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Compounding the losses of convoyed ships attacked by tactical
submarines
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It is demonstrated that a time dependent stochastic model for the losses of con-
voyed ships attacked by submarines can be applied in the determination of the
losses in terms of the results of two submodels:

(1) a model of the tactical options of an individual submarine captain and

(2) a new model of the total losses of ships inflicted by a single submarine in
the time interval since arrival at the operating area.

This approach gives simplicity and structure to equations that would, otherwise,
easily become complicated, except in special cases, such as a previously considered
case of submarines carrying weapons of a single type. An example of a scenario
with submarines releasing torpedoes and missiles is considered, and applied in the
motivation of the definitions of the gquantities of submodel 2 above. Various
applicational aspects are commented on.

1. [Introduction

A model for the time dependent probability distribution of the total losses of
convoyed merchant ships attacked by submarines was given by Mjelde (1975), and
applied to the case of each submarine releasing a maximal number of loads of a
weapon of a single type (torpedoes or missiles). The analysis of more complex
scenarios, such as submarines releasing missiles and torpedoes, frequently leads to
equations that are algebraically complicated, unless suitably structured. It is the
purpose of this paper to present such a structured set of equations for the time
dependent total stochastic losses due to several submarines, in terms of two
sub-models:

(1) a model describing the tactical options of an individual submarine captain, and

(2) a new model for the composition of the number of ships destroyed due to
several attacks by an individual submarine.

The total number of ships destroyed by all submarines is expressed in terms of the
results of the submodels I and 2 by the application of the assumptions and arguments
of Mjelde (1975).

The advantages of the model, as compared with Markov—Lanchester methods, are
commented on by Mjelde (1974). The time-dependent distributions of the losses cannot
usually be obtained by the latter methods except by the numerical solution of a possibly
large set of differential-difference equations describing state transitions; this may
result in a compounding of errors and a long computer time. However, non-time-
dependent results, such as the winning probabilities and the distributions of survivors
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in a prolonged campaign, can be obtained, see Brown (1963), Connolly and Springall
(1967), Springall (1968), and Smith (1965).

Following a description of an antisubmarine warfare scenario, three models are
presented for respectively: the total losses, the tactical options of an individual
submarine captain, and the losses inflicted upon the ships by an individual submarine.
A concluding section comments on various applicational aspects, including the
selection of convoy sizes.

2. An antisubmarine warfare scenario

In the scenario considered by Mjelde (1974, 1975), merchant ship convoys are
crossing an ocean region. They are attacked by enemy submarines that operate
independently of each other within an area across the convoy lanes. Each convoy is
defended by surface and air screens that have some probability of destroying an
approaching submarine. The submarines may be of different types (conventional
and/or nuclear) and may carry weapons of different types (missiles and/or torpedoes).
The number of ships destroyed, given a weapon release, is a random variable. The
submarine attempts to escape after an attack, with some probability of being destroyed.

Koopman (1946) defined the region of approach of a submarine in relation to a
convoy, as the set of positions from which the submarine is able to approach to a zero
distance from the convoy, in dependency of the relative speeds of the submarine and
the convoy. An encounter is said to occur if a submarine detects a convoy within the
region of approach, and the captain decides to attack the convoy. The operation of a
submarine is limited by various factors, such as the maximum time it can stay in the
operating area and the total number of weapons on board; a submarine leaves the
operating area before the maximum time has expired if the number of weapons
remaining is insufficient for an attack.

It is assumed that only a small number of ships are destroyed, which means that a
convoy maintains its identity throughout the battle.

3. The total losses

A general functional model for the composition of the losses of ships due to several
individual submarines was given by Mjelde (1975) in terms of the following egs. (1),
(2) and (3).

Since the submarines are assumed to operate independently of each other, the total
number of ships lost can be expressed by the convolution of the losses inflicted upon
the ships by each submarine class (nuclear and/or conventional). For this reason only
one class of submarines is considered in this paper.

