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Optimality in infinite horizon discrete time models of
resource management

SJUR D. FLAM#}
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We study an infinite horizon discrete time optimization problem of the Bolza
type. It is argued that this problem arises frequently in models of resource
management. We obtain a characterization of optimality which is an analog to
the Euler equation. The results extend those of Rockafellar and Wets (1981).
Furthermore, we make no assumption about free disposal and absorbing states.

1. Introduction
In this paper we study the following infinite horizon problem

(P) minimize L(x)= f L(x,_1, Ax,)
=1

over all bounded sequences x=(x,);~, in R".

Here Ax,=x,—x,_; and L,: R*>(—o0, 0], t=1, 2, ... are lower semicontinuous
convex functions, none of which is identically + co. We assume that for every bounded
sequence (x,),~ o in R", (L,(x,_,, Ax,)),—, majorizes at least one absolutely convergent
sequence in R'. For this reason we adopt the convention that L(x)= + co when the

o0

series Y. L(x,—,;, Ax,) does not converge. In order to exclude pathological cases
=1

we will also assume that inf L(x)> — co.

We emphasize that L and L,, t=1, 2, ... are convex functions into the extended
real line. The cost + oo represents the fact that certain trajectories are impossible or
forbidden.

Specifically, L,(x, _,, Ax,)= + co means that the pair x, _ 4, x, violates some implicit
constraints. For example, L, may be defined by

+ if (31, X )¢C,
Lr(x! —1s Ax,) .
L(x,—,, Ax;) otherwise

If C, is a convex set and /, is a convex function then L, is a convex function. The
fisheries mcdel in § 2 will make this point more clear.

Note that (P) resembles problems of Bolza type in the classical calculus of varia-
tions, the difference being that time is now discrete and the horizon is infinite. Recall
that perturbations and partial integration play a vital role in the derivation of the
Euler equation. Therefore it should come as no big surprise that in the discrete case
perturbations and partial summation come to the front stage.
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The paper is outlined as follows. Section 2 describes the importance of the problem
in resource management. For concreteness, we illustrate by means of a standard
model of fisheries management. Section 3 deals with a strong characterization of
optimality in terms of dual variables. In § 4 we demonstrate that the latter variables
arise as a solution to a dual optimization problem. These results have all been
obtained in the finite horizon case by Rockafellar and Wets (1981). The final section
provides interpretation of the results.

2. A fisheries model

The importance of (P) in resource management, where a long run dynamic
perspective is required, cannot be overstated. As an example consider the following.
Let c,_,eR." be the catch of fish and let x,_,eR " be the escapement after catch at
the beginning of period t— 1. Here R,” denotes the set of all n-vectors with non-
negative coordinates. The dynamics are governed by the equation

Xe=fe_1(xe—1)—cn 21

and the profit in period f is m(x,_ 4, ;).
Let 8, 0<3<1 be a discount fact and let the initial point X¥,>0 be given. The
objective is to maximize the present value

E O my(Xe—1, )
=1

We translate this optimization problem into the form (P) by defining

—8m (X0, fo(x0)—x1) fxo=Xg, x,20 and x; <fo(x,)
Ly(xo, Axy)=
+ o0 otherwise

and forr>1

—8'm(Xee 1 fr-106-1)—x) X q, %20, X, <fry (-y)
L(x;—, Bx)=
+ o otherwise

Assume that =, and f,_, are both concave and continuous for all 1> 1. Also suppose
that =,(x,_,, ¢,) is monotonically non-decreasing in ¢,. Then it is straightforward
to demonstrate that L, is convex and lower semi-continuous.

3. Characterization of optimality

The purpose of this section is to demonstrate strong (necessary and sufficient)
duality relations. After defining some notations we give in Theorem 1 a sufficient
condition for optimality in terms of dual variables. For a necessary condition an
assumption about strict feasibility will be made (a ‘Slater’ condition). When this
condition is in force we are able to demonstrate (Theorem 2) that dual variables exist
in a neat form.

For notational convenience denote by /,* the set of bounded sequences in R", and

let ' be the set of sequences (p,);=, in R” such that Y’ |p,| <oo.
=1
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Both these spaces are so-called Lebesgue spaces. They are in fact Banach spaces
and [,“ is the dual of /,' under the natural pairing

Now define

¢: 1" >[—o00, 0] by (y)= inf Zl L(xy—1, Dx,+y)
n =
Clearly #() is convex. Observe that yel,® plays the role of a perturbation. In general
denote by dg(z) the set of subgradients of g at z.

