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Optimal evasive manoeuvre for a ship in an environment
of fixed installations and other ships
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Collision avoidance for encounters between several ships and installations in the
open sea, is treated as a problem of optimal control, using the theory of differential
games. Each ship is, in this idealized model, assumed to have two controls
corresponding to rudder angle and engine setting. The objective function, which
the shipmasters try to minimize in an optimal evasive manoeuvre, is defined as the
collision risk. Numerical solutions for the M-ships and /-installations optimal
evasive manoeuvre problem, can be found by the ping-pong algorithm. Numerical
examples are given for up to five ships and two installations.

1. Introduction

This paper is a pilot study of a broader project on collision risk between ships and
offshore installations. Qur main interest has been to determine how the frequency of
collisions, and hence the safety and economy of ship operations, depends on the
manoeuvring capabilities of the ships involved, the complexity of the installation
geometry and the complexity of the traffic situation. To this end it has been found
necessary to develop a mathematical model of collision avoidance and occurrence.
A reformulation of the model has also been suggested for ship-based collision avoid-
ance systems.

The mathematical model presented in this paper is rather general concerning the
number of ships involved in the encounter situation. Problems with many ships can be
treated. The frequency of three ships’ encounters, where rules of the road at sea are
undefined, increases as the cube of the ship density. This important relation was first
noticed by Jensen (1970) in an investigation concerning accidents in the channel
between Denmark and Sweden. This relation was also discussed by Stratton (1971) in a
study on traffic in UK waters.

As did Miloh and Sharma (1975), we employ the theory of Differential Games as
formulated by Isaacs (1965) as our theoretical foundation. Although this theory was
originally developed for solving military problems of guided pursuit and dogfighting,
the same formulation can be applied to problems of collision avoidance. The main
difference between the military application and the collision avoidance application is
that in problems of guided pursuit the pursuer tries to hit and the evader tries to escape,
while in the case of collision avoidance all the shipmasters should try to evade in order
to minimize the collision risk.

2. Differential game formulation
2.1. Basic Concepts

The theatre of operation is a region in the Euclidian n-space. We think of a
particular point x={x, ... x,} to be in motion in state space, its path being governed
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by the kinematic equation. The state variables specify the current state of the system.
The kinematic equations relate the time rate of change of state variables to the state
variables themselves and to control variables, which are at the volition of the players.

The game is characterized by a payoff. A payoff comprises a terminal component
as a function of the terminal conditions and/or an integral component as a function of
the path along which the terminal conditions are reached. The objective of an individual
player is to maximize (or minimize) the payoff. It is assumed that each player has full
information on the current state of the system, and that the game is non-negotiable
i.e. no cealition is allowed.

A function relating the control-variables to the state variables is called a strategy.
If all players play their mutually optimal strategies, there exists for each initial con-
dition a conceptually predetermined unique payoff which Isaacs called the Value
(Capital “¥”). The theoretical solution of the game comprises the optimal strategies,
the optimal paths and the Value as a function of initial conditions. A continuous
payoff function yields a game of degree with a continuous value function. A discrete
value function yields a game of kind with the state space subdivided into zones of
different Values separated by barriers.

While previous work along these lines have used terminal payoff (Miloh 1974,
Miloh and Sharma 1975, Vincent ef al. 1972, and Merz 1973) and a game of kind,
we use an integral payoff in a game of degree. The benefits of this will appear through-
out this study since our formulation can be solved without painstaking analytical work
in the more complicated situations.

2.2. Kinematic equations

In our preliminary and highly idealized mathematical model, our dynamic system
consists of M-ships manoeuvring on a homogeneous, isotropic, unbounded and
undisturbed sea surface with J-installations against which collisions should be avoided.
We may add, however, that incorporation of wind and wave forces scarcely influences
the complexity of the formulation and the solution algorithm.

For each ship we choose to describe the motion in the 4-M-dimensional space by
the following set of kinematic equations:

% =w; cos b; 1)
yi=w; sin 6, (2)
9=¢5W:/Ri (3)
W= Tyfmy— |wy [ wik/my 4)
VieM
where
X= o etc.

