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Disturbance error reduction in multivariable optimal control systems{
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The paper deals with the design of optimal multivariable controllers, using a
modified LQR approach. All controllers discussed contain proportional feedback
and, in addition, there may be feedforward, integral action or state estimation.

The disturbance reduction properties of the systems arrived at are evaluated
and compared, using frequency response curves for the different output variables,
together with singular value plots.

The investigations are based on the use of the CAD-systems DAREK and
CYPROS.

1. Introduction

One of the most important tasks of a control system is to reduce the effects of
disturbances on the system's outputs. The effectiveness of the controller in reducing
disturbance errors is therefore an important design criterion. A complete rejection of
the effect of disturbances on the output variables is, in some cases, possible and a
suitable controller may be designed via the geometric approach (Wonham 1979,
Takamatsu, Hashimoto and Nakai 1979, Kiimmel and Ohrt 1981). Although this
approach may work well in special cases, it also has some rather severe drawbacks.
For example, the design procedure is not straightforward and it is difficult to include
other design parameters such as optimality and robustness.

Another possibility is to use frequency domain methods, eventually combined with
linear quadratic methods (MacFarlane 1981, Doyle and Stein 1981, a number of
articles in LE.E.E. Transactions, AC-26, February 1981, special issue on linear
multivariable control systems). The design of multivariable systems in the frequency
domain is, however, rather complicated, at least compared with linear quadratic
methods,

The purpose of the present paper is to demonstrate the use of a modified LQR
(Linear Quadratic Regulator) approach in the design of multivariable controllers, and
to show how the disturbance error reduction properties can be visualized using fre-
quency analysis.

2. Problem statement
Let
%x=Ax+Bu+Cr

(1)
y=Dx
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represent a linear time invariant dynamic system, where x, u, y represent as usual the
state, the control input and the output, and v represents process disturbances. In
addition there may be sensor noise and disturbances that act directly upon the output
¥, but these types will not be considered here.

A quadratic performance criterion will be used

J=1 f DT Q,y+u"Pu) di
0

[xTOx+u"Pu] dt )

=}
where
Q= DTQrD

and where we have assumed that the reference value y,;=0. The reason for using this
performance criterion is to keep the output variables close to zero under the influence
of process disturbances and, at the same time, to economize with the control effort.

To evaluate the disturbance reduction properties of the system arrived at, we may
look at the transfer matrix H,,(s) between disturbances » and output y

Y(8)=H,(s)x(s) 3

We may for example display the frequency response curves | y,(je)/v( jo)|, these
giving a good indication of how one particular disturbance acts upon one particular
output variable. It is also possible to have a more general evaluation, for example by
using some measure of the ‘size’ of the transfer matrix. The measure we shall use here
is the maximum singular value &(s), which is identical to the Euclidian norm, that is

() =V [Amax(H*(jer) H(jeu))] 4)

In addition to that a(w) indicates an overall performance, it may also be taken as the
‘worst case’ response, since

(w) 2 | yi(jew)lvy(je)| (5)

This relation also reveals a serious drawback using &(w), namely that if, for
example, all |y;(jw)/vjw)| except one, are very small, then it will be this larger one
that determines 5(w). We shall demonstrate this fact below in § 5. One problem that
occurs using the quadratic criterion (2) is the choice of the weighting matrices Q,
(output) and P (controls). Let us assume that P is chosen according to the “price’ of
the different control variables. We may then choose Q, according to which weight we
place on keeping the different output variables close to zero. There is, however, the
problem that with the chosen Q, the system may not have sufficient stability margin,
although we know that the system has absolute stability.

This problem may be solved using a method developed by Solheim (1972, 1980)
whereby it is possible to modify the original Q-matrix so that desired stability proper-
ties may be achieved. This is why we stated in the introduction that a modified LQR
approach is to be used. In order to simplify the computation of the frequency response
curves, we may put the different controller configurations into a general framework.
To this end we shall use the following standard form of the transfer matrix H,,(s)
throughout the paper

H,(s)=D(sI- )~' C (6)
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where the tilde ~ indicates modified matrices corresponding to the actuval configura-
tion.
For the open loop case the transfer matrix is simply

H,(s)=D(sI—A)'C (7)

We shall now proceed to a detailed discussion of four possible controller configura-
tions.

