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A mathematical model for dynamic analysis of a flexible marine
riser connected to a floating vessel
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A mathematical model for simulation of a flexible marine riser connected to a
floating vessel is presented. The model is used for dynamic analysis of marine
operations which include a riser and a floating vessel. The riser can be freely
hanging from the vessel or fixed at the bottom. The vessel can be freely floating,
moored by anchors or dynamically positioned. The performance of the riser
model is evaluated by a comparison with results from a simulation study
published by the American Petroleum Institute. Finally, a complete three
dimensional, irregular sea-state analysis is presented to illustrate some of the
capabilities of the simulation concept.

Introduction
A flexible marine riser is a long slender vertical pipe used in offshore drilling or

production. The riser normally extends from a riser base to a floating vessel at the sea
surface. It can contain a drill string and circulate drilling mud or return hydrocarbons
from a production well. A typical situation is illustrated in Fig. 1.

Figure 1. Vessel-riser operation.
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Flexible risers suspended on floating vessels are also used for other purposes such
as gravel backfilling on pipelines and ocean mining.

In the North Sea today, flexible risers are operated in water depth greater than
300 m, and the depth still increases. New concepts for deepwater and early production
are presented along with the exploration of new fields.

A vital component of all systems which are based on a floating production facility,
is the long flexible riser. During operation, the riser will be subjected to both vessel
motions and wave loads. Depending on the riser length, several modes of oscillation
will be excited and for certain environmental conditions, significant bending stresses
and fatigue can occur.

Therefore considerable effort has been put into the mathematical modeling and
analysis of marine risers (Burke 1973, Morgan and Peret 1976, Larsen 1976, Gardener
and Kotch 1976, Gone et al. 1975).

The effect of random waves and vessel motions (irregular sea state) has been
analysed (Tucker and Murtha 1973, Sexton and Agbezuge 1976, Daring and Huang
1975, 1980) and procedures for field operations of marine risers are developed
(Sheffield and Caldwell 1972, Childers and Martin 1980, Maison and Lea 1977).
These studies have concentrated on the analysis of structural behaviour to predict
stresses in the marine riser system.

As a consequence of the significant interest in the analysis of marine risers, the
American Petroleum Institute has published a comparison of a number of riser
simulation programs (API Bulletin 2J in January 1977). This publication presents the
results from corresponding riser analysis produced by different computer programs.

In this paper, a mathematical model for the dynamic analysis of vessel-riser
operations is described. By vessel-riser operations are meant all kinds of operations
which include a floating vessel and a near vertical submerged pipe (riser). The riser
can be fixed at the bottom or freely hanging from the vessel.

The complete simulation concept includes both a vessel and a riser model, however,
discussing the dynamics of the riser primarily, only a brief review of the vessel model
is included for the purpose of describing the most important excitation force of the
riser system.

The riser model will be evaluated by a comparison with data published in the API
Bulletin 2], 1977. Finally, to illustrate some of the properties of the simulation
concept, a complete three dimensional irregular sea-state analysis is performed for
both a fixed and a freely hanging riser.

2. Mathematical models

2.1. Marine riser

The model of the marine riser is based on the general linear differential equation
for a beam column with lateral loads in a vertical plane.

This analysis makes the basic assumption that transverse deformation is small
in consideration of the total length of the riser. This small angle, large deflection
theory is generally accepted valid within 10 degrees of deflection (Morgan and Peret
1976).

