clearly
revealed (Solheim and Szlid 1971). The model matrix (and its inverse) of the system

(8 a) can be written
MFi M€ NF | N€
M= _m” , M-1=]| b (13)
0 ME 0 NE
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where MF is the modal matrix of the feedback system (4 -+ BG) and M*® of the esti-
mator (4 — KD). From (Solheim and Szlid 1974) we get

dNF =n[dA+dBGm +n[dA+dBG— KdD)m/* (14)

where n,F and m,F are eigenrows and eigenvectors of (4+ BG), and n,€ is a row of
the matrix N€ in (13).

The first term on the right-hand side of (14) is the eigenvalue change we get
without estimator, and the second term represents the additional change due to the
estimator.

We may also obtain an exptession for the eigenvalue change in the estimator part
of the total system, but since the dominant eigenvalues are supposed to be in the
feedback part, we omit that here.

Example 3
Given the system
I
A= , B= , D=[0 1]
1 -1 01
with

—6-37 —2-6 80
G= and K=
-0-52 —3-63 19
we get the specified eigenvalues

1\1F=_5, Azr=_8, )I.]_E=—'10, AZE=_12

The eigenvalue sensitivities are computed and, for the sake of comparison, shown in
Table 2. We note that the sensitivities for this case are somewhat larger than for the
case without estimator.

Assuming a 10%, change in all parameters the ‘worst case’ changes become

—02 0 01 0
dA= , dB= , dD=[0 01}
01 —01 0 0l

The eigenvalues of the total system with the perturbed parameters are —4-2, —8-8+
j5-8, —13-5.

We have shown in the examples above how we may use sensitivity coefficients to
evaluate system robustness. These coefficients can also be used in selecting the critical
parameters in the process, so that we may try to model these parameters more
accurately and also try to avoid large variations in them.

4. Singular values

Given a complete matrix 4. The maximum singular value of this matrix is defined
as

5(A)= max v/ \(4*4) (15)

12
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and the minimum singular value as
o(A)= min /N (A*A) (16)
i

where A(-) denotes an eigenvalue of the argument matrix.

Singular values have proved to be of great importance in the analysis and design
of robust control systems (Doyle and Stein 1981, Lee et al. 1982, Lehtomaki et al.
1981 a, b, MacFarlane 1981). It can, for example, be shown (Lee et al. 1982) that
in a stable feedback system F, stability will be maintained as perturbations dF are
added, provided that

ol jeol —F]> 5(dF) (17)

In general this expression has to be developed as function of the frequency w. We
may, however, simplify the situation considerably if we assume that the feedback
system F has real eigenvalues only. With the design method for LQR mentioned
above, this is almost always possible.

Assuming real eigenvalues in F, we get the condition

o(F)<o(jwl—F) forall w (18)

One way to see this is to look at the eigenvalue matrix A=M—'FM. With A we
get
o jol—A)= min /(A2 +w?) (19)
i

and thus
o(A) < o jwl—A) (20)

Since F and A are similar matrices, we conclude from (20) that (18) also must be
valid.
Combining (17) and (18) yields the condition for stability

o F)> &(dF) 21

This is a very useful condition as it permits the study of a large variety of perturba-
tions without too much computational efforts. The drawback with this analysis, as
with all analysis involving singular values, is the inherent conservatism of the method.

If we instead of considering absolute stability, consider «-stability (all eigenvalues
to the left of —« on the real axis), condition (21) is changed to

o(F+al)>5(dF) (22)
This may also be written

o(F)> &(dF)+ea (23)
or

HdF)<o(F)—a (24)

Using (23) or (24) gives, however, a more conservative result than (22).

Example 4
Given the same system as in Example 2. We compute

o(F)=o(A+BG)=4-53
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The eigenvalues of Fare —5 and —8. Specifying «a=4, we would like to know what
percentage variations in the elements of A4 can be tolerated. We write

—2 0
dA=
—€ €

The sign of the variations is the same as in Example 2.

