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How to drive a delayed response, stochastic system close to
equilibrium

SJIUR D. FLAM{
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We consider a continuous system that, in the absence of random perturbations
and external forcing, is uniformly, asymptotically stable in a global sense. The
system evolution is governed by a retarded differential equation. To this equation
is added unidentified, time- and state-dependent noise, However, in each
instance the noise is bounded over the probability space. We demonstrate that
approximate stability is obtainable by a deterministic approach based on worst
case analysis.

1. Introduction

In a recent paper Corless and Leitmann (1981) studied stability control of a
stochastic dynamic system as described by an ordinary differential equation. They
assumed that the system when subject to neither control nor noise, had a globally,
uniformly stable steady state. Both the control and the noise, when present, enter
additively in their model. Furthermore, the unknown noise is bounded by a known
function of time and state. In this set-up they designed a continuous feedback control
guaranteeing that the system will ultimately settle within any prescribed neighbour-
hood of the equilibrium. The objective of this paper is to demonstrate similar although
somewhat weaker results when the system response is retarded. This generalization
seems appropriate when considering the increased use of delayed differential equations
as witnessed for example in biology (Cushing 1970, 1980). The model is formulated
in §2 and the stability properties of the undisturbed system are listed in § 3. These
properties are used to design a class of stabilizing controls as mentioned in §4.
Section 5 then provides statements along with proofs of the resulting approximate
stability.

2. The model
We consider the following n-dimensional system:
MO)=f(t, x;)+ B(t, x(0))[u(t, x(1))+e(t, x(1), »)] }
x|o= ¢GC

where 21, is time, x(f)eR" is the state, u(t, x(f))eR™ is the control, e(t, x(f), w) is the
noise and  is the generic random outcome in the probability space €. In )]

12 [to, 0)x C—>R"

is a known continuous functional. C is the set of continuous functions from [—r, 0]

)]

Received 16 February 1983.
T Chr. Michelsen Institute, Department of Science and Technology, Fantoftvegen 38,
5036 Fantoft, Bergen.

M.L.C. D




96 S. D. Flam

to R" and ¢ is the relevant prehistory of the system at time fo,. On C we use the
supremum norm denoted by | ||. On R" we use the Euclidean norm | |. By x, we mean
the function from [—r, 0] to R" defined by x,(6)=x(t-+6). It follows that x,cC
whenever x(+): [t—r, 1] —>R" exists and is continuous.

It is evident from our model specification that we assume delay effects to have a
maximum time range r >0 of effectiveness. If, by way of example,

ft, x)= { glr. x(r)k(t, dr)

then we require that the delay term k(t, +) is a measure with support contained in
[t—r, t]. Note that the system as modelled by (1) responds immediately to changes in
control and noise. The after-effects work exclusively through the operator f.

Also in (1) B: [to, ®©) x R">R"*™ is a known continuous matrix valued function.

By contrast, the random term e: [fg, ©)x R"xQ—>R™ is unknown. However,
and this is important, we assume that |e(z, x(1), | <P(t, x(r)) almost surely.

Here

P: [to, o0) x R"—+(0, ©)

is some specified function. We suppose throughout that f, B, e and P meet all necessary
conditions in terms of boundedness and smoothness in order for the solution of (1)
to exist on [re, ©0) whenever u(t, x(¢)) is continuous in (¢, x()) and bounded by
P(t, x(r)). For specified u(t, x(r)) we will denote the solution of (1) by x(to, $)(1) or
simply by x(#) when no confusion arises.

3, Stability of the undisturbed system
Consider the system

x(0)=/(t, x,) (2)

where control and noise are absent. f is supposed to possess enough smoothness to
ensure that the solution x(fo, $)(r) of (2) satisfying x, (to, $)=¢ exists for all £>1,,
and depends continuously on (#g, ¢, 1).

We shall assume that (2) is globally asymptotically stable, and without loss of
generality, let x=0 be the equilibrium, i.e. f{(t, 0)=0. Specifically, we suppose that
there exists a Lyapunov function ¥: Rx R">R and continuous, strictly increasing
functions y;: R, >R, with y,(0)=0for i=1, 2, 3and y,(c0)= co such that for all reR,
xeR", $eC we have

yi(|x| <Vt x) <yl x]) and V(t, $(0)) < —va(| $(0)))- 3)

Here
(1, $(0)) = lim sup%[V(r+h.x(t, $)t+h)— V(t, $(0))]

