MODELING, IDENTIFICATION AND CONTROL, 1983, voL. 4, No. 2, 101-105
d0i:10.4173/mic.1983.2.4
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A war is considered of the attrition of the enemy’s weapons supply system or the
attack of his forces in the battle area. The rate of weapons supply of each side
depends on the total number of successful attrition allocations of the other side:
this dependency is described by a decreasing and differentiable function. The
attack allocations are aimed at specific targets, while the attrition allocations are
randomly distributed over the area in which the supply operations take place.
The theory of differential games is applied to derive properties of optimal
solutions.

1. Introduction

A differential game theoretic model of a war of prescribed duration is considered,
each side allocates weapons to the attrition of the enemy’s weapons supply system
or to the attack of his forces in the battle field; the objective of the attack allocations
is to change the rate of movement of the front line or to inflict casualties. Such models
have been considered by Isaacs (1965), Berkovitz and Dresher (1960, 1957), Fulkerson
and Johnson (1957) and Mjelde (1980). Several authors have analysed the problem
in the context of the determination of an optimal distribution of supporting fire
(artillery) between the enemy’s primary forces (infantry) and his supporting forces.
Taylor (1978) develops results for a Lanchester-type differential game; some other
works are mentioned: Bellman and Dreyfus (1958); Giamboni, Mengel and Dishing-
ton (1951), Kawara (1973) and Weiss (1959). Mjelde (1982) considered the problem of
the defence of a valuable target against enemy attacks over a certain period of time,
until reinforcements arrive; using control theoretical arguments.

Mjelde (1980) introduced a rate of supply of (supporting) weapons of each side
that decreased when the number of successful attrition allocations of the other side
increased. The attrition and attack allocations were assumed to correspond to aimed
fire, with an effectiveness proportional to the rate of fire. In this paper the attrition
fire is randomly distributed over the area where the supply activities take place; the
number of successful attrition allocations of each side increases at a rate propor-
tional to the product of the rates of weapons supply of each side. The attack alloca-
tions, however, are aimed at selected targets.

It is demonstrated that an optimal solution concentrates all fire either to attrition
or to attack, and that there is at most one transition from attrition to attack alloca-
tions; the war ends with all fire applied to attack. A condition is given for each side
to start the battle with attrition allocations.
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2. The model
The model considered in this paper is denoted by P and defined as follows:

P: V= min max f-[rzgz(xz)(l—ssz)—’:gl(xl)(l_‘3!'1)] dt
d $ 0

subject to
Xy =v:181(x1)82(x2) 92 ()]

X2 =7281(%1)g2(x2)$1 2)
0<¢; <1 fori=1,2
x{(0)=0 fori=1,2

The x,(¢) and ¢,(¢) for i=1, 2 are functions of the time ¢>0 and x;=dx,|dr. The

y; and the r, for i=1, 2 are positive real constants and the g, for i=1, 2 are con-
tinuously differentiable functions with g/(x;)>0 and g'y(x,)=dg(x;)|dx; <0 for all

x;20.
1ifi=2
i*=
2if i=1

Defining
the quantities of the model are given as follows:
x,(t): the total number of attrition allocations inflicted on side i by side i* in the
time interval [0, £].
gi(x;): the rate of weapons supply of side 7 as a function of x(7).

&:(t): the fraction of g,(x,) allocated by side i to attrition at time f; the remaining
weapons are allocated to attack.

v.: the effectiveness of an attrition allocation by side i*.
r;: the effectiveness of an attack allocation by side i.
T: the duration of the war.