(dF)=a(dA)=12+29

With =4
o(F+40)=0-19
Using (22) we get
0-79> 2-29%
or
€<0-345

That is, a 34-59 change in the elements of A4 can be tolerated. With

-0-69 0
dA=
—0-345 0345

the eigenvalues of the closed-loop system become —4-36 and —8-99. As expected,
the result is somewhat conservative.
If we instead of condition (22) use condition (24), we get

2:29¢< (453 —4)=0-53
or
e<(0-23

As expected, this result is still more conservative.
For the analysis of a system with state estimator we use egns. (7) and (9) and
condition (21)

o(F)> &(dF) (25)
Example 5
Using the same system as in Example 3 we get
oF)=1-27

We note that this value is considerably smaller than for the same system without
estimator (g(F)=4-53) indicating that smaller perturbations can be tolerated.
With the same d4 as in Example 4 we get
5(dF)=35(dA)=2-29¢
With =4
o F+4I)=0-23 giving e<0-1
The allowed percentage perturbations are 109 as compared with 34-5% for the
system without estimator.
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5. The Block Gerschgorin theorem

The block Gerschgorin theorem, which is a generalization of the Gerschgorin
circle theorem, is useful in the study of decentralized control systems (Solheim 1981).
It may, however, also be used in the study of perturbed systems as will be shown
below.

Consider a system matrix F with perturbations +dF. We establish an augmented

system matrix
F+dFi 0
0 [(F—dF

We use the similarity transformation

I 1 F+dF§ 0 —1i~1 F | dF
Ii-r 0 {F—dF =11 dF i F

The eigenvalues of F consist of the eigenvalues of the original system F with
perturbations +dF and those of F with perturbations —dF. In order that F be in a
form that is suitable for applying the block Gerschgorin theorem, we have to modify
it to make the block diagonal matrices normal. (A matrix is called normal if it com-
mutes with its conjugate transpose.) The easiest way to do this is to use diagonaliza-
tion:

M-t 0 FidF|[MiO A iM-YdFM
” ___ A0 [ =F* (28)
0 EM" dF'g F O’EM M"d’FM} A

where A is the diagonal eigenvalue matrix of F and M is an eigenvector matrix of F.
(Distinct real eigenvalues are assumed.)

The block Gerschgorin theorem states (Solheim 1981).

The inclusive regions for the eigenvalues of the matrix F* (and thus also of F)
consist of circles with centres at the eigenvalues of F and with radius equal to the
Euclidean norm |[M~! dFM||,=a(M~' dFM).

The condition for stability becomes therefore, remembering that all eigenvalues
of F are real:

E(M_IJFM){l“(P’)lmIn (29)

This condition may now be compared with condition (21).

Example 6

Given the same system and perturbations as in Example 4. The eigenvalues of the
closed-loop system F are —5 and — 8. The radius of the circles defining the inclusion
regions for the eigenvalues of the perturbed system

r=a(M="' dAM)="512¢

With e=0-1 (=109%) we get the inclusion regions shown in Fig. 1. The eigenvalues
of (F+dF) and (F—dF) are also shown in the figure. As expected, we get a somewhat
conservative result.
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o: Eigenvalues with -dA

Figure 1. Inclusion regions for Example 6.

Example 1
Given the same process as in Example 1. Consider the following perturbations

We use the same controllers as in Example 1.

(1) LQR with prescribed eigenvalues (Solheim 1972).

(2) A controller minimizing some of the eigenvalue sensitivies (Gourischankar
and Ramar 1976).

(3) A controller making some eigenvalues invariant to parameter perturbations
(Shah ef al. 1977).
For these three controllers we compute the radius of the inclusion regions with the
perturbations stated above.

Controller 1: r=4+7le
Controller 2: r=7-88¢
Controller 3: r=28-96¢

The radius r will to some extent indicate how sensitive the eigenvalues are to the
assumed parameter variations. We note that controller 1 is better in this respect than
the others.

Figure 2 shows the inclusion regions for the different controllers with e=0-1.
The eigenvalues for the systems (F-+dF) and (F—dF) are also shown in the figure.

6. Concluding remarks

We have demonstrated the use of three different methods for analysing the ro-
bustness of optimal control systems. The analysis is somewhat simplified by assuming
only real eigenvalues of the closed-loop system.

Using eigenvalue sensitivity coefficients we have constructed a set of ‘worst case’
perturbations, and used these to study the stability of the system. The use of singular
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Alm

Controller 1
AIm
-3 of -2 -1
Controller 2 Aim
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x: Eigenvalues with dA
o: Eigenvalues with -dA

Figure 2. Inclusion regions for Example 7.

values permits greater freedom in the structure of the perturbations but, on the other
hand, also gives a somewhat conservative result. The block Gerschgorin theorem
enables us to construct inclusion regions for the eigenvalues in the presence of
parameter perturbations. All the methods discussed are also useful when comparing
the robustness properties of different types of controllers.
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