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Adaptive ship autopilot with wave filter
S. SAELIDt and N. A. JENSSEN}§
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This paper is concerned with analysis and design of an adaptive autopilot for ships.
The design is based on a low and high frequency model of the vessel motion
adequate to ship steering. The low frequency model describes the vessel response
to rudder control and slowly varying environmental forces. The high frequency
model represents the wave induced oscillatory part of the yaw motion. The
models are used in a Kalman filter and the rudder control is computed from linear
quadratic theory based on the low frequency part of the vector. This yields a very
effective filtering of the wave component of the yaw motion. Proper operation of
this filter/controller structure requires knowledge of the vessel model parameters
and the dominating wave frequency. The vessel parameters are estimated on line
by a recursive prediction error method. In order to reduce the computing require-
ments, the state estimator is operated using scheduled gains. This results in an
easy and robust design. The convergence properties are investigated by using the
method of Ljung. The performance is confirmed by simulation experiments.

1. Introduction

Traditionally autopilots for ship steering are based on a PID controller. The
measured heading signal is compared to the desired heading and the error is used as
input to the controller, which activates the rudder servo mechanism. Proper perform-
ance of this kind of autopilot requires individual tuning for each installation. In
addition the vessel dynamics changes with vessel speed, sea current, load, wind and
water depth. This results in bad control behaviour and economic loss due to counter
forces induced by cross coupling between yaw rate and sway velocity when the course
is changing. By tightening the control loop, the course deviations may be decreased.
This, however, results in retarding forces due to the increased rudder motion.

It has been shown by Norrbin (1972) that the average increase in drag due to
yawing and rudder motion can be approximately described by

AD
3————.1[!1;14- .;\52] (l_}

where D is the drag, §? and 8 are the mean square of the heading error and the rudder
angle respectively and « and A are ship dependent parameters.

In recent literature several authors have proposed and analysed different kinds of
adaptive autopilots. Some are based on tuning of PID parameters to approximately
minimize AD/D, others are based on model reference technique. References to these
works are given in Kéllstrom et al. (1979). Astrom and Kallstrédm (1976) and Kallstrém
et al. (1979) have designed and analysed an autopilot based on a self tuning regulator.
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The model used in the regulator is of black box type having, e.g. seven unknown
parameters to be estimated on line. An alternative approach is to use a model based on
physical laws and physically meaningful parameters. This makes it possible to include
known mechanisms and to neglect minor effects and parameters a priori.

This paper describes a design and analysis of an adaptive autopilot based on this
kind of model. The model has six states and four parameters. The states are estimated
by a scheduled gain state estimator and the parameters are estimated by a prediction
error method. Feedback from the state estimates are computed partly from optimal
control theory.

A main contribution of this paper is the choice of the vessel model, which has two
parts. A low-frequency part (LF-part) accounts for the steering dynamics when oscil-
latory water waves are not present. A high-frequency part (HF-part) models the
oscillatory part of the yaw motion due to water waves. Now the autopilot should not
try to counteract the HF-motion. Control of this motion would increase the drag both
in terms of rudder action and yaw oscillation relative to the water masses. Hence the
controller takes feedback only from the LF-part of the motion estimate. In a conven-
tional autopilot, much of the rudder action power is concentrated near the wave
frequency (Ohtsu et al. 1979). This is also indicated in a paper written by Kéllstrém
and Astrom (1981). They found a pair of complex conjugate poles from a steering
dynamics identification experiment using real vessel measurements. The present
approach should therefore yicld better results with respect to increased drag due to
autopilot operation.

Section 2 of this paper presents the model used in the autopilot and § 3 describes
and analyses the state estimation, the parameter estimation and the control algorithms.
A convergence analysis based on the method of Ljung (1977 b, 1981) is presentedin § 4.
Simulation results are shown in § 5 where the adaptive autopilot is tested against a
realistic simulator.

2. Ship steering model
An HF-model and an LF-model are formulated.

LF-model

For the present purpose we use the following linearized model as a starting point
(Norrbin 1970).