In addition it is convenient and reasonable to make the following assumptions:

Longitudinal motion of the riser is neglected.
The bending stiffness is constant along the riser pipe.
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No coupling between the equations of motion in the two principal vertical planes
(i.e. external pipes do not introduce structural or hydrodynamic coupling). If the
pipe is axi-symmetric, the equations of motion in the two principal planes are
identical.

f_ ( EI(z) EZJ;(_;’Q) ¢ (T(z) oxe, r)) +M,, iz, r)=;F(z, 3] (1)
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M= M iger + Mijser content (mass per unit ]ength)

Wo=Weiser + Wieiser content — Wwater (weight per unit length)
where
x(z, 1) riser deflection
z vertical coordinate
r time
EI(z) bending stiffness
T(z) effective axial tension
M,, total mass per unit length
W, weight per unit length of riser and content in water

F(z, 1) total lateral force per unit length resulting from current and waves
and other external forces

M, e Mass per unit length of riser pipe (steel pipe with additional lines,
couplings, etc.)
M iser contens  Mass per unit length of content in the pipe (drillpipe and hydro-
carbons, etc.)

W air weight per unit length

The coordinate system is defined in Fig. 2. The models (1) and (2) describe the
dynamics of a continuous near-vertical pipe (or stiff string) tensioned by the force
T, (effective tension) and loaded with the lateral force F(z, r). T, appears to be the
tension of a riser buoyed up by the total amount of displaced water. According to this,
tension of, for example, a drillstring will then add to the effective tension of the riser
in the case of continuous contact between the drillstring and the riser wall. The true
axial stress in the riser pipe is determined only by the pretension of the riser plus the
air weight per unit length of the riser.

Boundary conditions. To solve the partial differential equation (1), a set of boundary
conditions have to be defined. These conditions are determined by the specific riser
operation to be analysed.

Actual operations are:

A free floating vessel with the riser suspended on the vessel and fixed at the
bottom (i.e. drilling or production).

A free floating vessel with the riser suspended on the vessel and the lower end
disconnected (i.e. gravel back-filling, re-entry to subsga installation, etc.).

K2
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Figure 2. System coordinates.

The riser is fixed at the bottom with a free upper end (as in the case of a subsea
loading terminal).

The boundary conditions are introduced by the derivatives

aix

ﬂ"(2)=—§z-,- (3)
where
fz)—x(z) displacement
fV(z)—ofz) riser angle
J®(z)— M(z) moment
f®Nz)— N(z) shear force
Normally, two conditions are known at each end of the riser. If the riser is freely
hanging from the vessel, the boundary conditions are
Xx(z=L)=vessel position
M(z=L)=0
M(z=0)=0
N(iz=0)=0
L =riser length
In this way the vessel motion will be introduced as a boundary condition and not

as an external force. A necessary condition for this is that the vessel motions are not
affected by the riser.

External forces. The lateral force F(z, ) in eqn. (1) is due to hydrodynamic forces and
concentrated horizontal forces (i.e. thrusters attached to the pipe).
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The hydrodynamic force on the riser is determined from a modified form of
Morrison’s equation

wCpD ex(z, x(z, 1))
th, ’)=p 2D u(z, t)_frx(; t) (u(z, t)— x(azt ))
puD? [ ou(z, 1) 2x(z, 1)
+ 4 (CM ot _(CM_I)T) )
where

u(z, t) water particle velocity due to current and waves as function of depth
Cp drag coefficient
p,, Mmass density of water
D hydrodynamic riser diameter
C, inertia coefficient for a fixed cylinder in an accelerating flow

This equation is non-linear in the term u—?

ex ( ax)
U——|.
t ct
The most difficult and least defined aspect of the analysis problem is the hydro-
dynamic flow around the riser. For a cylinder in a steady flow, the coefficients Cp and
C, are principally functions of Reynold’s number with Cp approx. unity, and Cy,
approx. 1-5-2-0. For the wave case however (oscillatory flow), they appear to be
functions of the Keulegan-Carpenter number Ng¢ which is defined

Ngc=Umax T|D

Here is u,,,, the maximum velocity and 7 the period of the oscillating mean flow.
In this case Cp, will be varying between 1 and 2 and C,, varying between 0-7 and 2-5
(Sarpkaya 1977). However due to the lack of theoretical description of the flow
regime around a riser in an irregular sea state, a common approach to this problem is
to use constant coefficients for calculating the hydrodynamic forces.