3. Proportional feedback

See Fig. 1.
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Figure 1. Proportional feedback.

We use the control law
u=Gx (8)

where G=—P~'BTR and R is the solution of the usual Riccati equation. The transfer
matrix becomes

H,(8)=D[sI—(A+ BG)]~'C 9
Thus, in egn. (6)

D=bD, A=A+BG, C=C
To illustrate the behaviour of the different controller configurations, we shall use the
same simple process throughout the paper:

(-2 0 0 10
A= 1 =1 —1|, B=|0 1],
0 10 =5 0

[0 10] [10]
D= , C=1,, P=
0 0 1 0 5

Example |
We place equal weight on the two output variables y, and y,

0 0 0
O 100 0 Q=DT Q,D=|0 100 0
= or == =
’ 0 100 g
0 0 100




50 O. A. Solheim and U. Stenhaug

The eigenvalues of the closed loop system (4 + BG) then become
—2:92, —5-62+j4-56

The eigenvalue at —2-92 is too close to the imaginary axis, so we choose to move it to
— 8. This can be achieved through the modified Q-matrix

55-09 -—-10-32 12-04
O=|—1032 1019 —2-26
1204 —-2:26 102-6
The feedback matrix becomes
—5-88 —1-88 —1-03
G
—-0-38 —-5-36 —0-98
We compute |y(jo)/vjw)|, i=1,2, j=1, 2, 3. The result is shown in Fig. 2. This
figure also shows the a-plot.
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Figure 2. Example 1.

If the performance of this system is not satisfactory, there are several possibilities
for improvement, as for example increasing the elements of the Q,-matrix, introducing
feedforward or adding integral action. All these measures will be considered in the
following.
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Example 2

Let us start with increasing the weight on the output variables. Let

0,= 1000
"

1000

0
0

0

0

0

0

] or @¢={0 1000 0

1000

We check the eigenvalues:
—2:99, —11-39 + j5-403

We note that this new Q-matrix does not change very much the eigenvalue closest to
the imaginary axis. We again shift this eigenvalue to —8 through the modified
Q-matrix:

[ 5495 —5-38 14-647
QO=| —5-38 100l —1-43
| 1464 —1-43 1004
The feedback matrix becomes
[ —5-97 —3-62 —1-487
G=
| —0-725 - 168 —593
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Figure 3. Example 2.
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The frequency response curves together with the 5-plot are shown in Fig. 3. We note
that a considerable improvement has been achieved for most of the curves but very
little, for example, for y,/vs. The general improvement is also indicated by the G-plot.

4. Proportional feedback and feedforward

Assuming that the disturbances can be measured, we may introduce a feedforward
control matrix G, in addition to the feedback control matrix G,, Fig. 4. In order to
achieve exact optimal control, it is necessary to know the future disturbances. If we
assume constant disturbances, the situation becomes simple, since the optimal
solution in this case is a constant feedforward matrix given by

G,=P~'BT((A+BG,)"!)"RC (10)

where R again is the solution of the usual Riccati equation and G, is the same feedback
matrix as in (8).
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Figure 4. Proportional feedback and feedforward.

If the disturbances are constant or slowly varying (slowly relative to the process
dynamics) we should expect that the disturbance reduction properties are improved
compared to the feedback-only case. For more rapidly varying disturbances the situa-
tion could be different.