F a 11 a 12 r b 1
=Ug +H02 3 (2)
i dy &, v b,
where r is the yaw rate, v is the sway velocity, u, is the cruise velocity and 8 is the

rudder angle. a’;; and ’; are constant parameters depending on the type of vessel. The
transfer function from v to r becomes

_ ug*(bys+uh,)
s (s+uoa, (s+uoas)

where b,, b,, @, and a, are parameters given by a';; and b’,.
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Now, we generally have that 4, /a, is of the order 10-20. An acceptable approxi-
mation is therefore to assume a,=0. Then we get the following state space represen-
tation where also the yaw angle ¢ is included in the model of the steering dynamics.

b=r
F=ug,r+v+ugy? b, +noise 3)

b=ug® b8+ noise

where v is a state variable approximately proportional to wyv defined in eqn. (2).

Note that a further simplification would be to introduce the Nomoto model
H(s)= K/s(1 4+ Ts). However, it turns out that the zero in the transfer function resulting
from egn. (3) is quite important from the control point of view. If the sway equation
is totally omitted, a clear decrease in the quality of the autopilot operation is ex-
perienced. This is easily seen by simulation experiments.

HF-model
For the HF-part of the yaw motion the following model is chosen
w=S$+ noise
@)
§=—cw

where w is the HF-part of the yaw angle, s is the corresponding rate and c is the square
of the angular frequency of the oscillation. This model is also used for similar purposes
in dynamic positioning applications (Balchen er al. 1980). The model is only neutrally
stable. This, however creates no problem when used in a Kalman filter structure. Note
that process noise is included only in the w-equation. This is done in order to minimize
the influence of the HF-model at the low frequency end of the motion spectrum.

Measurement model
The yaw measurement model is given by

y=1+w+noise 5)

3. Estimation and control algorithms

The adaptive autopilot is designed in discrete form. The continuous equations are
discretized by the Euler method, and the sampling time is assumed to be equal to
AT =1 second.

The structure of the adaptive auto-pilot is given in Fig. 1.

A steady state Kalman filter is used as a state estimator, with gain scheduling
dependent on the parameter estimates. The feedback control is taken from the
LF-part of the state estimator. The adaption algorithm estimates the parameters using
a prediction error based Gauss-Newton method and continuously adjusts the model
parameters of the filter and the feedback control parameters.

State estimator

A Kalman filter with scheduled gains is used as a state estimator. In order to obtain
integral action of the total controller a new state is introduced in the LF-part of the
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Figure 1. Adaptive autopilot structure.

model. This state accounts for unknown steady moment generating forces from wind,
current etc. The discrete model becomes

a1 =u+ri
w1 =an+ 0+ b, 8+ ny, LF-model (6)

Ukg1 =Ug+pk+f.323k+n2k

Pra1=Hag
41 =COS A/C * e+ (5in A/€)A/€ " S+ s
HF-model (7
Sks1=—1/CSIN /€ - w+ €COs V/C " 8
Vi =+ g+ wy Measurement 8)
model

where k is the discrete time parameter. p, is the new state variable representing slowly
varying current and wind generated moments and ng, i=1, 2, 3, 4 are white process
noise components.

Instead of the previously defined parameters we have redefined the parameters so
that a2(1—wuea,), by 2ue* b, and b,2u,*b,. We observe that a,b, and b,
depends on u, in a predetermined way. When known changes of u, are introduced
the parameters a, b, and b, are changed according to these known relations. However,
throughout the remaining part of this paper, u, is assumed to be constant.
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On vector form the total state model becomes

Xyt 1 =PoXx+ Botyy+m,
9)
Yi=Dxy+w,

where xi= [, I, Vs Pro @ Sk175 M= [0, 114, Mgy, Mgy Mgy, 0]" and B, and ¢, are the
control and transition matrices with the actual parameters inserted as defined by
egns. (6) and (7). The white noise processes are characterized by E(n,) =0, £(w,)=0,
cov (m)=diag {0, N,, N,, N3, N4, 0} and cov (w,)= W.

The filter equations may be written

ik+ 1 =§6‘i;‘+BH;‘+¢’K€l (10 a)
Y=+ e&=DX; + & (10 b)
-ek:fk"‘ng (IO L‘)

where X, is the a priori estimate of xy, % is the a posteriori estimate of x,, ¢, is the
prediction error, J; is the measurement prediction and ¢ and B are the transition and
control matrices with the estimates of the parameters inserted.

