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A model for short-term load prediction (24 hours) has been developed. It is imple-
mented as a part of an interactive program system for load prediction within the
different areas of the Norwegian Power Pool. The model consists of two parts,
describing the slow, seasonal variations (normal conditions), and short-term
deviations from normal conditions, respectively. Kalman filtering techniques are
used for updating the states of the models, and the parameters are estimated with
a maximum likelihood method. The model has been tested with load data from
various areas in Norway, and the system has been in on-line use at the Norwegian
Power Pool since October 1979. Better control of the power system has been
obtained through improved prediction and production planning.

1. Introduction

Good prediction of future load demand is necessary when making an optimal
production plan for the power system. The best way to estimate this load is probably
through use of modern control theory methods.

In 1978 the Royal Norwegian Council for Scientific and Industrial Research
(NTNF), EFI and the NPP agreed to finance a project for development of a load
prediction model, to be implemented on a minicomputer for use in the Norwegian
electricity supply control centers. The goal was to make 24 hours predictions with time
resolution of one hour. The project period has been two years and the cost about
$120 000.

2. Model description

The predicted load within each supply area is derived from a model consisting of
two major parts:

—submodel My describing long-term or seasonal variations of load and tempera-
ture, with typical time constants of one week or more. This submodel estimates
the optimal linearization point for the other submodel, M,,

—submodel M), describing the functional relationship between deviations in load
and temperature, involving time constants of less than one week. This is a linear
multiple input single output model (Astrem and Bohlin, 1966).

The model structure is shown in Fig. 1.
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Figure 1. Maodel structure.

Seasonal variations

The seasonal variations are defined by a discrete set of process equations with two
independent vectors x1 and x2 concerning load, and a vector x3 describing the long-
term behaviour of the temperature, as follows:

State model
x1(ky + D) =x1,(ky)+s1ky)+0:(ky) (1)
x2(ks +1)=x2;(k) +v5(k2) V)
x3,(ky +1)=x3(k)+53(k,) +valk,) (3)
where

i=1, 2, ..., 24; vector component number of vectors xI and x3,
j=1, 2, ..., 168; vector component number of vector x2,

k, =time parameter for seasonal variations for xI and x3, incremented by one
every 24 hours,

k,=time parameter for x2, incremented by one every week (168 hours),

x1,(k,)=average weekly load (MWh/h) for the ith hour of the day, under normal
temperature conditions,

x2,(k,)=deviation from average weekly load (MWh/h) for the jth hour of the week,
under normal temperature conditions,

x34(k,)=normal temperature for the ith hour of the day,
sl(k,)} _ seasonal deviations from annual average of load and temperature
s3(k,)| respectively,

vy, Up, U3 = Process noise.

The seasonal deviations s1 and 53 are assumed to be sine-wave functions of time:
sl(ky)=w, A, cos (w ki +B;) 4)
$3(k{)=w3A3 cos (wak+B4) (3)
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where

o =seasonal angular frequency,
A =amplitude of seasonal deviation from annual average,
B=initial phase angle.

Observation model

Y24k )=x3,(k )+ w, (7
where
j=1,2, ..., 168,
._{24 when j=24, 48, ..., 168

j(modulo 24) otherwise,
y1(k,)=measured load,
y24(k,)=measured temperature,
wy, W, =measured noise.

A number of independent Kalman filters (24, 168, 24) are used to update the state
vectors x1, x2, and x3 over the year (Eykhoff, 1974). The feedback is low in order to
reproduce only the slow seasonal variations and trends. A simplified filter for the
submodel My is designed as follows:

The gain is constant through the year with the same value for all components of the
state vectors xJ, x2 and x3. The gain is estimated in such a way that the sum of squared
24 hours prediction errors is minimized. For each step of the search procedure the
parameters of the submodel M, are estimated with a maximum likelihood method
(Astrom and Bohlin 1966). We have estimated the gain for several load areas in
Norway and the values all seem to be practically the same, 0-15. The sensitivity in the
prediction error with respect to reasonable variations (0-1-0-2) in the gain, is small.
As a general rule we may use the value 0-15 for other areas. With this feedback the
time constant for the components of the vectors x7 and x3 will be six days, and six
weeks for the components of the vector x2.

