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A fractional programming problem is considered of the maximization of the
ratio of a concave and a convex function, with each variable occurring in a single
convex component constraint. A componentwise solution algorithm is given;
each component-problem being defined by a weighted difference of the concave
and the convex functions of the given fractional objective function; the relative
weight being recalculated after each componentwise optimization.

The proposed algorithm extends those of Dinkelbach and Oettli. An
application is given to a fractional resource allocation problem with concave
returns and an affine total cost and linear resources. In this problem each
componentwise Or resourcewise optimization is executed by application of an
extension of the algorithm of Luss and Gupta. The results are extended to
problems with several time periods connected by a common objective function,
but with periodical constraints.

1. Introduction
In this paper the following problem, denoted by R, is considered:

R: Maximize z=f(x)/g(x)
subjected to the constraints:

Hix)<h; j=1,..,J
(1)

x20

where x=(x;) and x;=(x;,, ..., X;k) is the jth row of the Jx K matrix x. It follows
that each variable x;, occurs in exactly one component constraint (1). The functions
/, g and H; are differentiable; f is a concave function, g and H, for j=1, ..., J are
convex functions with f(x)>0 and g(x)> 0 for all feasible values of x. It is assumed
that H(0)=0 and that h;>0 for j=1, ..., J. The maximal objective value of R is
denoted by Z with X a corresponding value of x.

Since the feasible region of R is compact (and f and g are continuous functions),
the problem is solvable by Dinkelbach’s (1957) algorithm, which is based on the
consideration of an associated problem R(g) defined for any real number ¢>0 as
follows:

R(g): Maximize v(q)=f(x)—qg(x)

subjected to the constraints of R. The optimal objective value of R(g) is i(g). The
steps of the algorithm are as follows:
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Step 1
Calculate, for a feasible solution x° of R

g1 =f(x*)/g(x*)
and go to Step 2 with i=1.

Step 2
Determine an optimal solution x of the problem R(g;) and calculate:

qir =f0x")/g(x") )
and go to Step 3.

Step 3
Replace i by (i+ 1) and go to Step 2, if a termination criterion is not satisfied;
otherwise terminate the algorithm.

The algorithm produces a non-decreasing sequence ¢; =f(x'~")/g(x'~") of objec-
tive values of R for i=1, 2, ... such that

lim ql = E
i—rcC

For a given ¢> 0 the algorithm may be terminated if
fx)—qig(x)<e

“A more satisfactory termination criterion is based on the observation that for each
feasible solution x* of R, there is an associated upper bound z;* of Z calculated by the
method of Mijelde (1978, 1979); if the algorithm is terminated when z;*—g;<e it
follows that Z—g;<e. Additional start and stopping conditions and convergence
results were given by Schaible (1976).

The special structure of the problem R considered in this paper is not utilized by
the general algorithm of Dinkelbach; in particular, the functions f and g need not be
differentiable, nor concave or convex in Dinkelbach’s algorithm; and the constraints
(1) can be replaced by the requirement that x belongs to any compact subsct of
R"*X_ The purpose of this paper is to propose an algorithm that utilizes the com-
ponentwise structure of the problem R with the constraint (1); the proposed algorithm
unifies and extends two previously given algorithms; that of Dinkelbach and the
componentwise algorithm of Oettli (1974), which was extended by Mjelde (in the
press, a) to include certain intermediate improvements between consecutive com-
ponentwise optimizations; these algorithms are obtained from the proposed one for
respectively J=1 and g(x)=1. The new algorithm solves a sequence of problems of
the type R(g) previously given, but with a single component constraint (1) for a given
value of j; the x, for i#j being kept at fixed values. The value of g is recalculated
after each componentwise optimization by a formula analogous to eqn. (2). It follows
that the dimensionality of the problem R(g), to be solved between successive
recalculations of ¢ in the componentwise algorithm, is reduced as compared with the
general Dinkelbach algorithm. A problem of the allocation of resources to activities
is given: each component-optimization being executed by application of an extension
of the algorithm of Luss and Gupta (1975), a particular advantage of the proposed
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algorithm when applied to this problem. A concluding section of the paper extends
the methods to incorporate several planning periods, indexed by me{l, ..., M}, with a
separate constraint F,"(x;")<h;" for each je{l, ..., J} and m=1, ..., M.