The performance of a single submarine arriving at time 6 is described by:

V,(6,1): The probability that the submarine destroys » ships in the time interval
[6,1], n=0,1,2, ...

The probability generating function, the expected value, and the variance of the
probability distribution {V,(6, 1)} are denoted by G(6, 1, z), E(0, t) and ¢*(6, 1), respec-
tively; then: '

==
GO, 1,2)=Y, V6, D"

n=0
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and E(6, t) and o? (6, 1) can be obtained from the first and second derivatives of
G(6, t, z) with respect to z, evaluated at z=1.

The losses of ships are defined by their probability generating functions, expected
values, and variances:

M(t, z), x(t), o,* (t): The total number of ships destroyed before time ¢ by all
submarines.

If the submarines arrive at the operating area according to a Poisson stream with
rate p(f) at time 6, where p(6) =0 for #<0, it follows from the arguments of Mjelde
(1975) that:

MG, z)=exp{ § u(6) [GE6, 1, 2)— ude} )
L]

X0)= § WOEE, 1) d @

0(0)= jp(ﬂ)loz(ﬁ', 1)+ EX(6, 1)] db Q)

Fast Fourier-Laplace transform inversion procedures, see for instance Prescott and
Jenkins (1974) or Uhrich (1969), can be applied in the determination of the probability
distribution of the losses of ships at any given time, from the probability generating
functions, as described in detail in Mjelde (1977).

Factors such as delays in the home port, speed variations, and navigation errors
tend to randomize the arrivals of submarines at the operating area. If the successive
arrival epochs of each individual submarine are considered as a renewal process, it
can be shown that Poisson arrivals can emerge by the superposition of a large number
of renewal processes; it is assumed that the inter-arrival times of each individual pro-
cess (submarine), although arbitrarily distributed, have a large expectation, see Feller
(1966).

4. Tactical model

Mijelde (1975) applied the general model (1), (2) and (3) to the determination of the
losses of ships in a specific scenario where each submarine carried weapons of a single
type. When a more complex battle scenario is analysed, the corresponding mathe-
matical expression for the function G(6, ¢, z) in eqn. (1) can easily become lengthy
and unstructured; a simplification results if G(6, t, z) is expressed in the form of the
model defined by eqn. (11) of the following section. The purpose of the present section
is to motivate the definitions of the quantities N, Q, F(N, z), U(N, z) and b(N, 6, v)
used in eqn. (11). This is done by the consideration of a specific battle scenario, for
which the previously given quantities are expressed in terms of more detailed para-
meters, bearing in mind that analogous definitions, as well as the tactics model (11),
are equally applicable to many other specific scenarios.

Consider a situation where submarines fire missiles and torpedoes repsectively
from positions outside and inside the defending screens around a convoy. When a
convoy is encountered a submarine equipped with missiles and torpedoes fires missiles.
With respect to the use of torpedoes two tactical options are discussed:

(1) the submarine tries to penetrate the convoy screens to make a torpedo attack
when missiles have been released and
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(2) the submarine leaves the convoy and does not fire torpedoes until all missiles
have been expended.

A submarine with only torpedoes on board attempts to penetrate the screens of an
encountered convoy.

Experience from the Second World War, see Falconer (1976), shows that there are
three main factors affecting convoy losses: The convoy must be found, the screen of
escorts must be penetrated, and the weapons must be fired. Large and small convoys
are almost equally detectable, but the approach probability, Koopman (1946), is
larger for large convoys due to their reduced speed. The probability of screen penetra-
tion depends on the linear escort density, which is higher for large convoys. Once
inside the screen of a convoy, the submarine is very difficult to attack, and can fire all
torpedoes in the tubes almost at leisure: any convoy offers more than enough targets.
Reloading takes time and a submarine could rarely use more than a single load of
weapons against a convoy.

The following detailed parameters are formulated according to the above obser-
vations:

I: The number of different types of weapons a submarine can use; /=2,
missiles and torpedoes.

A The rate of a Poisson process describing encounters between a single
submarine and convoys.

