MODELING, IDENTIFICATION AND CONTROL, 1983, voL. 4, No. 3, 175-194
doi:10.4173/mic.1983.3.4

Parameter estimation of ship manoeuvring equations
TORE FLOBAKKY

Keywords: parameter estimation, hydrodynamics, captive and free-running
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Model tests performed at the Norwegian Hydrodynamic Laboratories (NHL),
to identify ship manoeuvring equations, are described. Parameter estimation
techniques are used to determine the mathematical model.

1. Introduction

Traditionally, model testing has been used to predict full scale manoeuvring
properties of ships in two ways:

The scale model is controlled to perform the same manoeuvres which are to be
predicted in full scale. Froude scaling of the results is then used to estimate the
full scale manoeuvres.

The parameters in mathematical models, defined as a set of differential equations,
are estimated by least squares fitting of results from planar motion or rotating arm
testing. The mathematical model itself, is the required result in some applications,
for example, for representation of a ship in a training simulator. In other situations,
the mathematical model is used to simulate the manoeuvres to be predicted.

A planar motion mechanism and rotating arm facility are quite expensive, and
economical arguments motivate a search for alternative methods for determination
of mathematical models. Another argument is that the available methods are restricted
to model testing.

The purpose of the work presented in this paper has been to use parameter
estimation techniques to determine the mathematical model. The tests performed
are free-running tests, and also oblique towing tests with a quite simple test setup.

At the time the tests were done, November 1980, the towing tank was the only
available laboratory unit within NHL, where manoeuvring tests could take place.
This tank is 250 x 10 m and 6 m deep. Because of the limited width of the tank, zig-zag
manoeuvres with small rudder deflections were the only freerunning model tests that
could be performed. This test was a modified zig-zag manoeuvre, designed to let the
model move around the centre line of the tank. Rudder deflections up to 10 degrees
were used. This was a restriction, since it could not be expected that the non-linear
effects would be significant. The system identification methods used to identify
parameters were the least squares method and the maximum likelihood method.
These methods are described in Astrem and Eykhoff (1971), Szlid (1975) and Hal-
lingstad (1976). Similar methods have earlier been used to identify parameters from
full scale trials: Astrem, Kéllstrom, Norrbin and Byrstem (1975), Blanke (1978)
and Killstrem (1979).
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2. Mathematical models

Depending on the application, various structures of mathematical models of
manoeuvring ships have been proposed. The complexity of these models, represented
by the number of parameters used, varies from 2 or 3 to 50 or 60.

Some common applications of mathematical models are:

Autopilots
Dynamic positioning systems
Training simulators.

Models can be organized according to the areas of manoeuvring they cover:

Service speed in unrestricted waterways: This is a typical application for an
autopilot, with the aim to minimize fuel consumption. Simple linear models are
used,

Reduced speed in restricted waterways and near harbours: When automatic
control systems are used, the aim is to increase safety. In this case fuel consump-
tion becomes less important.

Low or zero speed: Situations like offshore loading and dynamic positioning
systems. Usually relatively simple non-linear models are used.

External forces caused by wind, waves and current can be represented in all the above
situations, and in addition, models for sailing in restricted waterways may include
shallow water and wall effects.

Application of mathematical models in training simulators is demanding and
requires the most complex models, covering all speed ranges and external forces.
On the other hand, tuning of the parameters is usually done according to a class of
ships rather than to a particular ship. The mathematical models used in this paper
are restricted to those covering service speed in unrestricted waterways. External
forces caused by wind, waves and current are not covered. This means that the forces
to be discussed are:

Inertia forces,
Hydrodynamic forces on the hull,
Control forces from rudder and thrusters.