2. The componentwise algorithm
The steps of the algorithm are as follows:

Step 1
For a given feasible solution x° of R calculate
g1 =f(x°)[g(x°) 3
and go to Step 2 with n=1.

Step 2

For a given non-negative integer » and a given feasible solution x"~! of R de-
termine the resource j such that j=n (mod J), which means that j=n—kJ for some
integer k, and determine an optimal solution x;=x;"20 of the problem R.(g,)
defined as follows:

R.(g,): Maximize z=f{(x)—q,g(x)
subjected to the constraint:
H{x;)<h;; j=n(mod J)

and the requirements that x,=x,"~ ! are given for all is/.
An optimal solution of R,(g,) is denoted by x", where the rows x,” of x" are given

fori=1, ..., Jfrom:
x;" ifi=j
x,":

x" v ifi#f
Calculate
Gn+1=F(x")/g(x") 4)
and go to Step 3.
Step 3

Replace n by (n+1) and go to Step 2 or terminate the algorithm according to a
given criterion.

The previously given termination criteria of the Dinkelbach algorithm can be
applied to the new algorithm as well.

Lemma 1
For the componentwise algorithm it follows, for n=1, 2, ..., that:
9n<Z (5)
GnSqnvy (6)
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ngquations (3) and (4) demand that g,<Z. The definition of x" in Step 2 and the
definition of ¢, show that:
M) —qug(x™) 2 f(x" 1) — gug(x"~ 1) =0
and consequently that
G <O EX")
which, in combination with eqn. (4), requires that:

n<Gn+1> q‘e'd'
An extension of a proof of Oettli (1974) gives the following:

Theorem
For the componentwise algorithm it follows that:

lim ¢,=2
=00

Proof

For notational convenience, for a feasible solution x of R, define the transponse of
x as follows:

E=xT=(¢, ..., &)
where
&=x,"

The following notations are introduced:

&=, ... §5-q) forj22
£je=Cji15 .- &) forj<sd—1
E=(¢1, 614)=(Es-, &)
E=(-, & &54) for2gj<J-1

It follows from the definition of the algorithm and n=kJ+; that
E=0"T=(£;_ %, £4+ 1, £, M)

If the objective value of the problem R corresponding to x"=(£")" is denoted by
z(¢") it follows from the definitions (3) and (4) and the property (6) of the Lemma
that:

z(fu)éz(fj-u“* l”, f_,‘”; fj+“)
Sz(§, IV, g0+ £, K
< z(f“‘ +1 )J) {7)
Since the feasible region of R is closed and bounded, consideration of the sequence
{£X, £%+ 9% shows that it contains a convergent subsequence, with the limit denoted
by {6, £}. Noting that, by the monotonicity of the sequence {g,}, it follows that
2(8)=2z(£), taking limits in eqn. (7) gives:

2(9)=z(£,_, 91’ 911-):2(51—’ EJ: 91+)=Z(E) (8)
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The properties (5) and (6) of Lemma 1 demand that the sequence {q.} is convergent:
lim g,=q*

n—roo

For £=x" consider the function:

Z*(€)=f(x)—q*g(x)

and the problem R* of the maximization of z*(¢) for all feasible solutions x of R.
Since the definition (4) of g,,, demands that

g*=z(6)=2(%) ©)
it follows that
z%(0)=z*(¢)=0 (10)

Equations (8) and (9) imply that:
z*(¢;-, 6;, 9j+)=z*(£j - fja 6;4) (11)

Since, for n=kJ +j, the vector £;%*"” is an optimal solution of R,(g,) with ¢,_&+1J
and £;,* given, the continuity of the functions f and g, egn. (11) and hm g,=q*
imply the validity of the following property:

£, and 6, are optimal solutions of R* with £,_ and §,, given (12)

The case j=1 shows that £, is an optimal solution of R* with §,, given, which
implies that (£,, 6,) is an optimal solution of R* with 8,, given, because the above
property (12) requires that , is optimal with £, and 6, given; and the component-
wise optimality of (£,, 6,) with ,, given implies optimality (since z* is a concave
and differentiable function of x). It follows from eqn. (11) that (£,, £,) is optimal
with 4, , given, and by induction that £=(£,, £,, ..., £,) is an optimal solution of R*.

