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Properties of Pareto-opimal allocations of resources to activities

K. M. MJELDE}
Keywords: resource allocation, Pareto-optimality.

A linear multi-objective decision problem is considered, of the maximization of
the effect of allocations of resources to activities. Necessary and sufficient
conditions for a feasible solution of the problem to be Pareto-optimal are derived,
in terms of properties of the allocation matrix and a certain matrix of efficiency
coefficients of the allocations. A condition is given for all optimal solutions to
be simple in the sense that they contain a small number of non-zero allocations.
A feasible change of the positive allocations of an optimal solution produces a
new optimal solution.

1. Introduction
The following multi-objective resource allocation problem, denoted by M, is
considered

M: Maximize z= (X, ..., Xg)

where
J
Xp= 2 a_,kxjk; k=1,...,K (l)
j=1
subject to the constraints
K
kZl xp=hy; j=1,..,J (2)
x=(xu)20 3)

where J is the number of resources; K is the number of activities; x; is the quantity
of resource j allocated to activity k; 4; is the available quantity of recourse j; and
ay is the effectiveness of resource j when allocated to activity k.
It is assumed that 4, and the «j; are non-negative real numbers; and that (a;)
satisfies the condition

By definition, an allocation matrix x satisfying the constraints (2) and (3) is a solution
of M if and only if x is Pareto- opt1rnal in the sense that, for all feasible solutions x’ =
(x' ;) of M, with objective vector z’ the following condition is satisfied

where the components x’; for k=1, ..., K of the vector z'=(x"y, ..., x'x) are given
from x,,=x'y, in eqn. (1). A Pareto-optimal solution of M will, in the following, be
referred to as an optimal solution of M.
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Although general and linear multi-objective optimization problems, and associated
numerical solution methods, have been considered by for instance: Gal and Leberling
(1981), Roy and Vincke (1981); Zionts and Wallenius (1980) and other authors, there
is no paper, known to the present author, that is concerned with the special properties
of the optimal solutions of the resource allocation problem A defined in this paper.
Consequently it is the present purpose to derive necessary and sufficient conditions
for a feasible solution x of M to be optimal, in terms of properties of the allocation
matrix x and the efficiency matrix («;). In particular, a condition is given for an
optimal solution to be simple in the sense that it contains at most (J+K—1) positive
allocations xj,; it is noted that a solution is always optimal if it contains at most three
non-zero allocations; and a feasible change of the positive allocations of an optimal
solution produces a new optimal solution. A numerical example is given. It is demon-
strated, that an optimal solution of M is not necessarily a solution of an associated
problem of the maximization of the sum of some utility returns of the activities.

Before proceeding to derive optimality conditions of the problem M, it is observed
that the aim of this paper is to derive properties of optimal solutions rather than to
derive solution-algorithms, as several such algorithms of a general nature may be
identified by the use of the above references. However, a comparison of the effi-
ciencies of the these general algorithms ard the efficiency of a dedicated solution-
algorith of the problem M is a relevant area for further investigation; the dedicated
algorithm being constructed on the basis of properties of the problem M demonstrated
in this paper.

2. Efficiency conditions
Define the following subset of {1, ..., J}x{l, ..., K}

Az{(j, k)la.ik>0}

and the problem MA obtained from M by the introduction of the condition
xp=0 if (j, k)¢4

The condition (4) implies the validity of the following:

Theorem 1

The sets of efficient solutions of M and MA are identical.
_ According to Danskin (1967) a sequence of feasible solutions of MA given by

XjykyXigegs - XjgXikis 15 3 Xinetkna1Xin-1kn (5)

is called a closed chain or a cycle if k, =k, ; the ratio p of such a cycle was defined by
Einbu (1978) as p=y"1, where
n—1

Y= H (ajikii-llajikl) (6)

i=

A shift along a cycle (5) of non-zero allocations is given by the replacement of
Xix, and Xju,,, by x';4, and X'y, ,, where

x’Jiki=xJik:—Al; i=1’ -~-1(n'_'1) (7)
"l+l=xjikl+l+A‘; i=1, .., (n_l) (8)
At“m,“—Ai+1°‘j,+,k“l=0; i=1,..,(n-2) 9

'
X j,
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and the A, for i=1, ..., (n—1) are chosen such that x';;,20 and x';,,,, = 0 for
i=1,...,(n—1).