With coordinate system definitions as given in Fig. 1, the inertia forces for movements
in 3 degrees of freedom (surge, sway and yaw) are well known from the literature
(Abkowitz 1964, Norrbin 1970). The linearized model is of the form:

m—Y, mx,— Y, o Y, Y, —mu, v Ys
- + ] )
mx,—N; I,— N, F N, N,—mxuq r N;

where

m mass of ship

I, moment of inertia

X, position of the centre of gravity relative to the midship section
uo forward (surge) speed g
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sway speed

<

r yaw speed

8 rudder angle

Y lateral force

N turning moment

Y,, Y, etc. hydrodynamic derivatives ( Y3=aa—§)
The surge equation disappears in the linear model. For ships bow-stern symmetry
justifies simplification of the mass matrix (on the left hand side of eqn. (1)), since the
off-diagonal elements are much smaller than those on the diagonal.

These equations refer to the local coordinate system on the ship. Including the
coordinate system transformation to the global (earthfixed) coordinate system the

X
A

- —

Z

YZ is an earth-fixed coordinate system agd
tion following the ship.
is the vector in the

Figure {. Coordinate system definitions. X
xyz is a coordinate system with origin at the midship sec
U is total speed, u surge speed, v sway speed and r yaw speed. ¥,
xyz system from the origin to the centre of gravity‘(C G).
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model takes the form

(Yoo+ Y.+ Y;8)

m—Y'}

F=

1
o (Nov+ Nor+N,8) | @

d=r

X=ucos Y—vsin

k

y=usin y+v cos ¢

The terms Y, and N, here represent both hydrodynamic damping caused by yaw
speed and also inertia effects (mu, and mx,u,).
Further:

iy heading angle
x, y position of ship in global coordinate system

With some modifications this model covers the model structures used in this paper.

3. Model test

The tests were performed with a model of a 127 m gas tanker in scale 1:21-377.
Ship characteristics are given in Table 1. All tests were done with a model speed
U=1-112 m/s corresponding to 10 knots in full scale. By means of a propuision test
the propeller revolutions (n) at the self-propulsion point was found

n=6-67 rev/fs.
Two types of tests are described:
Captive model tests,
Free-running model tests.
Symbol Model Ship

Length between perpendicular Ly, [m] 5-941 127-00
Length on water line Ly [m] 6-192 132-36
Breath moulded B [m] 0-959 20-50
Draught at L,,/2 T [m] 0-292 625
Draught at FP Tre [m] 0-187 4-00
Draught at AP Tap [m] 0-398 8-50
Volume of displacement V' [m?] 1-113 10869
Block coefficient Cp 0-641 0-641
Wetted surface S  [m?] 6724 3073

Table 1. Principal hull data. Hull model no. M-1374; Model scale 1:21-377.
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3.1. Captive model tests

The model was instrumented with propeller and rudder, and fixed to a mechanism
which could keep the model in various positions relative to the towing carriage.
Transducers mounted on this mechanism were able to measure the forces transmitted
to the model (Fig. 2).

Figure 2. Measurement setup during captive model tests.

With this equipment, oblique towing tests in calm water were performed and the
following quantities measured

Rudder angle (8) [degrees]
Propeller revolutions (n) [rev/s]
Heading angle (¥) [degrees]

Total model speed
(Towing carriage speed) (U) [m/s]

Lateral force at the bow (F,;) [N]
Lateral force at the stern (Fy,) [N]
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Knowing the distances /; and /, (Fig. 2), the quantities

Lateral force (Y) [N]
Turning moment (N) [Nm]

Sway speed (v) [m/s]
were calculated as follows:
+Fy2
N=LF, ~L,F,, ] 3)
v=~Usin

\

- v = ~0.1162
-0.0776
48,

|

prd

n.: / v = 0.0388

0.0776

x
<
1

-28,
/ v = 0.1162
48,

| /*/'/

-18. -1 [ 8 5 e 15
RUDBER (DEGR. )

FORCE (N>

Figure 3. Captive model test resuits. The lateral force Y(v, 8) is plotted as a function of the
rudder angle & and sway speed ». x indicates the measured values of Y(v, 8). These
are fitted to the polynomial Y(v, 8)=Y, + v+ Y5 6+ Yo. The lines show Y(v, 8) as
a function of & for 7 values of sway speed and O indicates the fitted values corres-
ponding to the measurements.
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The purpose of the oblique towing test was to determine the relations