3. Optimality conditions

If ¥, denotes the partial derivative of ¥ with respect to x; for i=1, 2, the main
equation of differential game theory, see Isaacs (1965) and Friedman (1971), shows
that optimal solution(s) satisfy:

m:'n m:.x {—Ca+rag,(x2)—rigi(x))+ ¢181(x1)SL+ $28:(x;)8,} =0

for some constant C5 and
8, =Vay,8,(02)+r, 3)
S =Viyigi(x1)—r2 @)
Any optimal solution of P satisfy:

0 ifSs, =0 0 if §,<0
¢ = ;2= )
1 if 8§, <0 1 if §,>0
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If
r=T—t
denotes the retrogressive time and
Vi=dVi|dr and §,=dS,|dr
the path equations are given by:
Vi=—rg (x,)+$18"1(x1)S) + dag' 1(x1)g2(x2) Vv (6)
p2="28'2(x2)+¢28'2(x2)52 +6,8,(x1)g 2x2) V22 (7
with the initial conditions:
V] = Vz =0 forr=0
The differentiation of the S; given by eqns. (3) and (4) with respect to = gives:
Sl =Y28,(%2)8 (X W2+ 28:)+ Va8 200 ) yv28:1(x1)g2(X2) by + %, ]
Sz =y1&81(x1)g 11 —ri+ 15+ Vivi&8 1(x)[r18:1 (1 )g2(x2)b2 + %1 ]

where the expressions inside the square brackets are both equal to zero, because of
eqns. (1) and (2) and the relationship x, = —x; (which follows from r=7T-—1). The
implication is that:

S1 =v282(x2)8 2(x2)[r> + $25:] ®

$r=y18:1(x)g 1(x:)[—ry + ¢, 5] ®)
with the initial conditions:

Sy=r;and S,=—r, forz=0 (10)

Since $,5, >0 and ¢,5, <0 the following result is valid:

Lemma |
$,()<0, $,(z)>0 for €0, T].

4. Properties of optimal solutions

An optimal solution of P is denoted by ¢,* (¢) for i=1, 2.

Equations (5) and (10) show that ¢,*=¢,*=0 for 7=0.
Integration of eqns. (8) and (9) with the initial condition (10) and ¢,*=¢,*=0
demands that ¢, * or ¢,* changes from O to 1 at times 7,(s,) or =,(s, ), where

T1(52)= —ry[ryv.8 (52)82(52)

72(81) — —r2/r1v18 1(51)8:(51)
and
5;=x{T) fori=1,2
Define:
T1o=Min 7,(s;) for 0<s,<y,£,(0)g:(0)T
r0=Min 7,(s,) for0<s, <y,£,(0)g:(0)T

Lemma | and the previously given observations give:
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Theorem |
Any optimal solution has the following properties:

(1) ¢,*=¢,*=0 for7<Min (7,0, 720)

(2) $:*€{0, 1} for i=1, 2 and ¢,;*(r) changes from | to 0 at most once (in for-
ward time).

Figure 1 illustrates the simultaneous development of (S, §,) and the associated
changes of (,, ¢,).

Figure 1. The (S,, S;) curve.

Theorem 2
If T>+40) then ¢,*(0)=1 fori=1, 2.

Proof

Consider the case i=1 and assume, by contradiction, that ¢,*(0)=0. Theorem 1|
demands that ¢,*(#)=0 for #€[0, T] and eqn. (1) that x,*(¢)=0. Since (r, + $,*S,*) >
r, eqn. (8) requires that §,*(r)<§,(r) where §,(¢) is given by:

$, =v:8:(0)g2" (O)r,
and
S 1 (0) =ry

Since §,(r)=0 for r=7,(0) and T> ,(0) it follows that ¢,*(0)=1. q.e.d.
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5. Final remarks

Let x;* and S;* denote the values of x; and S, corresponding to optimal alloca-
- tions ¢;=¢,* for i=1, 2. Any given lower and upper bounds of &,*(r) for z€[0, T
and i=1, 2 (for instance defined by 0< ¢,*(¢)< 1), can be used to derive bounds of
x*() for 1£(0, T] and i=1, 2 by the application of equations and arguments
analogous to those of Mjelde (1982). The bounds of ¢,* and x;* can be used to derive
bounds of S;*, and corresponding new bounds of ¢,*, and this process can be con-
tinued. These bounds are useful in the solution of the problem P by numerical
methods that require initial estimates of the quantities ¢,;*, x,* or S;*, see for instance
Bryson and Ho (1969).

Problems for future work are the analysis of models with several types of weapons on
each side. Other extensions are given for the introduction of a criterion that terminates
the war, for instance if side | wins for ¥'= ¥ and side 2 wins for V=V, where V' < V.
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