Now the Kalman filter gain matrix K=[k,, k,, ks, kg, k5, k)T will be independent
of the parameters b, and b,, but will change slightly as a function of a and ¢. For
realistic vessels and waves, a and ¢ will certainly be in the range

ac[0-7, 1-0] }

c€[0-1, 0-8]

(1)

The noise parameters are chosen as cov (w;)=10"%(rad)?® and cov (m)= diag
{0, 10-5, 10-%, 10-'2, 3x 10~*, 0}. The steady state Kalman filter gain matrix X for
some values of the parameters are shown in the Table. In the autopilot, the parameter
space (a, c) defined by eqn. (11) is discretized in a 4 x 5 grid and the steady state filter
gain is computed for each parameter combination a priori. During operation the actual
gain matrix is interpolated between the gridpoints in the two dimensional parameter
space. In addition k5 and kg are fairly constant so only k,, k,, ks and k. are inter-
polated. This results in a very modest computational burden.

The feedback law

As explained in the introduction, feedback is only taken from the LF-part of the
state vector. The wave induced oscillatory part of the measurement will then be
absorbed by the HF-model of the filter and will not be transformed into rudder action.
This yields a very effective wave filtering which will later be demonstrated by simula-
tion experiments. We shall therefore discuss the control law in relation to the
LF-model.

The feedback law is chosen to be given by

Uy = g1 (P — Prer) +82Fk— ﬁkfz’l (12)

where g, and g, are feedback constants, i, is the set point, and b, is the estimate of
b, at time k. !ﬁk, i and By are a posteriori estimates. The last term in eqn. (12) counter-
acts the influence of v and p, and will give integral control action in the system.
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a 0-1 0-2 0-4 0-6 0-8
ky 1-44E -2 1-16E—1 9-T1TE-2 8-99E—-2 8-53E—-2
k, 0-7 6-49E—3 6-30E—-3 6-16E—3 6-10E -3 6-10E—3
ks 8-29E—1 8-57TE—1 8-75E—1 8-83E—1 8-88E—1
ke 1-17E—1 I-22E—1 1-221E-1 1-14E—1 1-03E— 1
ky 1-80E—1 1-44E—1 1-19E—1 1-08E—1 1-02E—1
ky 0-8 9-32E—-3 9-01E—3 8-76E—3 8-64E—-3 8-57E—-3
ks 7-93E—1 §-30E—1 8-55E—1 8-64E—1 8-72E—1
ke 1-33E—1 1-40E—1 1-41E-1 1-33E—1 1-20E—1
k, 2-50E—1 1-95E—1 1-56E—1 1-39E—1 1-29E—1
k, 09 1-62E—2 1-53E—2 1-44E -2 1-40E—2 1-37E-2
ks 7-24E—1 7-80E—1 8-19E—-1 8:36E—1 8-45E—1
ke 1-59E—1 1-70E—1 1-72E—1 1-:62E—1 1-47E—1
ky 4-06E — 1 2-94E—1 2:22E=l 1-92E—1 1-75E—1
k, 1-0 3-87E-2 3-28E-2 2-84E—-2 2:64E—-2 2-53E-2
ks 5-70E—1 6-82E—1 7-55E—1 7-85E—1 8-02E—1
ke 2-00E-1 2-1SE-1 2-18E—-1 2:06E—1 1-87E—1

Note: k5 is nearly constant and equal to 1-80E—3.
kg4 is nearly constant and equal to 1-10E—5.

Filter gains as a function of g and ¢.

As long as the parameter estimates are close to their correct value, the stability of the
control depends on the eigenvalues of the matrix (¢ r — By G) where ¢, ¢ is the tran-
sition matrix for the LF-subsystem and B, is the corresponding control matrix.
G is the feedback operator. We have from eqgns. (12) and (6)

| | 0 07
—bgy a—byg; 0 0
: - (13)
(éLF_BLFG)= b,
—bgy —bgr i1——= 1
1
T O o =gl

Two of the eigenvalues are A=1 and A=1-—b,/b, respectively. A=1 represents the
integral action (p, is uncontrollable) and A=1—b, /b, is due to the compensation term
—,/b, in the control law. This mode will certainly be stable, because we always have
that b,/b, <1.