Y=Y(v, 9)

4)
N=N(z, 5)

by perturbing heading angle and rudder angle. The test program included 34 such
perturbations. A least squares algorithm was applied to estimate the influence of sway
speed and rudder angle on lateral force and turning moment. The selected structure of
the equations was:

Y(v, 8)=Y v+ Y36+ Y,

(%)
N(U, 8)=NUU+N|,|U' . U|U| +N.,8+NO

=28

MOMENT (NM)

-Ba. ——r— Fogn v ~—r
~15 -8 -3 [} LY 18 1%
RUODDER (DEGR.)

Figure 4. Captive model test results. The turning moment N(v, 3) is plotted as a function
of the rudder angle & and sway speed v. x indicates the measured values of N(v, 8).
These are fitted to the polynomial N(v, 8)=N, *+ v+ Ny(pl * »|v|+ N5 « 3+ No. The
lines show N(v, 8) as a function of 3 for 7 values of sway speed, and O indicates the
fitted values corresponding to the measurements.

’
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The bias terms Y, and N, are included to take up the non-symmetric effects from
the propeller wake on the rudder.

Figures 3 and 4 give a graphic presentation of the measured values and fitted
polynomials in eqn. (5). As observed from these figures, Y is well represented by
linear relationship in both v and 8. In the moment equation a non-linear term
N,y + v|v] is included to cover viscous cross-flow effects (Norrbin 1970).

3.2. Free-running model tests

During the free-running model tesgs, the model was free to move according to the
forces acting on it, caused by propeller, rudder and hydrodynamic damping. The
instrumentation is shown in Fig. 5. The measured quantities were

Rudder angle (8) [degrees]
Yaw speed (r) [degrees/s]
Heading angle () [degrees]

Coordinates of model in global coordinate system (x, y) [m]

To obtain the heading angle and the global coordinates an underwater acoustic
measurement system was used (Rossing 1981). Transmitting hydrophones send an
acoustic burst into the water, and receiving hydrophones detect these bursts. Timing
electronics measure the time for the burst to reach the receivers. A configuration of 2
transmitting (7' and T,), and 2 receiving (R, and R,) hydrophones gave the distances
L, I, I5 and I, on Fig. 5. With measurement of the position of the towing carrlage
(x.) the above quantities were calculated.

The tests were performed at the self-propulsion point of the model. The rudder
was controlled according to a modified zig-zag manoeuvre algorithm to prevent the
model from running into the tank walls. This consisted of letting the rudder turn
from one side to the other according to a criterion being a linear combination of
heading angle and distance from the centre line of the tank, instead of just according
to the heading angle which is used during an ordinary zig-zag manoeuvre. Five runs
numbered 221-225 were selected for analysis. Of these 5 runs, run number 221 was
chosen for an initial analysis. The measurements for this run are presented on Fig. 6.

The first approach was using run number 221 to identify the model

Up 1 = Uy

Ver1 =0+ Yo+ Vb + ¥,
’k+1="u+]vrrk+ﬁ53k+ﬁo
4 6)
$es 1=+ Atr,

Xi 41 =X+ At(, cos iy, — v sin i)

Vi1 =Yi+ Aty sin g+ vy cos ) |

without using the information from the captive model tests. Comparing eqn. (6)
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TOWING CARRIAGE

Figure 5. Measurement setup and coordinate definitions during free-running modei t

with eqn. (2), note that:

v m—Y,;’ m'— Yo

~ N,.+At Ng At

ALY AL
I,—N; Jﬁla*N?

where At is the integration step length.
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The parameter vector
B=[ ?w YS, ?Os Nn ﬁs, Ivo]T €3]

was identified using the maximum likelihood method. The parameter values estimated
were used as input to the Tables 2 and 3.

In this simplified model Y, and N, are excluded from eqn. (2), and the parameters
¥, and A, represent the time constants of the equations.

