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Multivariable controller for discrete stochastic amplitude-constrained

systemst
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A sub-optimal multivariable controller for discrete stochastic amplitude-
constrained systems is presented. In the approach the regulator structure is
restricted to the class of linear saturated feedback laws. The stationary covariances
of the controlled system are evaluated by approximating the stationary probability
distribution of the state by a gaussian distribution. An algorithm for minimizing a
quadratic loss function is given, and examples are presented to illustrate the
performance of the sub-optimal controller.

1. Introduction

Optimal control of stochastic systems with amplitude constraints on the inputs has
been considered for continuous-time systems (Wonham and Cashman 1969) and for
discrete-time single-input systems (Toivonen 1981, 1983 a, b). In the discrete-time
case an explicit solution to the optimal amplitude-constrained control problem has
been determined for first-order systems when the criterion for control is minimum
variance of the state. In general the optimal strategy is, however, non-linear and the
solution is beyond feasible computation (Fuller 1970). A number of sub-optimal
controllers have therefore been designed. Toivonen (1983 a) derives a sub-optimal
amplitude-constrained controller for discrete-time single-input systems by approxi-
mating the expected future loss in the Bellman equation by a truncated power series
including second-order terms. Thisapproach also gives a performance limitinamplitude-
constrained control. Wonham and Cashman (1969) have designed a sub-optimal
controller for continuous-time systems by fixing the regulator structure to the class of
linear feedback laws with saturation. Toivonen (1983 b) has applied this approach to
discrete-time single-input systems. It was found that the approach may give near-
optimal control performance. Successful design of stabilizing saturated linear con-
trollers for deterministic systems has also been reported (Gutman 1982, Gutman and
Hagander 1982),

In this paper the procedure described by Toivonen (1983 b) is generalized to multi-
input systems. In this method a linear feedback law with saturation is assumed and the
covariances of the closed-loop system are evaluated by approximating the stationary
probability distribution of the state by a gaussian distribution. Minimization of a
stationary quadratic loss function then gives a set of coupled matrix equations which
can be solved iteratively to give the optimally tuned feedback gain. The control
problem is closely related to the problem of designing optimal structure-constrained
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controllers (O’Reilly 1980). It is thus straightforward to include the case where only
part of the state vector is used for feedback, and this problem is also considered here.

The paper is organized as follows. In § 2 the problem is formulated, and the sub-
optimal controller is given in § 3. In § 4 numerical examples including an industrial
quality control system given in the literature are presented.

2. Problem formulation
Consider a discrete-time stochastic system described by

x(t+ 1) = Ax(t)+ Bu(t) + w(t) @.1)

where x is the n-dimensional state vector, u is the m-dimensional input vector, and
{w(t)} is a sequence of independent gaussian vectors with zero mean value and
covariance R,,= Ew(t)w(#)". It is assumed that the matrix A has all eigenvalues in the
unit disc.

We consider the quadratic loss function

i 1 N-1

J=E lim — Y x(:)7Q,x(2)+u(t)" Q,u(t) (22)
N N i=0

where Q, and Q, are positive semi-definite weighting matrices. The admissible control

signals are assumed to satisfy the amplitude constraints

L“l(‘)l S-ab i=l) M {2.3)

The control strategy which minimizes the loss function (2.2) subject to the con-
straints (2.3) is in general non-linear and too complicated to be synthesized readily
(Fuller 1970). A sub-optimal regulator can, however, be determined by considering
linear saturated feedback laws, i.e.

u(t)=sat (f;T z(t); o), i=1,...,m (2.4)
where
sat (¢; u)={ (2.5)
asgn(§), if |£]>e
and

z(t)= Dx(t) (2.6)

The signal z(¢) is introduced in order to study various controller structures where only
part of the state vector is used for feedback.

3. Sub-optimal amplitude-constrained control

A procedure for tuning the feedback gains in the control law given by egn. (2.4) to
minimize the loss function (2.2) is now considered. Assume that the closed-loop
system (2.1), (2.4) is stable. Then the stationary covariances

R, = Ex(t)x(1)"
R, = Eu(t)u(t)"

exist and the loss function (2.2) can be written
J=tl‘ Qle-I-tl‘ QzR“ {3-2)

3.1
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The system eqn. (2.1) gives for the stationary covariances of the closed-loop system
the relation
R,=AR, A"+ BR,A" + AR,," B"+ BR,B"+R,, (3.3)

where R,,= Eu(t)x(t)T. The evaluation of R,, and R, for the saturated feedback (2.4)
requires knowledge of the stationary probability distribution of the state, which is
non-gaussian due to the non-linear feedback. It is therefore a prohibitively complex
task to determine the exact solution of eqn. (3.3) for an amplitude-constrained system.
The closed-loop covariances can, however, be determined approximately by using a
gaussian distribution to approximate the stationary probability distribution of the
state, This approach has been applied successfully by Wonham and Cashman (1969)
to the amplitude-constrained control of continuous-time systems, and by Toivonen
(1983 b) for discrete-time single-input systems. Mékild (1982 a) considers a first-order
amplitude-constrained system, showing that for this simple example the probablltty
distribution of the state is reasonably close to a gaussian distribution.