We get the transfer matrix

H, (s)=D[sI—(A+ BG,)]"(BG,+C) (11)
The matrices used in the standard form (6) will then be
D=D, A=A4+BG,, C=BG,+C

Example 3

We use the same Q-matrix as in Example 1, and thus the feedback matrix will be
the same. The feedforward matrix becomes

—0-754 —0-504 —0-293
Gz=

—0-0188 —0-671 —0-410
The frequency response curves and -plot for this example are shown in Fig. 5.
Comparing these curves with those of Fig. 2 (Example 1), we note that a considerable
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Figure 5. Example 3.

improvement has been obtained except for y, /v, which is better with feedback only.
This is, however, what we must expect in a multivariable system. The overall situation
may improve, as s also indicated by the &-plot in this case, but for some of the variables
the situation may deteriorate.

5. Proportional plus integral feedback

In order to improve the steady-state and low-frequency performance, we may try
to include an integral action in the feedback loop, Fig. 6.
The control law becomes in this case:

u=G;x+ G,z (12)
where z is the integrator output, described by
2=Fy=EDx (13)

The E-matrix will single out those output variables for which we want to improve the
steady-state and low frequency behaviour.
Let us establish the augmented system

x 450 B C

:| | EDiO 0 0
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Figure 6. Proportional plus integrai feedback.

In order that this system be controllable, the system (A4, B) must be controllable and
in addition must dim z<dim w. There can, therefore, be no more integrators than
control variables.

Combining (12) and (14) yields the closed loop system

AEEGH 14BE; C
ED Opxp Op)(n
=A%+Cv (15)

Here p=dim z, n=dim x.

From (14) we note that the eigenvalues of the open-loop system consist of the
eigenvalues of the process A and as many eigenvalues at the origin as there are integra-
tors. The effectiveness of the integral action will now depend upon how far to the left
we shift these last eigenvalues. Compared with a conventional Pl-controller, a large
integral time corresponds to a small shift of the eigenvalues.

The matrices in the standard transfer matrix (6) are for this multivariable PI-
controller

b =[D O x .p]
where m=dim y and p=dim z.
A and C are as given in (15).

Example 4
We choose E=[0 1] and start with the same Q, as in Example 1. We need an
augmented Q-matrix:

0 0 00

0 100 0 0
Q___

0 0 100 0

las 0 oo
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With this O-matrix we get the following eigenvalues

0, —292,

— 562 4 j4°56

We choose to move the eigenvalue at —2-92 to —8, and, starting with a rather weak
integral action, we move the eigenvalue at the origin to —0-5.
The corresponding (-matrix becomes

55-1  —10-23  12-1 0-517
-10-23 1031 —1-47 645
Q=
12-1 —1-47 103-1 4-19
0-51 645 419 34-28 |

which yield the feedback matrices

(=59  —207 —115
.- ]
| 0414 584 —13
[—1:02
G,=
| —2-58

We should now expect that all |y,(jw)/v,(jw)| =(—cc dB) as @ 0. This is also the
case but, since the frequence range for the plots starts at w=0-1, this is not quite clear
from the frequency response curves, Fig. 7. We see, however, the trend. These curves
are to be compared with those in Fig. 2 (Example 1) for the corresponding proportional
feedback case. We note that the integral action is effective below w= 2. We note also
that for y,/vs the situation has deteriorated. Remembering that y, is not input to an
integrator, this is what can be expected.

We also note that the -plot in Fig. 7 does not exhibit the shape that we perhaps
should expect when using a PI-type controller, aithough we note some low-frequency
improvement comparing with the é-plot in Fig. 2. The reason why & does not have a
typical integral shape (->— oo dB as w->0) is, of course, that there is still a large
element in the H,,(s) matrix when w—0, namely y,/v;. This is a weakness in g-plots
and shows the usefulness of individual y;/v; plots.

Example 5

We start in the same way as in Example 4 and move the eigenvalue a —2-92at —8
as before, but we will now try a stronger integral action and move the eigenvalue at
the origin to —2. The result is

[ 552 —8&-8 13-04 817
—8-8 1213 10-35 103-1
Q=
13-04 10-35 110-8 67-06
| 817 103-1 67-06 548-4 |
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Figure 7. Example 4.
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[ —5-94 —-264 —1-53
G,=
| —0-53 -73 —-2:25
[ —4-09
Gz=
| —10-13

The frequency response curves together with the a-plot are shown in Fig. 8. Compared
with the previous example, Fig. 7, we have now improved the low frequency per-
formance for all curves, except for y,/vs.