From these parameters it is obvious that the inertia parameters m, Y;, I; and N,
could not be determined.

For this reason the results from the ‘captive tests were included as & priori informa-
tion. The structure of the mathematical model used in this case was:

Upp 1=y
At
Uke1 =0+ (Yoo + Yir+ Yp8 + Y)
m-— Yﬂ
At
"k+1=’k+10_Nr (Ny * 0+ Nojoy = 0| 00] + N, « 1+ Ny« 8+ Ny) _ ©)

Yo=Y +Ar-r,

X+ 1= X+ At(w, cOS i — vy sin )

Yi+1 =Y+ At(uy sin ¢, + v, cos )
In this model the parameter vector known from the captive tests was:
ﬂ=[Ym Ys, N,, Nv|v|’ NJ]T (10)

The remaining parameters to be determined from the free-running tests were:

At At T
oz[m——-—Yu’ Yn YO: IOT]V:’ Nn NO] (ll)

This parameter vector was estimated using the maximum likelihood method for all the
runs 221-225. The parameter values obtained were used to generate Tables 2 and 3.

3.3. Discussion of results

The parameter values obtained during the analysis of the captive and the free-
running model tests are presented in Tables 2 and 3.

Because the model structure in eqn. (6) does not contain information of the inertia
coefficients, Table 2 contains parameters of equations on the form:

",l= Y’,, vl+ er rl+ YI" 81+ Ylo
(12)
l’v.I=N'I'J U'+N',,|,,| N U’ID" +N" r'+N’6‘ 8!+Nl°

where all quantities are in non-dimensional form, according to the ‘prime’ system.
This system is described in Abkowitz (1964).
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Figure 6. Measurements for run number 221. Rudder: rudder angle [degrees];
speed: yaw speed [degrees/s]; Heading: heading angle [degrees]; X-pos, Y
global coordinates [M].

Because the inertia coefficients could not be determined using the model stru
in eqn. (6), parameters of eqn. (12) are given instead of in a model structure
eqn. (1). Table 2 contains the parameters obtained using run number 221 anc
model in eqn. (6). This set of parameters is called: 221 eq. 6. Then it contain:
parameters obtained with the model in eqn. (9) for all runs. These parameter
are called: 221-225. The last set of parameters in Table 2, denoted PMM, is t
from Jacobsen and Terslov (1979). This set contains the parameters from pl
motion testing of the same ship. It should, however, be noted that the PMM
were performed at another water line than the tests described in this paper.
fortunately this means that the results are not directly comparable, however,
reasonable to expect them to be within the same region.

The parameters for the first 3 runs correspond quite well, the last 2 not that
The excitation was + 10 degrees for runs no. 221-223, —6 to +4 degrees for
224, and —7 to +3 degrees for run 225. The greater excitations for runs 221
increases the reliability of the parameter estimates. Using the model in eqn. (6)
parameters Y,, N, take up the effect both from sway- and yaw-speed, giving diff:
parameter values. As wé shall see this does not mean that the response of the mo«
wrong. Table 3 presents the inertia coefficients obtained during estimation of
model in eqn. (9). s
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Parameter

set m' Y'{ Jieg N’,

221 1252 —1326 50 —61
222 1252 — 1435 50 -57
223 1252 —1326 50 -57
224 1252 — 656 50 —44
225 1252 —735 50 - 69
PMM 1358 —1129 78 —65

Table 3.

Inertia coefficients on non-dimensional form. The inertia coefficients :

calculated from the estimated coefficients using eq. (9) for the 5 runs 221-2
m’' and I', are weight and moment of inertia in air.

4, Simulations

To verify the mathematical models obtained, simulations have been perform:

The manoeuvres simulated were:

The same zig-zag manoeuvres used during the model tests.

Turning circles.
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Three simulations of zig-zag manoeuvres are presented in this paper:

Figure 7 shows simulation results with the model in eqn. (6), with parameters set:
221 eq. 6 (Table 1), and the rudder signal for run number 221.