The state variables are the rectilinear coordinates, the course angle and the absolute
forward speed (x, y, 0, w).
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The four fixed parameters for each ship are the minimum turning radius R,, the
maximum propulsive thrust T, the effective mass m; and the coefficient of resistance k;.
The two control variables which are at the shipmasters’ disposal are ®;, a normalized
radius of path-curvature and 4;, a normalized propulsive thrust. We have O, [—1, 1]
and ;e [— 1, 1]. From egn. (4) the stopping time 7; and the stopping distance D, can
be evaluated.

mny ki

— w — m‘

Ti= V(Tik) arctg (V[ Tiw) < 2 4 /(Tik) ©)
- 4 ™ ki 2

D‘_é‘ w(t)df_ik—‘ln(]'l‘}_‘lwl ) (6)

where w, is the initial velocity.

2.3. Payoff

To complete the formulation of the differential game we must now specify the
objective of our players. The best case of evasion is that all players try to minimize the
total collision risk. We define the increase in collision risk (dP) between the players or
objects i and j during the time dr as:

dPy=ky|@y| dr §§ dx dy p(x, 7, Dps(%, 3, ) Q)

where k,; is a normalization constant of dimension length, and @, is the radial velocity
for the two object i and j, i.e.:

d
ﬁ’u=d—! ri(r) 8)

where
A0 = V() =yl +(x (1) —x(1))?) )
It is easily realized that

| (¢ —x,)(w; cos §;—w, cos §;) +(y;— y: Nw; sin 6;,—w, sin ;)|

|fbu| = (10)

Fij

Furthermore, p;, and p; are the probability density functions for the two objects
normalized as:

[§ dxdypixy,0=1 (11)

The use of a distribution for each ship can be justified from the observation that the
ships’ positions are never exactly known. Our main motivation for introducing this
description is, however, the more obvious one of the avoidance of a discontinuity in
the problem introduced by other authors. Miloh and Sharma (1975), for instance, use
circular discs to represent ships. A representation similar to ours has previously been
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employed profitably by Mjelde (1977) to represent a single ship by a Poisson process
with expected value 1, and by Schroeter (1976) to represent one single target in a prob-
lem of the analysis of aiming and firing strategies.

We use the normal distribution for p,, i.e.

[_ 3 (x—x(1))* + (y—y:(t))’]

= (12)

|
P!(x’ Vs r}_z_!z €xp

where J; is a typical radius of the object and (x,(¢), yi(t)) are the coordinates at time ¢
for the object. The overlap in equation (7) can be integrated out:

‘!;3.[ dx dy Pl(x, Vs I)Pj(x9 Vs t)

2_], §f dxdyexp [_ 3 C=xO)’+O—yO)  x=x0) +(— y,(;))z]

ﬂ!‘

ol } ri(1)
e ] o

The collision risk is then determinated as an integral from an initial time (¢;), where the
objects are at some distance (a few typical lengths or more), to a final time #,. The
timelapse (7, —1,) should be long enough for the collision risk to be over at time ¢,.
We have:

ki ri2(t)
Pu(‘f)=Pu(fr)+2ﬂaz By I dr|;;|exp %f,2+l_,2 (14)

We renormalize the last expression to give a collision risk of ‘one’ corresponding to the
objects colliding head on, i.e.

ki

2“,{[2 17 I dflﬁ)ulexl:’[ = 45 (r)]—l (15)

2+12

With w; and w; constant during the short time interval of significant contribution to
the integral, we have:

kijlwit+w,| © (wi+w;)*t?
Sdly — N eI = 16
ey ), 7P| T [ (16)

which implies that:
kiy=+/2a(l? +l_rz)) an

An ‘overtaking’ collision would also give collision risk of ‘one’ in this formulation, i.e.
CE . 2,2
rit =(wi—w;)*r.
To minimize the collision risk is therefore in this context to minimize the integral

ri? (1)
'Pi.!‘ V(21'.r(f2+{,2)) I dtl®i}|exp[ i—tiz"'liz] (18)
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When more than two objects are involved in the collision avoidance process all the
players should try to minimize the total collision risk

P=Y ¥ Py (19)

where M is the number of ships and I the number of installations, buoys and other
fixed objects to be avoided.