Theorem 1
Let xel,* and pel,!. Then x is an optimal solution of (P) and pe2¢(0) if and only if
(Apy, p)ECLx, -4, Ax,) for all t> 1 where Ap,=p;—p; 1.

Proof
pedd(0) means that $(0) < ¢(y)—py for all yel,”. Consequently x solves (P) and
pecd(0) if and only if

oo

E] L(X' -1, DX +3,)— ZI DPe* Vi 08
= I=
attains its minimum at x"=x and y=0.
Now define z,=x",_; and w,=Ax",+y, for =1, 2, ...
Let po=0. Then

T T
El Pr* W= El Pe* (We—Bx'))
= =

T T
= Zl Pe*We—pr- X7+ ‘Z] Ap, - xX'iy
= =
Here p; - X'+ —>0 when T->00. Hence after this change of variables (1) becomes

Z]. {L(z:, W) —Ap, « z,—P, * We} 2)

We are to minimize (2) over all z, wel,”. Note that the criterion (2) is separable.
Furthermore, Lz, W¢)—Ap;-z,—p,-w, attains its minimum at (x,_,, Ax,)
if and only if (Ap,, p.)eeL(x,_,, Ax,). This completes the proof. Q.E.D.

Remark 1

The significance of this result is that for purposes of computation or planning, the
dual variables allow for the optimization problem (P) to be completely decomposed
into an infinite sequence of independent subproblems. In its original version any
perturbation of x,_, affects not only L,(x,_;, Ax,) but also L(x,_,, Ax,) for all
s>1. By contrast, suppose L, is strictly convex. Then the choice of z,, w, so as to
minimize L,(z,, w,)—Ap, « z, — p, » W, is completely free from all > 1 in the sense that
it has no future effects. In general, when L(z,, w,)—Ap, » z,—p, + w, does not have a
unique minimum (z,, w,) we must check the feasibility requirement: z,+w, =2z 4 -
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Remark 2

The dual variables p=(p,);Z, may be interpreted as follows. Fix a price p, for
perturbing the rate of change in period t. Whenever a perturbation profile y=
o

()i~ is chosen we incur an additional cost py= Y. p, + ..
=1

It follows that for a given price regime p on perturbations ¢{(y)— py is the lowest
possible cost. We say that p is an ‘equilibrium price’ regime if no perturbation pays
off. This means that #(0)< ¢(y)—p(»), i.e. ped¢(0). Theorem 1 says that minimum
cost is achieved at x and p is an equilibrium price regime if p supports the optimal
trajectory in the sense that (Ap,, p,)eéL,(x,_;, Ax,) for all 1> 1.

Remark 3

Theorem 1 provides a sufficient condition for optimality, i.e. if xel,®, L(x)< oo,
pel,! and (Ap,, p)edL(x,_,, Ax,), for all £ > 1, then x solves (P). We would also want a
necessary characterization of optimality saying that if xel,” is optimal in (P) then
there exists pel,! such that (Ap,, p,)ecL(x,_,, Ax,). For this purpose two additional
questions must be addressed. First, remember that peo¢(0). Hence we must guarantee
that 64(0) is non-empty. Second, since ¢ is a convex functional from 1, to [— oo, 00]
we have o4(y)=(/,°)* at any yel,”. However, [ is not reflexive, i.e. ([,))**=
(/,*)*=21," where the last inclusion is strict (Brown and Pearcy 1979). In order to have
an amenable representation of ped(0) we want 24(0) to be a subset of ,'. Both these
questions are resolved in the following theorem.

Theorem 2

Suppose there exists >0, suppose xe/,* is optimal and a summable sequence
()= of non-negative real numbers such that for all t>1 L(z, w)<«, when
|z—x,—1]| <e, |[w—Ax,| <e. Then 2¢(0) is non-empty. Furthermore, 3$(0) may be
identified with a weakly compact subset of 7,'. It follows that for every optimal
solution x of (P) a pel,' exists such that (Ap,, p,)eeL,(x,_,, Ax,) for all 1> 1.

Proof

Let y,€R" be such that [y,| <e for every t>0. Define x',=x,—y, for =0 and
Z;=X'y~1, W, =AX'y+y, for £21. Then z,—x,_, = —y,_, and w,—Ax,=y,_,. Conse-
quently

@ © ©
EI L(x'y_q, Ax’t"")’t): EI Lz, w)< 2] oy
t= = 1=

Hence ¢(y)< oo for all yel,” with |y| <e. It follows that Ocint {y|¢(y) < co} and this
suffices to guarantee that 24(0) is non-empty. The next statement of the theorem
follows from corollary 2¢ of Rockafellar (1971). The final assertion is part of Theorem
1. This completes the proof. Q.E.D.