The implication is that, for any feasible solution x of R:

fx)—g*g(x)<z%@)
and since z*(£)=0 by eqn. (10) it follows that:
f(x)lglx)<q*
and consequently that g*=Z, q.e.d.

3. Application to a resource allocation problem

The following problem, denoted by RA, of the allocation of resources je{l, ..., J}
to activities ke{l, ..., K} was considered by Mjelde (1978):

K J J K
RA: Maximize z= ) r,‘( z oc,,,x,,,)/(ﬁo+ z,l kg,’ ﬁ,gx_,,‘)

k=1 ji=1
subjected to the constraints:

K
kz‘ xﬂéhj; j=l, wany J (13)

x,ka(); j=l,..., J; k=l,...,K (|4)

where o and By, are respectively the effectiveness and the cost of allocating a unit of
resource j to activity k; B, is a fixed cost; x; the quantity of resource j allocated to
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activity k; h; the available amount of resource j; and r, is a concave, strictly increasing
and differentiable function with r,(0)=0, describing the return from activity k due to
given allocations. It is assumed that ey >0 and B, >0 for j=1, ..., Jand k=1, ..., K;
that 4;>0 for j=1, ..., J and B, >0.

The problem RA can be solved by application of the componentwise algorithm
of this paper. The objective function of a problem R,(g,) is maximized subject to the
constraints (13) and (14) for a given j=n (mod J).

An efficient solution algorithm for the case g,=0 was given by Luss and Gupta
(1975). This algorithm can be extended to the problem R,(g,) with g, >0, as noted by
Mjelde (in the press, b). The extension is as follows:

Define the marginal returns:

’mo:“.-‘t"k( Z “nxm"_')—‘}%ﬁn; k=1,..,K

i*j
0_
NiK+1 =0

and assume, without loss of generality, that the activities ke{l, ..., K} have been
ordered such that

9’ Znju41% k=1 .., K
If, for
7,°=Max; 7;°

it follows that ,°<0, the Kuhn-Tucker conditions of R,(g,) show that (x)=(0) is
an optimal solution. If ,° >0, define an integer L,°€{l, ..., K} such that:

7x° >0 if and only if kefl, ..., L,%

and determine x,° for k=1, ..., L;° from the equations:

oyl 'k (“kajko'i‘ ;Z “ikxtk”_')=‘?nﬂjt (15)
)
If
Ly
Y xp°<h; (16)
k=1

the optimal solution of R.(g,) is given by x,=x5° for k=1, ..., L;° and x;=0 if
k=L;°+1, ..., K, since the Kuhn-Tucker conditions of R,(q,) become satisfied. If
eqn. (16) is not satisfied the original Luss-Gupta algorithm applies directly.

Equation (15) can be solved explicitly for a class of return functions r;, including
the functions:

rdé)=afl —exp (—bif)l, £€20, a>0, H>0
rfé)=st—me?; 0<é<s/2m, 5>0, m>0
rff)=s.In 1 +mgf), €20, 5>0, m>0
rd&)=sfé+c)lE+my), £20, m>¢>0
Luss and Gupta demonstrated that their algorithm is particularly efficient for
these functions, due to the explicit invertibility of certain equations to be solved in

the algorithm. Otherwise these equations may be solved numerically by the applica-
tion of the algorithm of Einbu (1981).
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4. Concluding remarks

A problem identical to R, but with several planning periods can be reduced to the
type R by a transformation of variables: such problems include time dependent or
multi-period resource allocation problems. Explicitly, the problem RN is given by:

RN: Maximize z=f(x", ..., xM)/g(x", ..., x™)
subject to the constraints:

Hjm(xjm)ghjm; j= ls ey J9 m=l: b M
xm20; j=1,..,J; m=I1,... M

where x;"=(x;,™, ..., x,x™) is the jth row of x™ for m=1, ..., M.
A lexicographical transformation #(j, m) of the indices (j, m) defined by:

1(j, m)=(m—1)J+j

gives a problem of the type R considered in this paper. Explicitly, define X =x,",
where x'; is the rth row of the matrix x'=(x',) with J . M rows and K columns, and
introduce the following notations:

H 't(x't)=HJm(me)
He=h"; f/(X)=fx", ..., x™); and g'(xX")=g(x", ..., x).
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