3. Analytical solution
Following Isaacs (1965) optimal play is governed by the equation (Isaacs, The
Main Equation):

M
min min { Y. (Viwicos 8+ V, w,sin 0, + Vo ®w /R,
i i=1
Frrend™
M M+l 1

+ Vo (I Tijmi— |wi | wik,Jm,)) + ; _;-iz+| m!%l

r2

34 |\
cxp[ 4 0+ ff)]} 0 (0

where V is the unknown value function (i.e. ¥=P= Y P,, at optimal play), and
7

dv
Vy=—

dx

The solution of eqn. (20) comprises the solution of the game.

3.1. A property of optimal strategies

The optimal strategies can be found immediately. The control variables appear
linearly in the main equation and therefore the controls are piecewisely constant and
are, in general, equal to an extreme value — 1 or + 1, with the possible exception of
singular cases where the expression in the parenthesis below, vanish. We have

®,= —sgn (Vo,w1)
(21)
$y=—sgn (V)

where '-1;, and {, are the optimal strategies, and we have employed the signum function.
The effect that the controls take their extreme possible values is called the bang-bang
principle; it is a consequence of the linearly appearing control variables which again
is a direct consequence of our dynamic model.

3.2. Adjoint equations

The main equation is a first order partial differential equation. It can be solved by
integrating the characteristic equations, which consist of the kinematic equations, and
the adjoint equations obtained by differentiating the main equation with respect to the
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explicitly appearing state variables. For reasons to arise later we find it advantageous
to write the adjoint equations with retrogressive time derivatives, i.e.

o dx
x_Ef where Y =const—¢

The adjoint equations can be written:

M1

o 1
[ TN N—
i=E’1 V@r(l? +17%))
*
g 0,— 6 2
— w; cos 0,—w, cos ,} exp[—-} e ]

{ [0 ) (e — x NUE+ 1) 1™ 2)

r‘J ![2+lljz
M1 1

Y= B Taii )

=1
=1

{ [ @) |y =y XU+ 1) 41,7 2)

w; sin 8;—w, sin 6; RE
= ex —_— —
e ur R I +1,?

lg.,,= — VWi sin 0,4+ V, w; cos 0,

. e (22)
I MZ"’? (Oc;—x)(+w,; sin 6;)+ (¥, — y )(—w; cos 6;)
e V@2 +12)ry;
*i
"uz
X exp [ 1 I _sz]
Ig“‘i= in cos 9& + V,v( Si]'l BI‘_SSH (Vs,wl)VsJRi_zVw,!wi!kilml‘
" “:Y_’,"ﬂ (x;— x;—cos 6,)+(y;— y;)(—sin ;)
i - V@l + 1)),
-
2
Tej
S
VieM J
where
iy =Sgn (fz’u) (23)

It can easily be given upper bounds on the initial values of the adjoint variables, which
numerically implies that

Vi(ts)=Vy(ts)=Vo(ts)=Vu(t;)=0; VieM

4. Solution algorithm

For our solution algorithm we employ the ping-pong algorithm, which has
previously been utilized to solve the apartment-heating problem by Holt and
Mukundan (1972). In this context the algorithm can be formulated as follows:
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1. Determine the timelapse (¢, —1;).

2. Initially guess every player’s nominal strategy for every discrete instant of time
from 1; to 1, Of course, the better this initial guess is, the faster convergence
will be attained in the solution-search.

3. Since the controls are known, the state equations can be integrated forward in
time, we use a Simpson routine except for w,; where we use analytical
expressions. Values of each state variable are stored for every discrete instant
of time. Integrate in this order:

{a) wir) YieM
() 8. YieM
(c) xi(r), y{t) VieM

4, Calculate the collision probabilities and store them until the next iteration.

5. Check on convergence: If the calculated collision probability is not decreasing
more than a predefined (0 <e<1) then terminate by jumping to 9 below.

6. Integrate the adjoint equations retrogressively, realizing that the necessary
initial conditions are in fact the known adjoint final conditions. This retrogres-
sive integration calls for the stored values of the state variables obtained by
forward integration. Perform the integration in the following order:

(@) V(1) VieM (Simpson)
(b) Vy, (1) VieM (Simpson)
(c) Ve (t) VieM (Simpson)
(d) V., (1) YieM (4th order Runge-Kutta)

7. Calculate the new control variables for all times throughout the interval from
t; to 15, by using eqn. (21).

8. Return to 3.
9. Perform a perturbation control to check for equilibrium.

10. Call for output, comprising: The minimal collision risk. the optimal strategies
and the optimal paths.

It is numerically consistent to use a Simpson algorithm together with-a 4th order
Runge-Kutta method since both are fourth order methods.

