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A problem is considered of the minimization of a convex and monotonically
increasing cost function subject to an upper bound of a convex and monotonically
decreasing failure probability function. An algorithm is defined for the para-
metrical solution of the problem with respect to the selected failure probability
level; the algorithm is applicable to problems with cost and failure probability
functions that are not necessarily separable, thus extending a previously given
algorithm for separable functions. A condition is given for the relaxation of the
convexity assumption on the functions, and it is observed that the problem of the
minimization of the failure probability subject to an upper bound on the total cost
is solved simultaneously with the given problem. An analytically solvable numeri-
cal example is given and an application to the optimization of an OTEC energy
production platform is briefly described, with reference to a complete description;
it is concluded that the given extension of the algorithm to non-convex functions
is important in this application.

1. Introduction

The work described in this paper was applied in the optimization of an OTEC-
platform, used for offshore thermal energy conversion by harnessing the thermal
gradients between the ocean surface and great depths. The work is described in detail
in Fjeld, Stokke, Ronning, Mjelde, and Tvedt (1981). Several related aspects, includinga
model for inspection planning, are given by Sletten, Mjelde, Fjeld and Lotsberg (1982).

The motivation of the work is the high costs incurred in satisfying the requirements
of a reliable structure. This makes it desirable to study the design of the structure in
terms of a mathematical model of the minimization of the cost to obtain a selected
reliability; this selected reliability level being varied parametrically in order to discuss
the associated change of the total cost and the change of the design.

Methods of the allocation of resources to activities, see Mjelde (1983), are applied;
in particular an algorithm of Luss and Gupta (1975) is extended to the problem dis-
cussed in this paper. Following a description of the model and the associated solution
algorithm, the paper gives an analytically solvable example and a brief summary of an
application to the optimization of an OTEC-platform.

2. Method of structural optimization

A concise mathematical discussion of the formulation and the solution of the
optimization problem is given in this section.

Subject to a given geometry the structure is defined by a set of design variables,
denoted by W, ..., W,; and vectorized by W=(W,, ..., W,). A cost function C(W)
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is minimized subject to an upper bound on the structural failure probability P (W).
The resulting problem, denoted by Q, takes the form

Q: Minimize z=C(W)
subject to the constraints
P (W)<P,*
and
W>0

where C(W) and P,(W) are convex and differentiable functions of W: C(W) is
increasing and P (W) is strictly decreasing in each component variable W, for
i=1,...,n, and C(0)=0 and PH0)e{0, 1>. The optimal objective value of Q is
denoted by z.

Defining the marginal cost to failure probability ratio W) given by

ac E‘Pf N
W)= —W/e—m, i=1,..,n

a feasible solution W of Q is optimal if and only if the following Kuhn-Tucker
conditions are satisfactory for a subset A of {1, .. ., n} consisting of the indices i of
design variables W; with W,>0

W)= if icA (1)
2(W)> A of igA 2)
PAW)=P* 3)

where A>0 is a non-negative Langrange multiplier. The conditions state that the
marginal return ratios 7,(W) of all positive design variables are identical; a design
variable W; is zero if n(W) is not sufficiently small. If P,* is replaced by P, the
Lagrange multiplier A of the Kuhn-Tucker conditions, when considered as a function
of P, is denoted by A(P). A theorem of Everett (1963) demands that A(P) is monotonic
in the following sense

Py <Py=XP)> NP;) 4)
The method of solution proposed in this paper is based on the application of the

latter relationship to determine a value of A that satisfies the Kuhn—Tucker conditions
with P=P *; this is achieved by increasing A from the initial value

A= Min 7,(0)
i=1, ..,n

to a value such that P=P(W)=P *; a variable W; such that 7;,(0)= A starts to
increase first; the variable W,, starts to increase at a value A! of A, where

1, (W)=n,,(W)=A'
(W)= A" forig{i,, i}

where W satisfies W;=0 for i#i,. As A is increased, variables become positive when
a relationship analogous to the one given above becomes satisfied. A variable at a
positive value may also be reduced to zero again, when A increases. The values of A
where a variable becomes positive or a positive variable is reduced to zero, are deter-
mined numerically by the application of Newton or gradient methods. The proposed
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algorithm extends an algorithm of Luss and Gupta (1975) for the solution of a problem
of the allocation of resources to activities in a case where C(W#) and P W) are both
separable functions; the present extension being applicable to functions C(W) and
P /(W) that are not necessarily separable.