F(z): The probability generating function of the number of ships destroyed
by a completed release of a load of weapons of type i against a convoy by
a submarine.

E,, o;*: The expected value and variance of F(z).

T: The endurance-limited time a submarine can stay in the operating area
searching for convoys.

P,: The probability that a submarine is not destroyed by the defences of an
encountered convoy and reaches an attack position from which torpedoes
are released.

P,: The probability that a submarine successfully escapes through the
defences of an encountered convoy after weapons have been released.

c: The probability that a submarine captain decides to fire torpedoes against
a convoy, given that missiles have been fired from a position outside the
screens and that torpedoes are available. ¢=0 or 1 according to the
previously given tactical options.

L,: The maximum number of times a single submarine can release weapons of
type i.

The number of ships destroyed in a convoy attack is assumed to be independent of
the number of previous attacks against the convoy. This is in accordance with the
observations described above. The number L, is equal to the total number of weapons
of type i on board a submarine divided by the number of weapons that is used in each
release.

It will be assumed that L, <L, ; analogous arguments apply if L, >L,.
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The number of weapons on board a submarine is determined by the following
quantities:

n;: The number of times a submarine has released a load of missiles or torpedoes,
i=1, 2, against a convoy.
Define the vector:
N=(n,, n,)
and the intermediate quantities:
b(N, 6, t): The conditional probability that a submarine is on patrol searching for

convoys at time 1, given the vector NV and arrival at the operating area
at time 6.

The probabilities b(V, 6, t) are first expressed in terms of the detailed parameters,
and these probabilities are then used to determine the input V,(6, ) to the general
model.

Since L; <L, and a release of torpedoes is preceded by a release of missiles (if
missiles are available), it is seen that b(V, 6, 1)>0 only if N belongs to one of the
following two sets:

Q={N:n <L}
Q,={N:n=L, and ny<L,}

0 if c=0
Ha =
n, ife=1

0,..;(La—1) if c=0
Hy =

Ly, ...,(L:—1) if c=1

Then for Ne Q,:
and for Ne Q,:

It is useful to define:

QU0 o~ M=) for 1—B<T

dn, A, 6,1)= n! “4)
0 fort—6>T

Clearly b(N, 6, 1)=0for (1—8)>T. If (r—6) < T it follows that for NeQ, :

d(ny, A, 8, 1) for e=0
b(N, 6, 1)= )
(P1Py)" d(m, A, 6, 1) for c=1
and for NVeQ),:

(P]PZ)"ﬂd(n2+L], 1\,9, ‘) fOl‘ C=0
b(N, 8, )= (6)
(F'II)I)“2 d(nl! )" 6; r) for e=1
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In expressing G(8, t), E(6, t) and ¢*(6, t) in terms of the previously defined para-
meters it is convenient to introduce the following probability generating function:

1 oo
E(N, z)= E.' a(N)F(z)= ,;0 fAN)Z! )
where
1 for NeQ,
o‘1(1\0 = {
0 for NeQ,
and

0 for NeQ; and ¢=0

oay(N)=<{ P, for N2y and c=1

P, for NeQ,

Thus «,(/V) is the probability that a submarine releases a load of weapons of type i,
given an encounter with a convoy and given the matrix N, and F(N, z) is the corres-
ponding generating function of the losses of ships, with f;(/V) being the probability that
J ships are destroyed.

Let E(V) and o*(/V) be the expected value and variance derived from F(V, z), and
then:

E(N)= Z] a(N)E, ®)
and
I
o} (N)+ E*(NV)= ‘Z,l o(V)[o* + E*) 9
Define:
0=0,UQ,
and U(J, z) and g;(V) by:
I w
U, = [T Fr= 3 gN)2! (10)

5. The losses inflicted by a single submarine

The previously given considerations of the operations of an individual submarine
motivate the definition of a new model for the composition of the losses of ships due
to several attacks by a single submarine. The resulting egns. (11), (12) and (13) can be
regarded as an intermediate model between the general model (1) and the specific
tactical model of an individual submarine given in the previous section.