By looking at the matrix (13), we observe that the two first states are completely
decloupled from the remaining part of the control. This means that g, and g, can be
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derived from optimal control theory applied to this decoupled system. We assume the
following quadratic functional (see eqn. (2))

J=E@h’ +28,%)

In the continuous case the controller gains g, and g, are given by (14). These gains are
approximately equal to the optimal gains in the discrete time case when AT =1 second.

gl=\/(l}r)‘)
B l—a 2+2 1] 1-a a4
Lo 5. ) ThA| B
Parameter estimation

The unknown parameter vector is defined as 8=|[a, c, b, b,]". The parameter
estimation algorithm is chosen as a prediction error algorithm of the following form
(see f.ex. Ljung 1981).

O 1 =0+ R "Wy - < (15)
Ryy 1= R+ — Ry) (16)
where @, is the parameter estimate at time k, y, is a positive scalar gain sequence
tending to zero such that k - y,—>p, 0<p <oo when k—>co. ¢ is the filter prediction
error, ¥, is an approximation to ¢e,/?8 and R, is an estimate of E(Y,"). In order to

avoid inverting R, in egn. (15) the following formulation of egn. (16) is used
where Py=y, - R~ .
1
Pu+|'—”ﬁ- Pl — (P + Be) ™ "] (17)
k

where I is the unity matrix and
Bx=%i- 10 —vi)lvx (18)

The sensitivities i,/ =e,/¢6; are computed by derivation of the equations for
Ax, = x,—x, with respect to §,. We obtain from eqns. (9) and (10)

A, x,‘ o cB ax; Cy
S KD) Tt T e M AR (19

Now we assume that Ad=¢ —¢, and AB= B— B, are small and we neglect the two
last terms of egn. (19).
Hence we have

CAXy 4+ cAx, éB K
351 —7—=¢I—-KD)—# ré -.éiit_a_gi“k_?s?_éifk (20)
cAx
Wi=D - —5= @n
i

This yields 24 ordinary differential equations of a very simple structure. These
sensitivity equations have to be solved recursively and together with the state estimator.
The resulting i, ’s are used for parameter estimation via the algorithm given by eqns
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(15) and (17). 2K/26, are computed from the precomputed values of K and are approxi-
mated by constants. This is possible because X is fairly close to linear in the parameters
aand c.

4. Convergence analysis

We want to investigate the convergence properties of the recursive parameter
estimation scheme used in the autopilot algorithm, Ljung (1977 a) has shown that the
stability of an associated time invariant deterministic ordinary differential equation
can be used to study convergence properties of this type of recursive algorithm. In the
present case this ordinary differential equation becomes

0=R-'-£(0) 22)

R=G(0)-R (23)
where we define
C
f(0)=E [P—;* e&] and G0)=E [@ -éﬁ;]

& is the prediction error which would result if the parameter estimate # were constant
and cqual to a given value for all k. Now the theory of Ljung says that the algorithm
converges if the eqns. (22) and (23) are stable. We therefore have to find expressions
for & and /20 in order to investigate the stability of the parameter estimation
algorithm,

From the state estimator equations (10 a)(10 ¢) we obtain by z-transformation
and some algebraic manipulations and assuming # is constant

Ayy= Bu, + Cg, (24)
or
Ayg"—- Buk + (A + C}G-k (25)

where 4, B and C are polynomials in z given by
A=H,* H, - H?
B=H,-H?2 b,+H,-H, b,
C=H(H,  H* k', + H? - k', + Hk'3s + k') + H, - H?[{(cos +/c—1)
x Hy—sin? y/c}k’s +{(cos v/c— 1)+ Hy} sin v/c - k'¢[+/c]

where H,=[(z—cos? 1/c)? +sin? y/c], H,=[z—a], H;=[z—1]and H,=[z—cos y/c].
k’; are the elements of the modified filter gain ¢ K. If the correct parameter vector value
is given by 0, =[a,, co, b0, b20]", We can express &, as

|
=€ +A_+C [AAy,—ABu, —(AA+AC)e] (26)
where AA=A— Ao, AB=B— By and AC=C—Cy. Ao, Bo and C, are the polynomials
corresponding to =0, and ¢, is the prediction error when #=60,. Now we know that
eqn. (25) is equivalent to egns. (10 a)—(10 b). Because eqgns. (10 a)—(10 b) have the
same form as egns. (20) and (21) we get by equivalence to eqn. (25).