Figure 8 shows simulation results with the model in eqn. (9), with parameter set:
221 (Table 1), and the rudder signal for run number 221.

Figure 9 shows simulation results with the model in eqn. (9), with parameter set:
221 (Table 1), and the rudder signal for run number 222. (Simulation of run
number 222 with parameters estimated for run number 221.)

The various states are presented, and also the deviation of the heading angle during
simulation compared to the measurement, denoted EPS Heading on the figures.
Observing Figs. 6, 7, 8 and 9 both mathematical models represent the measurements
quite well. Also the parameters estimated from one run, represent another run in an
acceptable way.

Turning circle simulations were performed for the 6 sets of parameters presented
in Table 1. For each set, simulation was done with the rudder angles

§=0, +1, +2, +5, +10, +15 [degrees]

The stationary values of sway speed and yaw speed were recorded, and these are
presented on Figs. 10, 11, 12 and 13.

Figure 10 presents the stationary values of sway speed as a function of rudder
angle for the parameter sets 221-225 in Table 1. Arrows mark the various para-
meter sets in the following way:

Run no. Mark
221 -
222 N
223 l
224 "
225 -

Figure 11 presents the stationary values of yaw speed in the same way as Fig. 10.

Figure 12 presents the stationary values of sway speed from simulations with
3 mathematical models and 3 sets of parameters. These are set 221 and 221 eq. 6,
and the complete non-linear model obtained from PMM-tests, found in Jacobsen
and Terslov (1979). To identify the parameter sets these are marked as follows:

Parameter set Mark
221 -
22l eq. 6 ]
PMM —

Figure 13 presents yaw speed in the same way as Fig. 12.

The various parameter sets identified gave similar responses simulating turning circle
manoeuvres. These responses were different from the PMM results, but as earlier
mentioned, testing was done at different waterlines.



190 T. Flobakk

B2

v
!

——

SWAY SPEED (M/S)

T T 7 ~T T T T L [ T T ¥ 7T T T T

-15. -18, -5. 6. S. 18. 15

RUDDER (DECR.)>

Figure 10. Simulation of turning circles. Stationary values of sway speed for different
rudder angles. The simulations are done with the model in eqn. (9) and the parameter
sets 221-225 in Table 1. To identify the parameter sets, the following marks are

used:
' Parameter set Mark
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Figure 11. Simulation of turning circles. Stationary values of yaw speed for different
rudder angles. The simulations are done with the model in eqn. (9) and the parameter
sets 221-225 in Table 1. To identify the parameter sets, the following marks are

used:
Parameter set Mark
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222 '
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Figure 12. Simulation of turning circles. Stationary values of sway speed for different
rudder angles. The simulations are done with 3 mathematical models and parameter
sets: Model in eqn. (9), and parameter set: 221 in Table 1; Model in eqn. (6), and
parameter set: 221 eq. 6 in table 1; Complete non-linear model obtained from PMM
tests (Jacobsen and Terslov 1979).

To identify the parameter sets, the following marks are used:

Parameter set Mark
221 —
22l1eq 6 l

PMM -
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Figure 13. Simulation of turning circles. Stationary values of yaw speed for different rudder
angles. The simulations are done with 3 mathematical models and parameter sets:
Model in eqn. (9), and parameter set: 221 in Table 1; Model in eqn. (6), and parameter
set: 221 eq. 6 in Table 1; Complete non-linear model obtained from PMM tests
(Jacobsen and Terslov 1979).

To identify the parameter sets, the following marks are used:

Parameter set Mark
221 - —
221eq6 l

PMM -
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5. Conclusion

Combined captive and free-running model testing gives the parameters of the
manocuvring equations for ships using small rudder deflections. With the new ocean
laboratory at NHL, the method will be adapted to identify non-linear models covering
larger rudder deflections. Free-running tests alone give a mathematical model with
correct response, but the inertia parameters are not detected. To identify complete
mathematical models of ships, NHL is using a combination of theoretical calculations
of added mass coefficients, oblique towing tests and free-running tests.
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