In fact only the sum of the respective components of the vectors xI and x2 is
observable. Therefore, a bias with opposite sign can occur in the mean value of the
vector components of xI and x2. From the physical interpretation of the vector x2 as
the week day variation, we know that the mean value of the components should be
zero. Therefore we have a restriction to avoid the development of such a bias.

Short-term deviation from normal conditions
To estimate and predict the load fluctuations caused by short-term deviations from
normal weather conditions, an ARMA model is used (Astrem and Bohlin, 1966).
We define the short-term deviations as
Ayl =yl —ply ®)
Ay2=y2 -2, 9
where
Jly=normal load estimated by the model M,
J2y=normal temperature estimated by the model M.
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This model runs with a time increment of one hour. The ARMA model describes the
relation between load and temperature variations as follows:

n

Aylk)+ Y andyl(k—m)= i. {Budy2(k —m) + ek —m)} +e(k)  (10)

me=1
where y
a,, b, ¢,=model parameters,
n=model order,
e(k)=innovation.

A Kalman filter is used to update and predict values for Ayl. Estimates of the para-
meters a, b and ¢ are updated every week, based on data from the previous three weeks.
A maximum likelihood method including Newton-Raphson iteration as described by
Astrom and Bohlin (1966), is used for this estimation. It is well known that these
parameters also give the optimal feedback in the submodel M,.

The actual load estimates, 1, is then found by adding the estimates from the two
models My and M,

J1k)=1nk)+ Bp1(k) an

A typical time constant for the model M, is about 12 hours. This is therefore well
separated from the model M), having a time constant of six days (xI).

Variations in the signal Ayl with time constants ranging from hours to six days
which cannot be explained through temperature variations, will be modeled by the
terms ¢,e(k —m) in eqn. 10. For a first order ARMA model, the environment will be a
simple time constant model. This is the best way to model an unknown environment
when the expected value of the environmental noise is zero.

If the dynamics of the environment are known, a more detailed model should be
used, for example by adding one more input signal to the ARMA model, or by
separating well known load variations from the load measurements.

Treatment of anomalous load patterns

In some periods of the year the model M\, fails to describe the normal load. Such
anomalous load patterns occur during: holidays, Christmas and Easter, and other
special periods.

For holidays the index j of the model My is temporarily changed to give the
ordinary load pattern of a Sunday. Load prediction during all other special periods are
taken care of by adding one more state variable, x4, to the combined model. The
predicted load is then given by the following model:

Jik)y=p1p(k) + BpL(k) + x4 (12)

This new state variable, x4, is not actually observable unless the vectors xI and x2 of
My and Ayl of M, follow a ballistic trajectory throughout the particular period. To
predict Ayl, however, a parallel model with the same feedback as usual is used.

During Christmas and Easter, a priori estimates of x4 are given by observations
from earlier years. The values of x4 are calculated relative to xf in order to take into
consideration the trend in the load, and also the variable dates of Easter from one year
to another.

During periods when the expected load variations is unknown, x4 is modeled as a
pure integrator with initial value zero.
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Model discussion

An advantage of this model is that the seasonal variations are described by using
only one unknown parameter, the common feedback to state vectors x1, x2 and x3.

The parameters of the ARMA model, M,, are estimated in an adaptive way, to
fit the slow variation in weather sensitivity over the year. From the maximum likeli-
hood method for estimation of these parameters, we also get the optimal feedback of
the ARMA model. In this way there is no need to cut and try to determine the noise
covariance.
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Figure 2. The vector x1,, i=1, 2, ..., 24, at a given day.
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Figure 3. The vector x2;, j=1, 2, ..., 168, at a given week.
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The model is capable of incorporating more than one weather variable as input
such as radiation and wind velocity. In this project we have only used temperature.