A value of A where at least one W; becomes positive or is reduced to zero is called
respectively an in-point or an out-point. If the set 4={i| W,>0} is denoted by A(})
for a given value of A, it follows that A is an in—out-point if and only if

AA—e)# A(A+¢)

for all sufficiently small values of >0, assuming that there is a finite number of in-out-
points in a relevant interval of values of A. An in-out-point satisfics the condition (1)
with W, =0 for all i¢A; an out-point satisfics the additional requirement that W, =0
for some ied; an in-point satisfies the requirement (2) as an equality for some i¢A.
For a given A this gives a set of equations for the possible in—out-points; the point
with the smallest value of A is selected. It follows that the in—out-points are generated
in a sequence of increasing values of \. When an in—out-point A with an associated
W such that P(W)< P,* has been obtained, a solution of the problem Q for a given
value of P,* is determined by the simultaneous solution of eqns. (1) and (3) with
W,=0 for i¢A. All the previously mentioned sets of equations are solved by any
convenient method, such as a Newton or a gradient method; a numerical example
with analytically solvable equations is given in the following section of this paper.

It is noted that the fundamental assumption of the previously given algorithm is
the condition (4): the algorithm is applicable if this condition is satisfied and if there
corresponds a uniquely determined value of W to each value of A. The implication is
that the applicability of the algorithm includes cases where C(W) or P(W) is not
necessarily convex. such as the OTEC optimization given in the final section of this
paper.

The algorithm solves two related problems simultaneously; the given problem Q
and the problem of the minimization of P{W) subject to an upper bound of C(W);
if Z=C(W) is the minimal cost for a given P(W)=P,* it follows, from the Kuhn-
Tucker optimality conditions of the two related problems, that P,*=P/ Wy is
minimal for C(W)<Z.

It is important that the algorithm gives a sensitivity analysis of the solution of Q
for selected values of P; the optimal value of Q as a function of P is denoted by A(P),
thus

z=C(W)=h(P)

The latter relationship, when combined with the economical consequences of a failure,
can be used to determine an economically optimal failure probability P by the mini-
mization of the total costs given by

Co=hP)+ P+ C,

where C; is the cost of failure. It is understood that the design variables
W, tor i=1, ..., n of the problem Q determine initial costs, and expected costs of
inspection and maintenance as parts of A(P). Furthermore, the cost h(P) and the
probability P refer to a given length of time, for instance a year and a given interest
rate and a given taxation system.
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The value of P,* in the problem Q must be chosen such that:
P f* <P

when factors such as a possible loss of human lives or public recognition are considered.

The effect of the approach is to avoid cheap elements with a high failure probability,
and to avoid costly elements with a low failure probability, since such elements
contradict the optimality conditions and represent respectively weak links and over-
designed elements.

3. Numerical example
A simple numerical example with n=2 is given as follows

=¥ w,

K "
PW)=Pyq [l B ;czx "x( Zl J’ikwl)]
— i—=
where Py, is an unknown constant, K=2 and the other data are given by
l‘k(et)=s,‘€,‘—mkek2; et{s;‘fzmg; k= l, 2
(51, 5,)=(1-3, 1-0)
(my, m)=(3-0, 1-0)

1-0 0-5
(va)= )
05 10

it follows that the expressions for ry(e;) for k = 1, 2 are valid for ¢, <0-217 and ¢, < 0-50.
The solution of the problem Q is given in Table 1 for three values of the cost C.

C W, W, Ps|Psq
0-06 0-06 0 0-9037
0-30 0 0-30 0-6625
0-40 0 0-40 0:6200

Table 1. Numerical example.