2.2. Vessel motions

The vessel motions are normally the major excitation of the marine riser. The
vessel model is therefore a vital part of the total simulation concept. Depending on
the operation (i.e. floating production platform, offshore loading, gravel backfilling)
and the set of parameters to be studied (stress, deflection, position of riser, etc.),
different levels of modeling are necessary for the simulation of vessel motions.
Simulation of vessel motions for the type of vessel of interest (drillships, tankers,
semisubmersibles, etc.) is usually based on the assumption that vessel motions can be
separated into motions due to regular/irregular waves (i.e. first order vessel motions)
and low frequency motions due to other external forces like current, wind, wave drift
forces, etc. (i.e. second order vessel motions) (Langfeldt and Galtung 1976). For the
simulation of vessel-riser operations, first order vessel motions are usually the most
important with respect to the excitation of the riser dynamics. However, studying a
gravel backfilling or a re-entry operation (dynamic positioning), second order vessel
motions must be included.

The simulation of vessel motions are briefly described in the following sections.
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Wave induced vessel motions. The wave induced vessel motions are calculated from
a ‘black box model’, i.e. a set of transfer functions. These transfer functions can be
calculated using strip theory (two-dimensional) or sink-source theory (three dimen-
sional) or they can be measured in a model-tank test. The transfer functions describe
the amplitude of the vessel motion response due to a regular wave component for
different wave periods.

For a specific vessel heading, there is a transfer function for each degree of
freedom (i.e. heave, pitch, roll, surge, sway and yaw),

To calculate the first order vessel motions due to a specific wave spectrum, the
vessel motion response spectrum R(e) is calculated from the relation

R(w)= | H(jw)|*S(e) (5)

S(w) wave spectrum

|H(jw)| magnitude of transfer function
(vessel response amplitude relative to wave amplitude)

Hence the amplitude of a regular wave component of the vessel motion response is
a(w)=|H(jo)|afw)

a(w) real amplitude of regular wave

afw) real amplitude of vessel motion
The corresponding phase angle is
Pw)=arg [H(jw)]

A synthetic time-history of the wave induced vessel motion (i.e. due to irregular waves)
is now generated by summing regular wave components

J
Y()= Y, afw;)cos (—wt+d(w))+¢)) (6)
j=1
y(t) time history of vessel motion response
w; frequency of wave component

€; phase angle for each wave component determined from a uniform random
number distribution between 0-21I1

Jj number of wave components

Low frequency vessel motions. Low frequency vessel motions are simulated by a special
computer program developed for simulation of a general floating structure (Langfeldt
and Galtung 1976). The structure can be freely floating, moored by anchors or
dynamically positioned.

The equations of motion are in the matrix notation

(M+ A)%+ E(#)%+ Bi+ DD (

X))+ Kx=F(t) (7
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Here is:
[ x,] surge
X, | sway
x3 | heave
x4 | roll
x5 | pitch
| Xe | Yyaw

The matrix E(%) is derived by choosing the principle axis of the structure as the body
fixed coordinate system.

In this case, the equations of motion of the structure (translation and rotation
about the structure centre of gravity) can be written

MX+ E(x)x=F
Here is

M diagonal matrix containing the elements m, m, m, I;y, I22, 133

[ 0 —mwy  mw, 0 0 0
mw; 0 —mw, 0 0 0
—mw,; MW, 0 0 0 0
E(x)=
0 0 0 0 “’3(133_!22} 0
0 0 0 0 0 wl(lll—'l33)
| 0 0 0 W:(!zz_lll) 0 0 i

m total mass
I;; component of the moments of inertia

w; angular velocities
The damping force due to viscous drag is written
Fp=—DD(|%|)%

Here D represents the drag term (i.e. drag coefficients and projected area) and
D(|%,|) a diagonal matrix containing the absolute values of the instantaneous velocity
vector % (i.e. |%,], |%X2], [%3], [w1l], |wal, |ws]). In addition are

A added mass force matrix
B linear potential damping force matrix
K restoring force matrix
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[F,] surge
F,| sway } external forces
Fy{ heave
Foxi(t =
F,| roll
Fs| pitch } external moments
[ Fe] yaw |

The external forces and moments are due to wave drift forces, current, wind,
mooring lines attached to the. structure, hawser attached to the structure and
thrusters.