It is possible to initiate the model with only three weeks of data. After this the
model will tune itself in a couple of weeks. The model is also capable of running
automatically with updating and prediction every hour.

A disadvantage of the ARMA model is that it is a linearization of a non-linear
process, €.g. under extremely low temperature conditions during the winter certain
saturation effects will occur. As described by the model in eqn. 10, deviations in
temperature and load should be a stationary time series. This is not quite true due to
the simple structure of the submodel My. A more physically based model would
probably be better, but will certainly require a large number of measurements.

3. Results from laboratory tests

The model was tested on data from three different load areas in Norway. Here we
will show some typical results from a test period of about 6 weeks (1000 hours) for the
load in Oslo. The period starts at 1975-01-21. Almost all the load is weather sensitive.
Only 3-9% is used by power intensive industry. 50-3 % is household usage and the rest
is used by schools, offices etc.

In Figs. 2 and 3 the components of the vectors xI and x2 are plotted at a given time
of the year. We can regard xI as the mean value of the normal load over a week, for
each hour of the day. The components of x2 are the deviations in the normal load from
this mean value (x1) for each hour of the week.

Figure 4 shows how the updating of the vector component x1, works for a period
of one year. It is plotted together with the measured load, which has a drop each
weekend. The variation over the year of the state vectors x2 and x3 are estimated in a
similar way.
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Figure 4. The vector component, x14, estimated over a period of one year. Measured load,
»1, is dotted.
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Figure 5. Measured load, y1, for a period of 6 weeks from the date 1975-01-21.

In Fig. 5 the measured load is plotted for the test period of 1000 hours. The mean
value of the load is 714 MWh/h.

Figure 6 shows the estimated deviations from normal conditions in the load and
temperature for the same period. The excitation of the system is sometimes rather high.
Once the deviation in temperature varies from —6 to +8°C in about 45 hours. As
expected the two deviations seem to be almost symmetric around the zero line. The
period for the slow variations corresponds to the passage of the high and low pressure
weather zones.

Figure 6.
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Deviation from the estimated normal conditions of the load (Ay1) and temperature
(4y2).
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Figure 7. Comparison between deviation in the load and a ballistic simulation with a
1st order ARMA-model.
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Figure 8. The 24 hours prediction error when observed temperature is used.
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To investigate the dynamics of the ARMA model we have carried out a ballistic
simulation. As seen in Fig. 7, the model fits the short term variations in the load very
well.

Figure 8 shows the 24 hours prediction error when observed temperature is used
as input to the prediction model. The standard deviation of the prediction error is
12:5 MWh/h or 1:75%,. The worst case is an error of 5-9 % for this period. (One should
note that this might be an observation error instead of a model error). The standard
deviation of the signal in Fig. 8 is almost as great as the one obtained with a ballistic
simulation. This gives an idea of the noise involved in estimating the environmental
state x4 during Christmas, Easter and other special periods.

In Fig. 9 the autocorrelation function for the one hour prediction error for a 2nd
order ARMA model is plotted with delays from 0 up to 30 hours. We can see that the
innovation is almost a white noise process, although there might be a very small daily
correlation in the prediction error. The reason is probably that the deviations in the
load and temperature are not quite stationary time series.
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Figure 9. Autocorrelation function of the one hour prediction error, with a 2nd order
ARMA-model.

Figure 10 shows the standard deviation in the prediction error as a function of the
prediction horizon when three different models are used. In the first case an ARMA
model with observed temperature is used for prediction. In the second case we have
used an ARMA model with no input. In the third case we have tried to make a
‘manual’ model, where in principle the load deviation during the next 24 hours is
assumed to be equal to its initial value. The equation for this prediction is as follows:

Pk +24)=p(k—168+24) - y(k)[v(k—168) 13)

This equation also takes care of the weekly load pattern,
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Figure 10. Standard deviation in the prediction error as a function of the prediction horizon
for three different models.