Defining
n—1
X =X if (j, k)¢ 'lljl {(Ui ki), Uss kis1)} (10)

it follows that x’=(x’ ) is a feasible solution of MA with the x’, of eqn. (1) satisfying

x’k-_'-xk fork#kl (11)
Ax’kl=x’k.—xkl=A1°‘jlk1['y_1] (12)
If
. i-1
gi—l-_"' Hl (a.iq+1kq+1|a-’qkq+l)
q=

the value of A, is chosen such that

AIS Mll‘l [xjiki§‘_1]=51 lfA1>0 (13)
i=1,..,(n-1)

and

Ay> Max  [=X4,, Ei-11=0, ifA <0 (14)
i=1,..,(n=1)
observing that

x,jmk"':() ifAl=Kl and Zl=xjmkm§m_l (15)

and
X 4 ,,=0 A=A and Ay=—X; ., En-1 (16)

With reference to theorem 1 the main result of this paper is given as follows.

Theorem 2

A feasible solution x of MA is Pareto-optimal if and only if one of the two follow-
ing conditions is satisfied: (1) there is no cycle (5) of positive allocations x;,, and
X .., fOr i=1, ..., (n—1), or otherwise, (2) the ratio p of all such cycles is equal to 1.

Proof

Assume that there exists an optimal solution x of MA that contains a cycle (5)
of positive allocations. If the ratio p of the cycle is not equal to 1, it follows that one
of the x;, say x,, can be increased without a change of the other x; for k#k;.
Specifically, the replacement of x by x’, where the x';, are given by the eqns. (7)-(10),
demands .that the relationships (11) and (12) become satisfied; and Ax',, >0 it Ay
is chosen such that A, >0 if y>1 and A, <0 if y<1; noting that a A,#0 can be
selected, subject to the requirements (13) and (14), since X;%,>0 and x;4,,,>0 for
i=1,...,(n—1) by assumption, and &, exists and is positive for i=1, ...,n—1
by the definition of the problem MA. Since Ax’y, >0 the eqns. (11) and (12) show that

x is not optimal, a contradiction, which implies that p=1 is the only possibility, since

p=y~ .
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Conversely, let the condition (1) or the condition (2) of the theorem be satisfied.
Assuming, by contradiction, that x is not optimal, there exists a feasible solution
y=(y;z) of MA such that

Y, = Xk, (7)
and
n=x, forallk#k, (18)

where y, is obtained from eqn. (1) with (x) replaced by (yy).
This follows from the observation that if y, > x, for a k#k, then at least one of
the y, can be reduced with an increase of y, , until y, becomes equal to x,.
Equation (17) requires the existence of a j,&{1, ..., J} such that

Yigky = Xjiky

which, in combination with the constraint (2) for j=j,, implies that

Virky < Xjiky

for some k,#k,. The eqns. (1) and (18) for k=k, demand that there exists a j,#/;
such that

Yiaks > Xk

Continuation of the above arguments demands the existence of a cycle of allocations
given by

YikaVdukme 1+ Vine thne 1V in- tkn (19)

if a previously selected activity k,, is repeated: k,=k,,; a similar cycle results if a
previously selected resource is repeated, and a repetition must occur since there is a
finite number of resources and activities. In both cases, the cycle can, for notational
convenience, and without loss of generality, be represented in the form (19) with
m=1.

Since y;4,>X;4,>0 a cyclic shift, given by the eqns. (7)-(10) with x; replaced
by y, for all (j, k) and A, >0, can be applied to produce a cycle of positive allocations
given by

' ’ i /
X jiky X gikay oro9 X G iknoq X o thn (20)

The implication is that the condition 2 of the theorem is satisfied, demanding that the
ratio p’ of the cycle (20) is equal to 1, and the eqns. (11)-(12) show that

xv=y fork=1,.., K 20

since y' =p'=1.