An improvement on making the procedure more efficient can be accomplished by
utilizing the solution for the M-ships case of collision avoidance as an initial guess for
the (M + 1)-ships case.

5. Numerical examples

The large number of parameters and the number of initial conditions which define
a particular game, generally prevents comprehensive computations. In addition, the
objective of each player could be varied. This would define new sets of games. A game
with one pursuer and one evader could be formulated. For the pursuer’s strategy this
would just give a change in sign in eqn. (21). This problem would closely resembie the
homicidal chauffeur game formulated by Isaacs (1965) and investigated extensively by
Breakwell and Merz (1969).
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The examples are chosen to illustrate the procedure’s ability to find the optimal
strategies and the optimal paths when the ships involved are all trying to take courses
to minimize the total collision risk. The selected parameters for the five ships involved
in the evasive manoeuvres can be found in Table 1 (@). The parameters are typical for
bulk carriers. The typical radii, which define the dimensions of the two installations
in Fig. 1, are fifty metres.

Ship 1 2 3 4 5 [units]
Min. radius of curvature  500-0 400-0 5000 6000 500-0 metres
Typical radius 50-0 750 500 500 500 metres
Thrust 5-1 4-1 5-1 4-0 5-1 x 10% Newton
Effective mass 2-6 1-5 26 15 26 x107 kg
Water resistance 9-8 9-0 9-8 9-0 9-8  x10% kg/m
Table 1. (@). Manoeuvring capabilities for the ships.
Ship 1 2 3 4 5 [units]
Initial course 180-0 270-0 0-0 0-0 0-0  degrees
Initial velocity 14-0 11-2 14-0 11-7 14-0  knots
Initial (x) 500-0 0-0 —500-0 —250-0 —250-0  metres
Coordinates (y) 0-0 399-0 00 —250-0 2500  metres
Table 1 (p). Initial conditions in fig. (1).
CPA Instal-
[metres] Ships lation
Collision
risk 1 2 3 4 5 6 17
1 40 402 281 220 187 241
2 066 380 80 95 165 320
3 0-13x10°7 26x10-* 267 354 207 83
4 0-70x1073 0-38 0-16x 1073 198 192 250
5 0-19x10-2 0-52 0:28 x10~3 0:50 < 10~2 291 252
6 0-80x1072 0-68x107* 0-34x 1072 0-66x10~2 0-40x10~*
7 0-64x1072 0:38x 1072 0-24 0-24x 1072 0-22%10-2

Table 1 (¢). Output data for fig. (1).

Since the solutions are plotted in realistic, nonreduced space the figures are almost
self-explanatory. Vectors on the figures are representing the ships at one minute
intervals with length of the vector representing velocities and their directions represent-
ing the course of the ships. In addition small vectors appended on these velocity vecors
indicate the direction of the propulsive thrust. The small triangles at the paths indicate
the passage of a transition surface for the thruster controls.
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—— 100 METRES

—=> 15 KNOTS
1 DECELERAT.
™ ACCELERAT.

Figure 1. Five ships’ and two installations® encounter. The input data can be found in
Tables 1 (@) and 1 (b), the output data in Table 1 (¢).

From the large sample of collision avoidance scenarios which we have run on the
computer, we give two illustrative examples. Figure 1 gives an example with five ships
and two installations and Fig. 2 gives an example of a rather extreme situation of a five
ship encounter in open sea. In Fig. 1 the two ships 1 and 2 have no better alternative
than to choose strategies that give a close passage. The thruster controls are, however,
used to widen the passage as much as possible, with ship 1 decelerating, and ship 2
accelerating. The reason that ship | turns starboard in the first place is that the other
choice of rudder control would bring it close to both ship 3 and ship 4. In both figures
one can observe examples on transition surfaces for the thruster control for one ship
astern the closest of the other ships. This is in good agreement with intuition; the ship
decelerates to let the other ship pass and then starts to accelerate.