It would be natural to compare the first two cases with this one, because eqn. 13 is
so simple that it is almost like having no model at all.

When used for real prediction the first model will not be as good as suggested by
Fig. 10 because of error in temperature prediction. The result will depend on the
quality of this prediction. If it is bad, the results may become even worse than in the
second case, where no temperature is used.

When the model is used, we can sum up that the standard deviation in the 24 hours
prediction error is reduced from 3-59; to about 2-2-5 9, depending on the quality of
the weather forecast.

It was found that a first order ARMA model was almost sufficient, although there
still was a small two hours correlation in the noise (0-1).

The table shows the least-squares and maximum likelihood estimates of the para-
meters and their relative standard deviations for first and second order models.

We can see that the standard deviation of the parameter estimates increases con-
siderably with the model order.

The temperature sensitivity of the load can be expressed by the parameters of the
ARMA model in the following way:

—Ayl{Ay2= Zn: bl/(l+ En a;) (14)
i=1 i=1

For the first order model this gives the value 0-56 and 0-48 MWh/h, 0-1°C or 0-78 and
0-67%,/°C for the M—L and L-S methods respectively. For the second order model the
values are 0-84 and 0-74 %/°C. The L-S method somewhat underestimates the weather
sensitivity. It is typical that the sensitivity is slightly higher in the spring and autumn
and almost zero in the summer.
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ARMA Model Parameters for the Test Period. 5=MWh/0-1°C

Least-Squares (L-S) Maximum-Likelihood (M-L)
Standard Standard
Value Deviation Value Deviation
(%) (%)
a, —0-76 3-8 —0-915 1-4
1. order b, —-0-12 14 —0-048 16
¢ o — —0-44 7
a, —0-46 41 -0-13 76
a, —0-40 42 —0-76 13
2. order b, —0-43 18 —0-53 14
b, 0-35 21 0-46 16
¢y — — 0-26 41
Cy — — —-0-34 22

The parameter a,= —0-915 for the first order model gives a time constant of
11 hours. This agrees well with the general experience of the control centre operators.
The delay can be interpreted as a physical property of thermal insulation in buildings.
Also, the ballistic simulation of the ARMA model (Fig. 7) confirms that the model has
a good response.

The value of the parameter g, is close to —1-0. There may be two reasons for this:
the feedback in the model M) is too small, or the sampling interval is too short, We
have optimized the feedback Ky as explained earlier, so that the reason is probably
that the sampling interval is only 1/11 of the time constant. This interval (MWh/h) is
used by the utility companies in their measurement and forecasting routines and was
therefore a natural basis for estimation of the parameters a, b and ¢. An optimal
interval is expected to be somewhat greater (34 hours). The sensitivity of the para-
meter estimates and their covariance with respect to the sampling interval was there-
fore tested. The stationary response was found to be the same with sampling interval
of 1, 2, 3 and 4 hours,

4. Load prediction for the Norwegian Power Pool
The NPP Control System

The power producing utilities in Norway are organized in a countrywide power
pool, The Norwegian Power Pool (NPP), which coordinates network operation,
optimal power production and exchange of surplus power. The main characteristics
of the Norwegian power system are (1979): installed hydro power generating capacity
18 179 MW, power consumption 84 TWh, public consumption 65%, power intensive
industry 339, others 2%, The load variation is mainly a two peak curve, with a
night/day ratio about 0-84 and a summer/winter peak ratio of 0-47. Maximum load is
about 14 000 MW. .

The NPP control system consists of three regional control centres and one com-
bined regional/national control centre. During the autumn 1980 the first step of a
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computer-based control system was installed. Some of the functions implemented in
this control system are: network surveillance, generation control, generation co-
ordination, maintenance co-ordination, and load prediction.