Then supposing that f takes Rx (bounded sets of C) into bounded sets of R, we
know that x=0 is globally, uniformly asymptotically stable (Hale 1977, Theorem
5.2.1). Hereafter impose the additional assumption that ¥(t, x) is continuously
differentiable.
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It follows that:

v, o= LI IOy g

4. The proposed control (Corless and Leitmann 1981)

Since the undisturbed system (2) is dissipative it is tempting to try to control the
stochastic system (1) as guided by the direction of steepest descent in “potential
energy’ V(t, x). Furthermore, in order to counteract the continual random dis-
turbance, the feedback control should be comparable in norm to P(x, t). Towards this
end define for specified ¢ >0 a continuous feedback control u, by:

u(x, )= —M P(t, x) if |p(t, x)| >e
'P(f. X )I 4)
and
|uft, x)| <P(2, x) otherwise

Here p is defined by
wt, x)=B*(t, x)V. V(t, x)P(t, x) &)

It is important to observe that, using this control, along the trajectories of (1) we
now have V(t, x)< —y5(|x|)+2¢, by (3).

5. Stability control
We first translate the results of Corless and Leitmann (1981) to a special case of
delayed equations. Specifically, we make the following

Assumption 1
If |x(¢)| = r for all te(a, b) where a<b, then

eV, x(r))+ W, x(t))
ex

a [ xr)"{\_)’s(r)

Later on this assumption will be dropped. However, when it is valid we have the
following statements:

Theorem |

Under Assumption I the model (1) with the feedback control (4) has the following
property of uniform boundedness. For all 8, €>0 if e<0-5y;(c0) and | ¢| <3 then
[x(20, N1)| <y, ™" v,(8,) for all t>1t,—r. Here §,=max (5, y3~1(2¢)).

Theorem 2

Under Assumption I a solution of (1) applying the control (4) has the following
property of uniform ultimate boundedness: For all 8,¢>0 if |¢|<8 and d>
17" y2y3 7 '(2¢) then | x(zo, $)(1)| <d for all 1>1,+ T(d, §) where

0 if8<R

T, 3)=1,,(8)~y,(R)
7a(R)—2¢

otherwise

and R=y,~" y,(d).
D2
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The proof of Theorems 1 and 2 follows verbatim that given by Corless and
Leitmann for the case of no delays and will not be reproduced here.

We stress that Assumption I is highly restrictive for systems with proper delays.
This provides motivation for us to prove approximate stability under conditions
which fit better to retarded equations.

For this purpose we will impose the following alternative assumptions:

Assumption 1T

There exists a continuous non-decreasing function p: R, >R, such that
p(s)>s and

cvit, 40)) N cH(t, ¢(0))

ct ox

flt, )< —ya(|$(0)]) if geC
and V(1 +6, $(6))<p(V(1, ;5(0))) for all 6e[—r, O].

Assumption 111

Let p: R, >R, satisfy p(s)=s. There exists a continuous strictly increasing
va: R, =R, with y,(0)=0 such that:

aV(t—r, §0)) eV(t—r, $(0))
+
et ox

ft—r, $o)Zya(|$(O)]) ifd:[—r,r]>R"
is continuous and 1> t,+r and V(t+ 86, ¢(6) <p(V(—r, #0)) for all 8]0, r].

Theorem 3

Under Assumptions II and III any solution x(zo, $)}(#) of (1) with control (4)
and | <8, x,,4n(to, )| <8 will satisfy [x(to, $)(1)| <y, =" y2(8,) for all t>1,—r.
Here 8,=max (3, y3~" (2¢), ya~"(2¢)).

Proof
Define V: Rx C—>R by V(t, $)= sup F(1+8, ¢(6)).

-r<6<0

Note that y,(| #0)|) < V(¢, $)<v.(||¢]]). Hereafter simply write x(t) for x(to.

é)r) and x, for x5, ¢). Now suppose |x(T)| >y, v,(8,) for some T>ro+r.
Let

r=inf {s: to4+r<s<7 and V(s x,)<0 for all r(s, TT}

Here
o= def _ 1
V(’y ﬁb) = lim sup E {V(!+h& x!-l—ﬁ(t’ 9!"))_ V(’9 95)]
h—0,

First we discuss the case =14 +r.

Then y,(| X(T)|) < (T, x1)< V7, x.) <yl %) <v2(8) <y2(8,)-

Thus |x(T)] <y, ¥,(8,), a contradiction.