The total vessel motions are calculated by adding the wave induced vessel motions
(6) to the motions calculated by integration of (7).

2.3. Environment

The model of the environment includes wind forces on the floating structure,
wave drift forces on the floating structure, wave elevation and water particle velocity
due to wave motions and sea current as function of depth.

Wave model. Both wave elevation, wave induced vessel motions, wave drift forces
and water particle velocity due to waves are derived from the wave elevation model.
Wave elevation records obtained from actual sea states are irregular and random
in form. A wave record can be characterized by a wave energy spectrum calculated
from the record.
The wave energy spectrum S(w) is defined by

E=pg j S(w) do (8)

Here is

E total energy per unit area of the wave system
p density of water
g gravity constant

The simulation of waves is based on the linear superposition principle. Linear
wave theory allows the summation of velocity potential, wave elevation, velocity and
acceleration of j individual regular waves. The irregular wave can therefore be
composed of a number of regular waves with random phase and frequency. Each
regular wave component has an amplitude

Ta;=2S(w;)Dw)"'? ®)

w; frequency of wave component
Aw frequency width of wave component
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The wave elevation of a synthetic irregular wave is then

J
wx, )= _gl Naj €08 (kjix — vt +€;) (10)

4
x horizontal coordinate
k; wave number

¢; phase angle for each component determined from a uniform random number
distribution between 0° and 360°

j number of wave components

Using linear wave theory and the deep water assumption (i.e. circular water particle
motion), the horizontal component of the water particle velocity and acceleration
along the riser profile (to be used in egn. (4)), are calculated from the derivatives of
eqn. (10).

3. Numerical methods

Method of finite differences

The model established in eqn. (1) is a non-linear fourth order partial differential
equation. To solve this numerically, the model is transformed to a set of first order
differential equations by means of an explicit difference method.

The following finite difference scheme is used:

EI

02 e2x(z, 1)

772 (E" T) ,=,,2Az‘ (tyy2 8%, 1 +6X,— 4%, +Xp_2) an
3] x(z, 1 1

?_Z (T(Z} 25 )) ,=,":¥4_AZ-2(T"+ lxn+2_(Tu+l + o)X+ T 1 Xn—2) (12)

The approximation of the derivatives by finite differences, means that the riser
pipe is divided into N equally spaced elements. The element length is Az.
Introducing the external force (4), the equations of motion at node # can be written
(x-deflection)
X, =Pn
(Mm +(CM - I)PW“D;“)pn:alrxn—Z +buxn—l +cnxn+duxn+ 1 +enxn+2 (13)
+ '}.chbm(uxu “pn)z + (“yn '—Qn)z )1 Q(“xn "'Pu) + *PwCMaxn

The equations of motion for the y-deflection will be analogous. Here is:

a,=T,._/4Az* — Elf{Az*
b,=d,=4EI[Az*
Cp= _(Ten+ 1 +Tel|— [),‘!41522 = GEI;"AZ‘
€y ="Teny1/402% — EljAz*
The effective tension at node n, T, is calculated directly from eqn. (2).