We thus assume for the state x a gaussian probability density function with zero
mean value and covariance matrix R, :

p(x)=(2m)"2(det R,)~"'? exp (—4x"R,~" x) (.4
Introduce the variances
o?=f," R.fi=fF DR.D™f,, i=1,..,m (3.5)

Due to (3.4) and (2.4) we have (Toivonen 1983 b)
Rix= [ u(Ox(t)"p(x) dx
R

=g(o)f;" DR,, i=1,...,m (3.6)
and
R.,= [ ult)’p(x) dx
R
=g2i0)*fi" DR.D™f,, i=1,....m 3.7
where
gri(o) =erf(eyoy =" 271/2) (3.80a)

gailo)=[erf (eqo; =" 27V2)— 0,7 ' 2V2 ferfe (oo~ 27Y/2)]V2 (3.8 D)
Introducing the feedback matrix

F=[f"1]
and the diagonal matrices
G, =diag (g1:(0:)) (39a)
G,=diag (g;i(0))) (3.95)
we have
R.=G,FDR, (3.10)

and, introducing the approximation that the stochastic variables w;, u;, eqn. (2.4),
have the same correlation coefficient as the normally distributed variables f,T z, f;7 z,
gives the approximate relation

R,=G,FDR.DFTG," (3.11)

The expressions (3.10) and (3.11) can be introduced into egn. (3.3), which can be
solved iteratively to give approximate values for the stationary covariances of the
closed-loop system. Numerical examples show (§ 4), that in spite of the approximations
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involved the procedure gives estimates of the closed-loop covariances which are
typically within 109/ of the true values.

Now consider the problem of tuning the feedback matrix F to minimize the loss
function J. Equations (3.2) and (3.11) give

J(F)=tr (0, +D'F*G," Q,G,FD)R, (3-12)
Using eqns. (3.3) and (3.8) to (3.11) some rather tedious but fairly straightforward
matrix manipulations give the gradient of J with respect to F:

oJ
F 2[G," B"SA+ G,"(B"SB+ Q,)G,FD]IR, D"

+4 ’f: Eulhy (o) B"SA+ hyy(o:(BTSB+ Q,)G,FD]
o x R.D'FTE,FDR,D* (3.13)
where S is the symmetric positive definite solution to
S=A"SA+A"SBG,FD+D"F"G," B"SA
+D'FTG,"(B"SB+ Q,)G,FD+ Q, +2D"F* :il Eyfhy(0))B7SA

+hy (o (BTSB+ Q,)G,FDIR,D"FTE,FD (3.14)

and
b
hile)= g;.:;(:!)——‘ —(2m)" Y2050, exp (— 1% 0,7 %) (3.154a)
o,
3
hae))= g;;(:l)= —3o0,% 0,7% goy(oy) ™! erfe (oo, ™ 271/2) (3.15b)
1

The matrix E,, is an m x m matrix with zeros everywhere except for the element /I,
which is unity.

The minimum of J(F) can be found by applying function minimization techniques.
Alternatively various special-purpose methods can be developed. Here we consider a
linear descent algorithm, which is related to a procedure used in the design of optimal-
structure-constrained controllers (O’Reilly 1980, Polak 1971, Mikild 1982 b). A similar
algorithm has previously been applied for computing sub-optimal amplitude-
constrained controllers for single-input systems (Toivonen 1983 b). The algorithm
solves the necessary optimality condition ¢J/¢F=0 iteratively, generating a sequence
{F,} of feedback gains according to

Fyo1=F+aT, (3.16)

where a, is a steplength parameter and
T,=— [Gz""T(BTS""B+ Qz)Gz(”]_ 1 [ G,“"T BTSW 4 Rxm DT(DR"(JL) DT)' 1
+2 ’i Eulhy(o;*)BTS® A+ hy(o,®)(BTS®B
+0,)G,"* FL.DIR,® DTF,T E,,F,‘] —F,

)