_Weather
forecast
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Load <: Generation
prediction control

_—> Unit Q

Commitment |

Figure 11. The production control system.

Figure 11 shows that the load prediction program is only a part of a total system
for production planning and control. The production plans for each utility are collected
and entered into the program system for unit commitment. From these plans and the
load forecasts, the planned power exchange between the different control areas are
computed for the next 30 hours with time resolution 1 hour. The exchange plan for
each control area is fed into the generation control system, which runs on-line on the
foreground computer. Here, the control error (planned—measured exchange) is
computed as a generation control signal. This control is a manual change of the set-
points of the units in the system.

Program design

Specifications made by NPP when the load prediction program SAFO was
designed, were as follows: input of data should be simple, with data presentation and
data correction facilities, load prediction should be made for n independent areas
(n parallel models, n,,., =35 at present). The load prediction program should take into
account abnormal load conditions, such as holidays, industry shutdowns and load
variations due to network disturbances.

Much emphasis has been put on good man-machine communication. The main
functions of the program system as experienced by the operator, are shown below:

[STANDARD SESSION =SIMULATION + PREDICTION
SIMULATION

PREDICTION FOR THE NEXT 24 HOURS ;nggigt{sm
PREDICTION FOR THE NEXT TWO WEEKS o T

SUM LOAD FOR DIFFERENT GROUPS OF REGIONS
PARAMETER ESTIMATION

MAIN J GO BACK UP TO SIX DAYS

PROGRAM | GO FORWARD N DAYS
PRESENT TIME
INITIALIZATION

CHANGE REGION
GENERATE A NEW REGION
HELP

STOP
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Program operation

The operation of the load prediction program SAFO is done by the control centre
engineer. SAFO predicts the hourly load for each NPP area for the next 30 hours.
Real-time load measurements are transmitted from the foreground computer to the
background computer on wkich SAFO is implemented. This is done automatically
every hour. The temperature is measured and predicted with intervals of six hours by
the national weather service. This information, and information about abnormal load
variation are given manually by the operators while running the program. This is
done at least once a day, or more frequently, if the prediction error is unacceptable,

The results from the prediction are presented to the operators as plots and tables.
Corrections of the prediction can easily be done by the operator. It takes about five
minutes to make a load prediction. A load prediction for the whole country is made
automatically by adding the results from each sub-area.

The program system SAFO is almost self-explanatory, and the need for education
and training of the operators has been very little. We do, however, need a special
supervisor, to take care of parameter inspections, parameter estimation, program
maintenance and program corrections.

SAFO is a necessary part of the NPP control system. An isolated evaluation of
SAFO is therefore difficult. The control system is still in its installation phase, and
the measurement noise is not yet at an acceptable level. Therefore the prediction error
in on-line operation is greater than in the laboratory tests. Sometimes the model is
influenced too much by bad data which are not discovered by the operator. In order to
overcome this problem we plan to use the prediction error covariance to detect bad
data automatically. In spite of these problems with the measurement noise, the feed-
back control during the real-time operation is significantly reduced due to improved
prediction and planning.

5. Conclusions

State and parameter estimation techniques have been successfully implemented for
load prediction in the Norwegian Power Pool. For the load in the Oslo region the pro-
ject has shown that it is possible to reduce the standard deviation in the 24 hours load
prediction error from 3-5% to about 2-2-5% by using a dynamic model and estimation
techniques. A lower bound for the error is 1-8 % since this is obtained with observed
temperature as input to the prediction model. Non-predictable process noise and
measurement noise contribute 1-:29, of the error in the one hour prediction. The
difference between 1-8 and 1-2% is the maximum improvement by taking into account
weather variables other than the temperature, when the same type of ARMA model is
used. However, the prediction error varies from one power system to another because
of different composition of the type of consumers (Handshin and Lutke-Daldrup 1980).
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