The elements a, b, ¢, d, e, at node 1, 2 (lower end) and N, N+ 1 (upper end) will be
modified according to the boundary conditions introduced as described in § 2.1.
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Now the final model can be established on the basis of eqn. (13) using matrix
notation

£

X=p

Mp=Kx+ HU(v,—p)+ Aa,
’ (14)
y=q

M¢=Ky+HU(v,—gq)+ Aa, |
Here is

x, y riser coordinates (profile)
P,q riser velocity
v, v, water particle velocity (horizontal component)
a., a, water particle acceleration (horizontal component)
M mass coefficients (diagonal matrix) (includes added mass)
K stiffness coefficients (band matrix)
H drag coefficients (diagonal matrix)
U water particle velocity relative to riser (diagonal matrix)

The elements of U are calculated from

i Urelln= ((”xu“'Pn)z + (”,wr_q’t)z)uz

A acceleration force coefficient (diagonal matrix)

Though the equations of motion for the two principle vertical planes are identical
with respect to the mass and structural terms (stiffness matrix), a three dimensional
model is necessary to include the effect of different angles of attack of current, waves
and vessel motions. This effect is taken into account through the modeling of water
particle velocity and acceleration due to waves and current and finally through the
calculation of the hydrodynamic force using relative velocities.

Method of integration. The model established in eqn. (14), includes N— 1 independent
complex eigenvalues. The corresponding eigenvectors are recognized as the modes
of riser oscillation. Hence the number of modes of oscillation which are modeled,
are one less than the number of elements. This means of course that two elements are
necessary to model the first mode of oscillation, and so forth.

The method of integration of eqn. (14) is important to the speed and stability of
the simulation, Due to the complex eigenvalues of the model and the small damping
of the highest modes of oscillation, an implicit or a higher order explicit method will
be necessary. In the following examples a fourth order Runge-Kutta method is used.
This method will be conditionally stable and the step length will be related to (Az)".
The power n depends on whether the riser stiffness matrix K is dominated by bending
stiffness (ET) or tension (7). Bending stiffness leads to the strongest condition.

4. Simulations

4.1. Evaluation of the riser model

The riser simulation model is evaluated using data published in the API Bulletin:
‘Comparison of Marine Drilling Riser Analysis’, 1977. This publication presents
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results from the simulation of some standard cases performed by 9 different riser
programs. The result from each program is presented, and no attempt is made to
define the ‘best’ result. However, a comparison with these data gives at least a general
impression of the validity of the riser model described in the paper.

In the following are presented some results from the simulation of these standard
cases using the mathematical model described in the preceding sections. In the same
figures are indicated an approximate ‘range’ of values at different depths as read from
the corresponding API curves. This range (the diameter of the circles) is derived by
neglecting the most extreme values and approximately measuring the spread of the
remaining values.

Description of cases. The riser analysed is assumed to be two dimensional, with all
forces and elements lying within a vertical plane. The riser contains mud only and is
connected to a frictionless ball-joint at the upper and lower end. Waves are assumed
to act in the direction of the positive offset, and the upper end is exposed to horizontal
vessel motions. Only regular wave analysis is performed, and the horizontal motion
of the vessel (surge) is sinusoidal with the same period as the wave. Top tension is
constant. Figure 2 shows the typical riser configuration.

Specification of main data

Vertical distances

Mean water level to riser support ring 1524 m
Seafloor to lower ball-joint 9-14m
Riser data

Riser pipe, outside diameter 0-4064 m
Riser pipe, inside diameter 0-3747 m
Modulus of elasticity E 207 x 10° N/m?
Weight, 50 ft riser joint, complete in air 38-36x 10* N
In seawater 32-426x 10® N
Densities

Drilling mud 1-44 x 10® kg/m?
Hydrodynarmic force constants

Drag coefficient Cp, 07
Mass coefficient Cy, 1-5
Effective diameter for wave forces 0-6604 m
Environment

Wave height (peak to peak) 61 m
Wave period 9s
Excitation

Vessel surge amplitude (peak to peak) 122 m
Vessel surge phase angle 15°

(Phase angle of peak vessel surge after wave crest)
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A dynamic analysis is performed for the following cases

Case 500-20-1-D 500-20-2-D 1500-20-1-D  1500-20-2-D
Water depth (m) 152-4 152-4 457-2 4572
Riser length (m) 158-5 158-5 4633 463-3
Top tension (10* N) 534-0 890-0 1290-5 2225-0

Static offset (m) 4-57 4-57 13-7 137

The following parameters are used for the difference approximation (i.e. space/
time differences)

Case 500-20)D  1500-20-()-D
No. of riser elements 25 30
Length of riser element (m) 6-33 15-44
Time increment (s) 0-05 0-05

The use of an explicit method of integration leads to a relatively short time
increment due to the large number of eigenvalues modeled.