From the definition of the probabilities V,(6, ¢), it follows that:

V.6, f+A:)=[V,,(0, H— Y bV, 6, t)g,,(N)]
Nel)

+ Y, b, 6, g, (N)[(1 — A1) + AAtf o(N)]

Nef}

3 E b(N’ 9, ‘) E gJ(N)M’f(n—J}(N)
NeQ} i=0
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The equation can be justified if it is noted that a submarine arriving at the operating
area at time 6 can destroy » ships before time (£ + At) in three mutually-exclusive ways:

(1) The submarine destroys n ships before time ¢ and is not on patrol searching for
convoys at time f.

(2) The submarine is on patrol at time ¢, having destroyed » ships; there is either no
encounter with the convoy in the succeeding time interval Ar or there is an
encounter and no ships destroyed.

(3) The submarine has destroyed j ships before time ¢, where O0<j<n—1, and is
searching for convoys at time ¢, and in the following time interval At there is an

encounter with a convoy and (n—j) ships are destroyed in the corresponding
attacks.

If the latter equation is rearranged, divided by Ar and Ar—0, it becomes:

VoD 3y b, 6,084
ot Nef2
+ ¥ bW, 6,1) Y, g{N) M- p(N)
NeQ2 j=0

Multiplication by z" and summing for all integers n>0 gives (¢/ct)G(6, t, z) when
the egns. (7) and (10) are expressed by:

f E N - p(IN)z"=U(N, 2)F(N, z)

n=0 j=0
Integration with the initial condition G(#6, 8, z)=1 yields:

G, t,2)=1+X Y. U, 2)[F(IV, 2)—1] f b(N, 6, v) dv an
NeQ ]

From the first and second derivatives of G(6, t, z) with respect to z, evaluated at
z=1, it follows that:

E@®,1)=X Y, E(N) j" b(N, 6, v) dv (12)
Nefl ]
and

i 1
a*(6, N+E*6, =2 ), [02(M+E’(N)+2E(MZ ":Es] { &N, 6,0)dv (13)
Net) i=1 8

The quantity inside the brackets of eqn. (13) is the increase in the square of the
number of ships that are destroyed due to an attack, given an encounter and given the
vector V.

6. Concluding remarks

Explicit expressions for the losses defined by M(t, z) can be determined if u(6) ==
constant for all 8 > 0; however, although straight-forward to derive, the expressions are
somewhat lengthy and are therefore not recorded here.

With a given total number of available escorts the number of escorts assigned to a
convoy increases proportionally with convoy size. It follows that the linear escort
density of a convoy increases with the square-root of the number of ships in the
convoy. The encounter rate A is given by the product of four factors: the arrival rate
of convoys, the probability that an arriving convoy is detected, the probability that the
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submarine is able to approach the convoy, and, finally, the probability that the captain
decides to attack the convoy. According to Falconer (1976) only two of these factors
may depend significantly on convoy size: the arrival rate is approximately inversely
proportional to convoy size, and the approach probability may increase with convoy
size, due to reduced convoy speed.

With the incorporation of the previously given considerations the compound
model given by the equations (1) and (11) can be used to discuss the relative effective-
ness of convoys of various sizes, and an ‘optimal’ convoy size can be determined
according to specified decision criteria, such as the maximization of the probability
that at least a given number of ships arrive safely at their destinations during a given
planning period, or the minimization of the probability of the arrival of a small number
of ships, insufficient for the support of the civilian or military logistical operations.

It has been assumed that the time duration of attacks is zero, or negligible in
comparison with the time needed to search for convoys. Although this is frequently a
realistic assumption, it could be removed by the introduction of the probability
distribution of the duration of attacks, by the use of integral equations related to those
of Mjelde (1974).

Finally, the attention of the reader is called to the applicability of the models of
this paper to problem areas, such as: military scenarios where submarines are replaced
by aircraft or other weapons; or the analysis of the effect of pollution, if submarines
are replaced by sources of pollution.
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