Hence suppose hereafter that 7>7,+r. For notational convenience write
x(tg, $)="=0. There exists a 8,e[ —r, 0] such that

V(r, ®)= V(r+0,, D(8,))> V(r+ 0, B(8)) for all be(8,, 0]
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We first exclude the possibility that V(r—r, x(—r)) and V(r, x(7)) < (=, x,).
In fact, this condition would imply that

V(e —h, x._)=WV(z,x.)=V(z+h, x_,,), for all he[0, h]

where i >0 is sufficiently small. Thus V(r—h, X,_,)=0 for all hel0, k] contradicting
the minimality of -

Next we discuss the case V(z—r, x(r—r))= V(= x,).

Suppose in addition that |x(r—r)| >y, (2¢).

Then by Assumption IIT we have V(r—r, x(r—r))>0.

This contradicts the maximality of V(r—r, x(r—r)).

If on the other hand | x(v—r)| <y,~ '(¢) we have

71( |X(T)| ) < V(Ts x‘l’)*‘{ 17(79 xt)= V(T'"'rs Jf(“'—f‘)}-ﬂ)’z( | x(f - r) | )éyz(‘sgl
This gives the contradiction

|x(T)| <v17 " v2(83)
The remaining case when

Wa—r, x(r=r))< V(r, x.)=V(z, x(1))

is treated similarly. This completes the proof.

Theorem

Consider the system (1) satisfying Assumptions II and [T with p(s)>s when
5>0.

For any specified A>0 let p=y," "' y,(A) and choose a positive € <0-5y;(p),
0-5y4(p). Then for any initial condition ¢ with |¢| <8>0 by using the control (4)
the solution of (1) will satisfy |x(r)| <A forall t>¢, if 8<p, and |x(r)| <A for some
1<to+Tif 8>p. Here

=N?“2‘J’| “1ya(8,)
valp) —2e

where N is determined as follows. Find a> 0 such that p(s)>s+a for all y,(z)<s<
v1v2~ ! ¥2(8,) and let N be the smallest integer such that y,(u)+ Na=y,y, =" v,(8,).

Proof

If 3<p we have |x(r)| <y, ' ¥(8,) <y, ! ¥,(1) =A for all £>1, by Theorem 3.
Now suppose &> u. Note that Az p.

The purpose is to show that | x(r)| <A for at least one 1e[to, 1o+ T

This will be true if we demonstrate that V(¢t, x(1)) <y,(p) for some #¢[ty, 1o+ T).
By Theorem 3

Wt x() <ya(| Xt )< yay ™ v2(8) forallezr,—r

Define the function v: R, >R, by v=y,y, ! y,. Choose a >0 such that p(s) —s>a
whenever y,(p) <s<u(3,). Let N be the first non-negative integer such that y,(u)+
Na>u(3,).

Define y=y.(1)—2¢ and T= N8 )/y.

Suppose [x(f)| =p and ¥(1, x(¢))>y,(x)+(N— 1)a on some interval [fo, to+ 7).
Then t€(tq, 1o+ 7) implies

pV(e, x(0))> V(t, x(1))+a>y (1) + Na=v(8,) > V(t+6, x(t+6))
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By Assumption II V(z, x(1))< —v3(|x(t)|)+2e < —ya(p) + 2¢= —y. Consequently,
V(t, x(1))< V(to, X(t0)) — At —to) <AU8,) — At —1o)-

The positivity of ¥ implies that ¥(8,)—y(t—1,)>0 and therefore =<»(8,)/y. It
follows that V(t, x(1))<y,(u)+(N—1a for 1=1,+1(3,)]y as long as |x(t)| = p.

Inductively assume that y,(u)+(N—k—Da< V(t, x(1)) <y (p)+(N—k)a for all
te[ty, t+7) where £, 2 14+ k v(8,)[y.

Then if |x(f)|>p in this interval we prove as above that 7<13,)/y. Also
Ve, () <yi(p)+(N—(k+1)a) for t<t,+u38,)/y provided |x(s)|=p for all
selte+ (3], 1].

It follows that |x(f)| <p for some 1<t,+ T or V(to+ T, x(to+T))<y,(p). QE.D.

6. Concluding remarks

We have shown that knowledge of a Lyapunov function may furnish a method of
stability control of a stochastic system with bounded noise and retarded response. It
should be stressed that the proposed control depends only on the bounds of the
random noise and not upon its distribution. The actual cost of implementing the
control depends very much on the gradient of the Lyapunov function. We have
confined ourselves to situations where a Razumikhin type of stability applies (Hale
1977). The more general case requiring functionals and not only functions, seems more
difficult. For related studies on control of uncertain systems see Leitmann (1981),
Barmish (1982) and Gutman (1979).
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