Results of the dynamic analysis. Performing a regular wave analysis (harmonic
excitation), time integration will produce a steady state solution after a short transient
period.

The results from this steady state motion of the riser are described by the envelopes
(maximum and minimum values) of the riser deflection and bending stress. The results
from the simulations are shown in Figs. 3-6. As expected, the deflection profile,
converges to the amplitude of oscillation of the vessel motion. Bending stress is
computed on the convex side of the riser circumference. As previously mentioned

[200m Deflection T200m Bending stress

6m 70 N/mm?

Figure 3. API simulations, Case 500-20-1-D.
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T200m Deflection T200m Bending siress

6m 70 N/mm?2

Figure 4. API simulations, Case 500-20-2-D.

T500m Defiection 500 m Bending stress

oo

12m

Figure 5. API simulations, Case 1500-20-1-D.

results as read in the corresponding API curves are indicated as circles in the figures.
The results show a good agreement with these data.

4.2. The freely hanging riser
To illustrate some properties of the riser model described, a simulation of the
specific riser in the preceding section is performed with a free lower end (i.e. the riser
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500 m Deflection T500m Bending stress

12m 70 N/mm?
Figure 6. API simulations, Case 1500-20-2-D.
T200m Deflection T200m Bending stress
6m 70 N/mm?

Figure 7. Freely hanging riser 500 ft.

is disconnected from the riser base at the seabed). In addition to the free lower end,
the riser is now assumed to be filled with water instead of drilling mud. The top
tension will in this case be equal to the weight of the submerged riser.

The results of the regular wave analysis described in the preceding section (the
same excitation as before), are shown in Fig. 7 (500 ft riser) and Fig. 8 (1500 ft riser).
As indicated, the modes of excitation are much the same as the modes of the low
tensioned fixed riser. However, the amplitude of the bending stress has increased.
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T500m Deflection 500m Bending stress
\

Figure 8. Freely hanging riser 1500 ft.

Y (sway)
[ Woves

/ ~
\ / (surge)

Figure 9. Vessel coordinates.

4.3. Irregular wave analysis

Finally, a complete three dimensional, irregular sea-state analysis is performed
for the 500 ft API riser. In this case the riser is connected to a conventional drillship
(length: 135 m, deplacement: approx. 20000 tons). The wave direction is 45° on
stern as indicated in Fig. 9, and the irregular sea state is defined by the parameters

Significant wave height: 4 m
Mean wave periods: 8s

As described in § 2.3, the time history of the wave elevation is generated on the
basis of a Pierson-Moskowitz wave spectrum shown in Fig. 10. The number of wave
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Figure 10. Wave and vessel motion response spectrum.
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Figure 11. Surge and sway operators (amplitude).

components used in this example is 25. The horizontal water particle velocity and
acceleration along the depth are calculated on the basis of linear wave theory.

The wave induced vessel motions (surge and sway motions) are calculated from
the transfer functions for the vessel as described in § 2.2. These transfer functions
(amplitude and phase angle) are shown in Figs. 11 and 12, and the surge and sway
response spectra corresponding to the given sea state are indicated in Fig. 10. The
resulting time history of the surge and sway motion is shown in Fig. 13.
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Figure 12. Surge and sway operators (phase angle).
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Figure 13. Time history of surge and sway.

The 500 ft API riser is now excited by the irregular waves and vessel motions for
the following cases:

Fixed riser, top tension= 534 x 10* N (low)

Fixed riser, top tension=2890 x 10* N (high)

Free lower end
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Figure 14. Riser deflection, fixed riser, 500 ft, low tension.
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Figure 15. Bending stress, fixed riser, 500 ft, low tension.