6. Proportional feedback with state estimation
See Fig. 9.

CONTROLLER

,___---
(o]

Figure 9. Proportional feedback with state estimation.

The total system is described by

X V BG x C
% KD | A+BG—KD £ Opxn
=A% +Cv (16)

where £ is the estimated state and X the augmented state.

Fortunately, the design problem can be divided into two independent parts, since
we can design the feedback system (4 + BG) independently of the estimator (4 — KD).
For the estimator design there are several possibilities, as for example an optimal
estimator (Kalman filter) or a modal type, based on eigenvalue placement. The design
of an optimal estimator is based on a stochastic description of process disturbance and
sensor noise. As we are considering more deterministic signals here, such a design is
not directly applicable, It is, however, possible to modify the design by combining an
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optimal and a modal estimator. Let us assume that we have some knowledge about the
sensor noise, so that we can specify the noise covariance matrix W. If we now in
addition specify the eigenvalues of the estimator closed-loop matrix (4 — KD), we may
use the same technique as for designing optimal feedback systems with specified
stability, since these are dual problems (Solheim 1972). The result is not directly an
optimal estimator but an estimator with prescribed stability that weighs the measure-
ments according to their noise contents.
The matrices in the standard transfer matrix (6) are in this case

D=[D : 0]
A and C as given in (16).

Example 6

We use the same feedback controller as in Example 1. We specify the sensor noise
covariance matrix as
1 0
W=
01

which means that both measurements contain the same amount of noise.
Let us specify the eigenvalues of the estimator (4 —KD) as

-4, -6, -1
Comparing these with the eigenvalues of the feedback system
—8, —5-62+j4-56

we note that they all lie in the same area.
The specified eigenvalues of the estimator may be obtained by using the process

disturbance covariance matrix
25-6 166 20-8

V=166 16-7 30-1

20-8 30-1 74-3

‘We may consider this matrix as a description of some sort of fictional process dis-
turbances.
The estimator gain matrix becomes

2:15 2:54
K=|18 29
2:95 X 7:2

The frequency response curves of the transfer matrix H,(s) are shown in Fig. 10
together with the &-plot.

Comparing with Example 1, Fig. 2, which is the same system without estimator,
we note that the performance has deteriorated. We will therefore try a new estimator
that is somewhat faster than the feedback system itself.
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Example 7
We specify the eigenvalues of the estimator as

—-10, -12, —15
Comparing again with the eigenvalues of the feedback system
—8, —5-62+j4-56

we note that the estimator is now somewhat faster than the feedback system.
We get the covariance matrix

6773 1228 398
V=|1228 295 151

398 151 164
and estimator gain matrix

68-7 22-8
K=117-0 9-5

9-5 120

The frequency response curves and &-plot are shown in Fig. 11. We note that the
performance has now improved from the previous example and is not very much
inferior to the case without estimator, Fig. 2.
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Figure 12. é&-plots for all examples.
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7. Concluding remarks

In order to compare the different cases more easily, all the o-plots are shown in
Fig. 12, all the y,/v,-plots in Fig. 13 and all the y,/vs-plots in Fig. 14. In addition we
have also shown the case without control in these figures.

The design technique is fairly straightforward and can be adapted to different
controller configurations. The frequency analysis is made easier by putting all the
different configurations into a standard framework.

The &-plots give a useful evaluation of the performance of the system, although
there are some weaknesses in using such overall descriptions. A better evaluation can
therefore be obtained by also including curves that show how the individual dis-
turbance variables influence the different output variables.

In producing the above results we have used the computer-aided systems DAREK
(Pedersen, Pohner and Solheim 1972) and CYPROS (Tysse 1980) at the Division of
Engineering Cybernetics, The Norwegian Institute of Technology.
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