e, 1 [e4 B 24 eCc\1.
SRbe lNE,. S [££, 9% 27
A+C[Eéy" " (eé+Fé - ey

(%3]

3|
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By using the fact that AB=(¢B/cf) - A0 and that AA=(cA/c0) - AG,
AC~(2C[20) - A8, A0=0—0, and comparing eqns. (26) and (27) we obtain the
following relationship

A+C BE,"
Ag+Cy 07

From Ljungs work (1977 b), it is then clear that the parameter estimator is stable

if the transfer function

(28)

El‘.=ek+

_ A4+C
" Ag+Cy

3 (29)

is positive real.

In order to investigate the stability properties of the algorithm, we have assumed
that a; =09, co=0-2 and computed the minimum value of (F+ F*—1). An isoplot of
Fr=min {(F+F*—1); |z| =1} is shown in Fig. 2 (a) for different values of 4 and é.
The non-positive area is indicated as the hatched part of the plot. We observe that the
algorithm is stable for a broad range of 4 and &. The unstable combinations occur at é
small, 4 large and for ¢ large, @ small. The estimator should therefore prevent 4 and ¢
from entering these domains. Three plots of Fg as a function of frequency are also
shown in Fig. 2 (b—d). For d=1, ¢=0-1, the instability occurs in the low frequency
domain. For 4=0-8, ¢=0-7, the instability occurs in a higher frequency domain which
is quite natural.

5. Simulation experiments

In this section we shall give some of the simulation results where the control system
is working against a computer implemented simulator. The simulator includes
realistic wave excitations in yaw, unknown steady moments from wind and current and
white process noise excitations of the sway- and yaw-rate equations. The dynamic
relations between r and v are simulated by eqn. (2). The coefficients are taken from
Killstrém (1979) and represents a cargo ship of the Mariner class. The coefficients of
eqn. (2) are given as

uod' 1y =—0036; woa'y;=—025; wod s =—0-00099; Uoa 5= —0-098;
ug? by =0:060; uy2 b ,=—0-0036.

During the initial adaptive period (for approx. 20 minutes) the heading reference
is cycled with a period of 5 minutes and an amplitude of 4°. The actual ship heading is
shown in Fig. 3 a). The control is very bad during the first 5-8 minutes until the para-
meters have converged. The parameters converge in 10 to 15 minutes. Comparing the
parameter estimates to the equivalent simulation model parameters, the estimates are
correctly estimated within roughly + 109, of actual values.

In order to prevent the parameter updating gains to go to zero when k—>co, B; in
eqn. (18) is set to 0-9975. The steady state operation of the autopilot is illustrated in
Fig. 4. Figure 4 (a) shows the heading measurement and the LF-estimatc of the
heading. As is seen, a very good wave filtering of the heading measurement is obtained.
Theactual HF-part of the heading (simulator HF-part) and the estimate of the HF-part
is shown in Fig. 4 (b) for the section from =300 to +=500 of Fig. 4 (a). The rudder
control corresponding to Fig. 4 (a) is shown in Fig. 4 (¢). The actual (simulated) and
estimated LF-part of the heading is shown in Fig. 4 (d).
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6. Conclusions

An adaptive autopilot based on a steering model of a ship with six states and four
physically related parameters is designed and tested against a simulator. The adaption
is based on a Kalman filter with gain scheduling and an error prediction based
parameter estimation algorithm. A special feature of the autopilot is a model of the
wave induced yaw motion which effectively reduces the wave excitation of the rudder
control. The convergence properties of the autopilot are analysed by Ljung’s method
and the effective operation of the system is confirmed by simulation experiments.
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