An extension of the arguments leading to the eqns. (11)-(16) shows that the value
of A, can be chosen to produce a feasible allocation matrix of MA, denoted by
x'=(xy') (rather than x’=(x"y)), such that for i=1, ...,n—1:

xJikll Zx.hk( (22)

(23)

1
Xikyea ijikl+l

and with at least one of the above inequalities being satisfied as an equality.
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Since x;! =y if (7, K)o ki), (i kisa)} for all i=1, ..., (n—1) by eqn. (10) it
follows that the number of (j, k) for which x ! # x is strictly smaller than the number
of (j, k) for which y;;, # x . Since by the eqns. (17), (18) and (21)

Xt >, 24)
xt=x, fork#k, (25)

the previously given arguments can be repeated with y replaced by x! to demonstrate
the existence of an x2=(x;?), satisfying the relations (22)-(25) with x* replaced by
x2, such that the number of (j, k) with x,,2sx;, is smaller than the number of (j, k)
with x ! # x; and such that x,2=y, for k=1, ..., K. Since there is a finite number of
different ordered pairs (j, k), repetition of the previously given arguments must lead to
an allocation x¥ such that x¥=x and x, ¥=x, ¥ "= ... =X, =¥, >X,, & contradic-
tion, which demands that x is optimal. q.e.d.
The theorem implies the validity of the following.

Corollary 1
If the efficiency matrix («;) contains no cycle with ratio 1, then any optimal
solution x of MA contains at most (J+ K— 1) positive allocations xj.

Proof

An allocation matrix x=(x;,) with at least (J+ K) positive allocations x; must
contain a cycle. q.e.d.
The following result is of particular interest for problems with J=1.

Corollary 2
A feasible solution x of MA is optimal if it contains at most three positive alloca-
tions.

Corollary 3
If x is an optimal solution of M A and the set S is defined by
S={(j, k)| x>0}
then any feasible solution x” of M A such that:
Xp=0 if (j, k)¢S
is an optimal solution of MA.

3. A numerical example
The data of a particular problem M4 is given by:

J=K=3
11 0
(a;,‘)-: I l 2
011

(h))=(3, 3, 3)
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The feasible solution

1 2 0

8 (3-8,-8) &,

®
]

0 i 2

is optimal if 8§, =8, =0, since it contains no cycle in this case. The solution is not
optimal if 8,0 and (8,-+8,)<3, since there is a cycle with ratio 2 of positive
allocations.

However, is 8, =0 the solution is optimal for all §,€[0, 3]; furthermore, for any
such 8, optimal solutions can be generated by a cyclic shift, defined by the eqns.
(7)~(10), along the cycle x;,x;,X2,%,;. Additionally, the positive allocations may
be changed (with x,3=x3,=0) as long as feasibility of M4 is maintained, according
to Corollary 3.

4. Return maximization

Luss and Gupta (1975), Einbu (1978), Mjelde (1977), Mjelde (1983) and other
authors have considered the resource allocation problem P of the maximization of

K

Z= 2 ri(x)

k=1

with x, given by eqn. (1) for k=1, ..., K, subject to the constraints (2) and (3) of M.
The r, for k=1, ..., K are continuously differentiable, strictly increasing and strictly
concave functions with r, (0)=0, describing the utility of the returns from the activities
due to given allocations.

Einbu (1978) applied properties of the pattern of non-zero allocations in a solution
matrix (xy) of P and induction on the number of rows of (x;), to demonstrate a
result analogous to that of Corollary 1 for the problem P; and Mjelde (1977)
demonstrated this result for the problem P by the application of an associated linear
programming problem with a set of optimal solutions identical to the set of optimal
solutions of the problem P, A resource allocation problem R with a fractional
objective function given by the return of the problem P divided by an affine cost
function was considered by Mjelde (1981), on the basis of arguments analogous to
those applied in the proof of Theorem 2 of this paper.

It is now relevant to ask the question if any-optimal solution of MA is also an
optimal solution of a problem P for some return functions r,. The answer to this
question is no, as can be seen from the following example of a problem M with

and

(h.i_)=(1’ 1)
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The solution

X=
01

is optimal. Assuming that there exists some strictly increasing return functions 7, of
P with derivatives ', such that x is optimal for P, it follows, from Kuhn-Tucker
optimality conditions of P, that there exists real numbers A;20forj=1, 2 such that:

ra(1) s 1=2; rp(1)-4<Ay -
ry(1) -4 Ay (1) - 2=2
which implies that
40, <Ay 20,0
and consequently that
A=A, =0

a contradiction, since r',(1)>0 and r',(1)>0.
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