When C increases from C=0 to C=0-06, the value of W, increases from 0 to 0-06
with W, =0; a further increase of C causes W, to decrease and W, to increase until
W, becomes zero when W,=0-30; if C is increases in the interval [0-30, 0-40] the
value of W, stays at zero and W, increases to W,=0-40. The table contains an
in-point for C=0-06 and an out-point for C=0-30.
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4. Application to an OTEC platiorm

Fjeld, Stokke, Renning, Mjelde, and Tvedt, (1981) applied the previously given
algorithm to the cost-benefit analysis of the design of an OTEC platform, in terms of
the following design variables

W,: static strength

W,: redundance

W,: fatigue strength

W,: in-service inspection, damage
Ws: in-service inspection, warning
W,: fabrication control, gross errors
W,: fabrication control, fatigue

where the following normalizations are applied; W0, 1] for i=1,3,5,6,7:
W,ell, 3] and W,e[0-01, 1].
The cost is expressed as

C=Co(C1+Cy+ C3+C4+ Cs(} + Py 1ocar Cs)+Co+C7)

where C, is the cost of some base case and C, are coefficients describing the cost
variations by increasing efforts to improve the safety, and the probability P, jocar IS
defined below.

The expressions for the C, are

C,=AW,fori=1,3,4,5,6,7
C=1+4w,"%/4,
CB—'_-AB

for constants 4,, i=1, ..., 8.
The probability of failure is expressed as

Pr=P; 1oca "»62' ds
where the probability of local failure Py \ocq IS given by

P,r local :‘Po.f gross error ‘#’6+Pof accident+Pof static * ¢'l +Po,r fatigue ¢’3 " '#5 * ‘f".’

The P,, are failure probabilities for four independent failure reasons in an ‘initial’
situation i.e. before any of the safety measures/design variables are applied.

Expressions for the ¢, are given in Table 2, where the B; for i=1. ..., 7 are
constants.

The constants 4;, B; and the P,, in a numerical case are given in Table 3.

The Figure gives a sensitivity analysis of cost versus failure probability.

Since the failure probabilities are estimated only in a relative sense, a sensitivity
analysis, such as that given in the Figure, provides important information for a
decision on the total cost level of the structure: in the example of the Figure a cost
above the level from 2 to 3 will only marginally decrease the failure probability.

In this particular example the applicability of the algorithm was checked by the
validity of condition (4) and the unique solvability of all the equations involved for a
set of initial conditions, or there was no solution: the check was performed for an
increasing sequence of values of A. This check was applied, rather than deciding on the
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Design variable &
Static strength ¢y =10"B1ws
Redundance d,=B,""2
Fatigue strength $s=(1+wy) B3
In-service da=1—Bar/w,

inspection, damage
In-service - i ¢~

inspection, warning ¢s=1-Bs T—e-1
Fabrication control, dom Be

gross error T VIBsT+we)
Fabrication control, b= B,

fatigue (B, +wy)?

Table 2. The functions ¢,.

i 1 2 3 4 5 6 7 8
A, 0-8 16 0-2 10 10 0-03 0-1 10
B, 3 10 12 0-9 09 01 0-01

P, of gross error P, of accident P of static 5 of fatigue

L0 10-3 10—3 10—2
Table 3. Values of 4,, B, and P,,.
Cost
3
15+
ol =
5 -~

1
1072

L i
1074

1 L i i 1
1076 1078 10710

Failure probability

Sensitivity analysis

question of the convexity of P,(W) in a given region for the functions ¢, ) defined in
Table 2 (since the product of two convex functions is not necessarily convex, as
cxemplified by the product (4 — 1,) (4— W,) and the points (W,, W,)=(2, 2), (1, 3)
(1-5, 2-5)). However, for exponential functions ¢,(W,)=a, exp(—a;W,) the convexity
of P,(W) is obvious, such functions appear if the relationship ¢ ,(W,)= — oy d,(W,) is
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applicable, where ¢!, is the derivative of ¢,. Also note that, even for exponential
functions ¢;(W;), the convexity of C(W) is not clear due to the term
Cs - (1 + Py tocar Cg). It is therefore a particular advantage of the method proposed in
this paper that cases with non-convex functions can be treated without much difficulty,
subject to a confirmative check of the validity of condition (4).

The numerical example given here is only one of a large set of numerical cases
discussed in Fjeld, Stokke, Renning, Mjelde and Tvedt (1981): these cases constitute
a sensitivity analysis of the problem with respect to variations of the parameters within
their respective uncertainty-ranges.
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