4. Duality

In this section we show that the price profile pel,! supporting an optimal trajectory
may arise as the solution to a dual problem. This latter problem may be stated as

(D) maximize ﬁ L(Ap,, p,) over all pel, !
=1
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Here L,: R" x R*—>[— o0, o) is defined by
L(x, f)= inf {(L(a, b)—a-a—pB-b}
a, beR"

Let inf (P), sup (D) denote the optimal value of (P) and (D) respectively.

Theorem 3
We always have inf (P)=>sup (D). Furthermore pedd(0)n/,! if and only if inf (P)=
max (D) and p is optimal for (D).

Proof
Clearly

oo

inf (P)=¢(0)> inf {$())—py}= inf ¥ L(x,._\, AX,+y)—py
yel,® x, yel, @ 1=1

= inf Z. {L,(Z,, W,)—ﬁp, *Z; _prwl}? E L,(Ap,, P))
z o wel,® =1 =1

Here we applied the same change of variable as in the proof of Theorem 1. Tt follows

that inf (P)=sup (D) and equality holds if and only if ¢(0)+py<¢(y) for all yel, =,

i.e. pee$(0). Q.E.D.

5. Interpretation of results

We want to conclude by restating some of the preceding results in the context of
the fisheries model. It goes without saying that the same results apply to models of
capital growth. Let P,=3""p,. In this case the condition (Ap,, p,)eoL,(x,_,, Ax,)
means that

Bar(X's 15 )+ @OPx =Py 1 X' 1)< 8m(x, s, c)+(8Px— Py _yXx,_y)

for all x’,_,, ¢’; with x',=f,(x’,_;)— ¢, and x,=f(x,_,)—c,. This says of course that
the sum of current profit and the capital gain, the latter being evaluated at prices
(P,)Z,, is maximal along the optimal trajectory. These prices might be termed a
regime of ‘equilibrium’ (or efficiency) prices. This word underlines the salient feature
that under these prices even a short-sighted manager would not find it profitable to
deviate from the long-run optimal trajectory. In fact, Theorem 1 says that if an
equilibrium price regime exists (and =, is strictly concave) then we may perform the
dynamic optimization by simply maximizing the current sum of profit and capital
gain in a completely myopic manner. Conversely, suppose that for some «>0 and

x, cel,, that w(x',, ¢’;)> B, when |x;—x,|<eand |¢’,—¢,| <e where . 88, | < 0.
=1

Then by Theorem 2, if xel,” is optimal there exists an equilibrium price regime P
supporting x.

6. Conclusions

We have demonstrated that optimality in some convex infinite horizon models is
characterized in terms of an equilibrium price system. These prices support the
optimal trajectory in such a way that the mathematical programming problem is
decomposed with respect to time. Similar results have been obtained by several
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authors. See Weitzman (1973), Polterovich (1983), McKenzie (1976). However, it is
common practice in these papers to invoke assumptions about free disposal and
‘nothing ventured nothing gained” or to assume some kind of compactness. In our
proof we have completely avoided such restrictions. Also our proof does not depend
on any argument from the realm of dynamic programming.

We emphasize that the characterization

(Apes pERLAX,— 1, Ax,), 121 3)
is a discrete time version of the well-known Euler equation
d @ 2
prEr L (x(1), x(t ))=& L(x(r), (1)) )
To see this, define
0= L0, 5(0) ©)
Then by (4) and (5) we get
(B(2), p(1))=VL,(x(2), X(1)) (6)
In the non-smooth case (6) becomes
(B(1), p(1))eeL(x(r), X(1)) @)

Now discretize (7) to get (3). We conclude by showing that in economic applica-
tions convexity is often very appropriate but differentiability assumptions are rather
unnatural. To this end we elaborate slightly on the fisheries example of § 2. Let y, be
the activity vector of the fishing industry in period ¢. Suppose y, is chosen so as to
maximize the profit g, - y, subject to the constraints

A Y <by(x, X4 44), Y 20

Suppose also that each coordinate of b, is a concave function of x,, x, ;. Then
it is easy to show that the optimal value m,(x,, X, +1) is indeed a concave function of
X, X;41- However, we can not expect =, being the optimal value of a LP-problem,
to be differentiable with respect to the data in a classical sense. This explains why the
relaxation to subdifferentiability is appropriate and not only of academic interest.
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