The extreme situation in Fig. 2 cannot be successfully resolved even when the
shipmasters act optimally. The two ships 3 and 5 would probably collide even at

M.I.C. L
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T~

——— 0 METRES
=) 5 KNOTS

| DECELERATION
™ ACCELERATION

Figure 2. Five ships’ encounter in open sea. Initially all five ships are on courses towards
collision. The input data can be found in Tables 1 (a) and 2(a), the output data in
Table 2 (b).

optimal play. To find the exact answer to this binary problem one would, however,
have to go into details about the exact geometry of the ships and the hydrodynamic
effects of close passages.

6. Numerical experience

The most advantageous property of the solution algorithm is the astonishing
insensitivity of convergence to the initial guesses for the shipmasters’ strategies. In all
our examples the initial guess is simply that the shipmasters stand on at maximum
forward speed. This guess produces optimal solutions after a few iterations in simple
cases with few ships involved.




FEvasive manoeuvre for a ship in an environment of fixed installations 221

Ship 1 2 3 4 5 [units]
Initial course 180-0 270-0 0-0 450 3150  degrees
Initial velocity 14-0 11-18 14-0 11-66 140 knots
Initial (x) 500-0 0-0 —500:0 —294-0 —350:0 meters
Coordinates (y) 00 399-0 00 —2940 350-0 meters

Table 2 (a). [Initial conditions in fig. (2).

CPA
[metres] Ships

Collision

risk 1 2 3 4 5
1 258 411 291 302
2 042x1072 308 328 278
3 0-58x10-% 0-64x10~? 178 25
4 040x107% 0-28x1073 0-12x107! 59
5 019x10~* 020x10-%2 0-74 0-42

Table 2 (b). Output data for fig. (2).

The CPU-time consumed in one iteration is limited by the relation
CPU L an(n—1)/2

where n is the number of ships and installations involved in the problem and « is a
constant of proportionality. The CPU-time consumed in one iteration in a problem
with n objects is thus approximately proportional to the number of sides and diagonals
in a n-tagon. The number of iterations that will be needed to attain a solution depends
on the stopping criterion. The stopping criterion
P, (old)
P; (new)
will give as a typical result:
number of iterations=4 x number of ships

A stopping criterion of unchanged strategies at each instant of time for all the

players will, however, not always be met with successful termination. This is due to
small oscillations near the transition surfaces.

1| <001 VieM, YjeMul

7. Conclusions

It has been demonstrated how the analytical theory of differential games formulated
with an integral payoff function can be applied to determine optimal evasive
manoeuvres for encounters between ships in an environment of other ships and fixed
installations. In addition to the numerical examples given in this paper the mathemati-
cal model and the solution algorithm could be applied to situations where the ship-
masters act as pursuers, or situations where they do not act at all. In fact, the optimal
evasive or persuasive manoeuvre can be determined for any predefined strategy of the
other ships.

M.LC. M
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An obvious criticism of our model is that it is oversimplified. It is well known that
the eqns (3) and (4) are coupled due to physical effects like the influence of rudder angle
on the acceleration or deceleration, and vice versa; the influence of deceleration on the
ship’s turning capability. The time lag from rudder command up to onset of actual
turn is another important effect that has not been taken care of. These objections do
not, however, alter our impression of a realistic mathematical description. Most of the
refinement of the dynamic model can also be carried out under the conviction that it
will not complicate the solution algorithm. This is especially true for the inclusion of
wind and wave forces.

8. Recommendation for future work

The only objective of our players has been to minimize the total collision risk. This
stems from the formulation of the problem of interest in a particular project. To make
the mathematical model more in accordance with the shipmasters’ objective, time
minimizing or fast recovery from the evasive manoeuvre should be built into the model.
This could be done by reformulating the payoff function or by introducing penalties on
the use of controls. A mathematical formulation that takes such considerations into
account could be applied in ship-based collision avoidance systems and could even-
tually lead to applications in automatic ship-control systems.

A more fundamental question also remains to be answered. No convergence
theorems for the ping-pong algorithm has been given. Our numerical experience
indicates that unique solutions are attained in the solution search, which are insensitive
to the initial guess on the player’s strategies. However, necessary and sufficient con-
ditions for convergence, yet remains to be found.
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