= —3[G,PT(BTS®B+ Q,)G, V]! (c_;) (DR® DT)"! (3.17)
k
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Here S%, R,®, o/, G,;®, G,™ are evaluated for F,. The direction 7, is a descent
direction of the loss function J at F,, because

AR fod
tr (5)" Tk<0. if (E‘;—)*¢O (3.]8)

due to (3.17) and the positive definiteness of the matrices G,"(B"SB+ 0,)G, and
DR,D". There thus exists an a,,> 0, such that for all a,£(0, a,,)

eJ

J(Fes)<J(F), if (=] #0 (3.19)
oF |,

By choosing the steplength parameter g, properly (Goldstein 1965, Fletcher 1980), the

algorithm gives convergence to a local minimum of the loss, i.e. (Mikild 1982 b)

aJ s
(5,)*=0, or (-é?)kw (3.20)

for any starting point F,, for which J is finite.

4. Examples
Numerical examples are now given to illustrate the performance of the amplitude-
constrained controller.

Example 1.
Consider a system described by eqn. (2.1) with the parameters

1 01 I —04 10
A= , B= , R,= (4.1)
—05 09 —08 09 0 1

and the loss function (2.2) with Q, =1, 0, =0-1/. The optimal unconstrained strategy
is

u(t)=F*x(1) (4.2)

—-0-932 -0-383
F*=
[—0-198 —l-153J
giving the loss J=2-347. The input variances in the unconstrained case are r,,=1-10
and r,,=1-44.

Sub-optimal amplitude-constrained controllers were determined using the pro-
cedure described in § 3. The results are summarized in Tables | and 2.

For comparison, the performance of the ‘standard’ control, obtained by using the
optimal unconstrained feedback gain F* in the saturated feedback law (2.4), is also
given. As this controller has been designed for the case when the inputs are uncon-
strained, it does not perform well when there are constraints on the input amplitudes.
This is particularly true when the constraints are tight and in the case when the relative

magnitudes of the constraints on the various inputs differ (c.f. Table 1). In these cases
much can be gained by tuning the feedback gain properly.

where
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Sub-optimal control Standard control
Loss Loss
o F Estimated Simulated Estimated Simulated
flc g [ —0-755 —0-2407
2-65 2-69 2-82 296
| 1-5] | 0-165 —=0-979]
(1] [ —0-745 —0-062]
2-79 2-83 3-11 3-61
|1 ] | 0-143 —0-840]
] ] [ —0-745 0-1687
3-14 3-17 14-33 17-27
05 | 0120 —0-552]
057 [ —0-590 0-1167
4-34 4-68 7-95 9-62
| 0-5 ] | 0-408 —0-426]
[0-3] F—0-611 0-0777
9-13 10-10 18-31 19-63
| 0-3 | 0-501 —0-247

Table 1. Results for Ekample 1. EStimated: loss function calculated by approximate
procedure using gaussian distributions. Simulated: loss function obtained as a
sample average (N =10°).

The feedback gains of the sub-optimal amplitude-constrained controllers given in
Table 1 correspond approximately to the feedback gains obtained by standard linear-
quadratic-gaussian design, the amplitude constraints corresponding to an increased
weighting of the inputs. For example, the linear-quadratic-gaussian controller obtained
for Q,=1, has the feedback matrix

—0-537  0-040
F=

0-123 —0-498
which can be compared with the feedback matrices of the amplitude-constrained
controllers (Table 1). Inspection of egns. (3.13) and (3.14) shows, however, that the
sub-optimal amplitude-constrained controllers cannot be generated exactly by

linear-quadratic-gaussian design for any choice of the input weighting matrix Q,.

The accuracy of the approximate procedure for evaluating the closed-loop
covariances using gaussian distribution functions is illustrated in the tables by also
giving the values of the loss function and the covariances obtained by Monte-Carlo

simulation. When the constraints are not too tight (x>0-5), the errors in the
covariances are less than 109].

Example 2

In this example an industrial quality control system is considered. The example also
gives a comparison of the amplitude-constrained controller and the use of linear
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quadratic gaussian design for reducing the input variances. Westerlund (1981) con-
siders the digital control of an industrial cement kiln. A state-space representation of
the model obtained by maximum likelihood identification is

x(t+ 1)=Ax(t)+ Bu(t)+ De(t + 1)

1 0 0 4.3)
,v(r)=[ ]x(r)
010
where
0914 0080 0 2:091 —-0-0744

A=| —0-126 0917 0-715|, B=| —0-211 —0-0156

0 0 0 0 0

10
[ 0-0644 0-000257
R,= , D=]|0 1

| 0-000257 0-0214
01

The loss function was (Westerlund 1981)
J=tr R,=r,,+1,, 4.4)