The riser response (deflection and bending stress) is calculated for the x- and
y-deflection simultaneously. Note that, though the models of the riser structure in the

xz- and yz-plane are identical, they are coupled through the hydrodynamic force term
(Morisons’ equation).

Fixed riser, irregular sea-state. The static offset of the riser is the same as for the
previous 500 ft riser cases. Time histories of riser deflection and bending stress are
obtained by integration of the numerical riser model.
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Figure 16. Riser deflection, fixed riser, 500 ft, high tension.
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Figure 17. Bending stiess, fixed riser, 500 ft, high tension.

The envelopes of riser deflection and bending stress are calculated on the basis of
these time histories as shown in Figs. 14-19. In these figures are also indicated the
corresponding envelopes from the regular wave analysis in § 4.1. The ratio between
the wave amplitude and the vessel motion amplitude for the regular wave case (API-
simulations), is indicated in Fig. 11. Though this comparison is somewhat artificial,
it indicates the difference between a regular and an irregular wave analysis of a marine
riser. In the irregular sea state situation, the riser will never reach a steady state
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Figure 19. Bending stress, freely hanging riser, 500 ft.

oscillation. Duc t the non-linear term in the riser model, several modes of oscillation
will be excited simultaneously in the transient region. Depending on the energy of
the excitation, a regular wave analysis might lead to conservative results with respect
to bending stress compared to an irregular wave analysis.

Freely hanging riser. Irregular sea-state. The irregular sea state analysis is also per-
formed for the freely hanging riser. The results are shown in Figs. 18 and 19. As for
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Figure 21. Time history of vessel surge and lower riser end.

the preceding cases the results from the regular wave analysis are also indicated in
the figures.

The most interesting observation is the amplification of the vessel motions at the
lower end of the riser. This is clearly illustrated in Fig. 20 showing the envelopes of the

horizontal position of the vessel and the corresponding position of the lower riser
end.
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Figure 21 shows the time history of the surge motion of the vessel compared to the
corresponding motion of the lower riser end. Though there is a correlation at a certain
time lag, the motion of the riser will mainly be determined by the modes of oscillations
excited by both the waves and the vessel motions.

The motion of the lower end of a freely hanging riser will be a limiting factor for a
re-entry operation of a drilling or production riser to a subsea wellhead or manifold
centre. If such re-entries have to be performed frequently, for example during produc-
tion from a floating vessel in hostile waters or offshore loading directly from the
seabed, the motion of the lower end could be controlled using a set of horizontal
thrusters mounted on the riser. However, in the case of a steel riser, significant power
would be required to compensate for the bending and inertial forces at the lower end
of the riser.

5. Conclusion

A mathematical model describing the dynamics of a flexible marine riser con-
nected to a floating vessel has been presented. The riser can be freely hanging or fixed
at the bottom, and the vessel can be freely floating, moored by anchors or dynamically
positioned.

The model is suitable for dynamic analysis of operations, such as deep water
drilling using a DP-vessel, production from a floating unit, re-entry to a subsea
installation with a freely hanging riser, continuous gravel back-filling on pipelines
through a fall-pipe, etc.

The comparison with the results from the API study, indicates reasonable predic-
tions by the riser model, though with some greater mean deflection for the low
tensioned 1500 ft riser. The three dimensional, irregular sea state analysis shows
some of the capabilities of the simulation program. The results are in this case
presented as envelopes of computed profiles within a specified time. This is usually
the most interesting for a design analysis. However, an interactive simulation can
easily be arranged to study the dynamics of a complete operation (for example a
re-entry of a riser to a subsea installation). The simulation concept is basically
developed for the simulation of global dynamics of complex operations. There is
practical limitation with respect to the resolution of forces and computed stresses
(i.e. limited number of elements). However, this limitation is usually not serious.
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