The optimal unconstrained strategy is given by

—0-490 2-49
u(t)= 0] .5)
—1-49 711
and the closed-loop variances are then
ry, =00644, r, = 00214 4.6 a)
ry, =0-148, r, =108 4.6 b)

Due to physical constraints in the process the input variances were restricted
according to

r,, <0004, r,<I'5 4.7)

Westerlund (1981) applied constrained linear quadratic gaussian design (Mikild,
Westerlund and Toivonen 1982) to minimize the loss function (4.4) subject to the
variance constraints (4.7). The optimal controller consists of a statc estimator and a
feedback from the estimated state. In order to obtain a simpler controller a feedback
from the process output yp(7) only was considered. The optimal output controller is

given by
—0-177 0-125
u(r)= [ ] o) 4.8)
1-84 209




Multivariable controller for discrete systems 91

which gives the closed-loop variances
ry,=0-0933, r,,=0-193 “4.9a)

r,=0004, r, =I5 4.9 b)

and the loss J=0-286.

Table 3 gives the results obtained with sub-optimal amplitude-constrained
controllers. Two feedback structures are considered: (1) feedback from the whole state
vector ®(f|7) estimated using a Kalman filter, and (2) feedback from the process

output y(r) only, corresponding to the structure of the controller (4.8) used in
Westerlund (1981).

Sub-optimal controller Sub-optimal controller
u(ty=sat (f;" 2(t1); ) ugt)=sat (f;* y(t); )
Esti-  Simu- Esti-  Simu-
o mated  lated F mated  lated
0-25 —0-553  0-771
[ y,: 0074  0-098 r 0-074  0-099
50 —1-859 41-7
ry,: 0-073  0-075 ry,: 0-079  0-081
Tyt 0-031  0-032 ly,: 0-031  0-033
Tyt 19-4 19-2 Iyt 19-4 18-8
Loss: 0-147  0-173 Loss: 0-153  0-180
0-15 —0-485 0-508
[ ] Iy, 0-085 0-102 l ] r, 0-085 0103
3-0 4-69 253
ry,: 0122 0-127 r,: 0-127  0-132
T 0014 0014 Ty 0-014 0014
I, 7-52 7-41 ry,: 7-49 7-29
Loss: 0-207 0-229 Loss: 0-212  0-235

Table 3. Results for Example 2. Estimated: using the approximate procedure of § 3.
Simulated: sample average (N = 105).

The amplitude constraint «=[0-25, 5]" corresponds to the amplitudes of the
PRBS signals used in an 8 h identification experiment (Westerlund 1981). For com-
parison, a more restrictive constraint is also considered.

In analogy with the discussion in Example 1, it is seen that the feedback gains of
the sub-optimal amplitude-constrained controllers correspond qualitatively to linear-
quadratic-gaussian controllers with a penalty on the input variances: c.f. eqns. (4.5)
and (4.8) and Table 3.
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The Figure shows the inputs and the outputs of the system when using the sub-
optimal amplitude-constrained strategy. The results show that good control
performance is obtained with realistic values for the amplitude constraints. In practice
a design procedure which combines amplitude constraints and variance restrictions of
the type (4.7) could be useful.
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Inputs and outputs of the system (4.3) when controlled by the amplitude-constrained
controller u;=sat (f;T y; «), «=[0-15, 377, of Table 3.

5. Conclusions

The paper presents a sub-optimal controller for multivariable stochastic systems
for the case when the control signals are constrained in amplitude. The structure of the
controller is taken to be a linear feedback with saturation. Previous investigations
dealing with continuous time systems (Wonham and Cashman 1969) and discrete time
single-input systems (Toivonen 1983 b) have shown that linear saturated controllers
may give near-optimal control performance.

The procedure described in the paper is a multivariable generalization of the
method given in Toivonen (1983 b). In this approach the closed-loop covariances of
the amplitude-constrained system are evaluated by approximating the stationary
probability distribution of the state by a gaussian distribution. In numerical examples
this approach has given sufficiently accurate estimates of the closed-loop covariances
to be useful for optimization of the regulator parameters. Minimization of a stationary
quadratic loss function gives a set of coupled matrix equations which can be solved
iteratively to give the optimal feedback matrix.
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The procedure gives a straightforward and computationally simple design method
for amplitude-constrained systems. Examples show that it could be useful in many
practical situations. The method is, however, restricted to open-loop stable systems,
as an unstable stochastic system cannot in general be stabilized when the inputs are
constrained in amplitude.
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