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Stochastic seasonal planning in multireservoir hydroelectric power
systems by differential dynamic programming?
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A first-order differential dynamic programming (DDP) algorithm is used for
computing optimal control for a five-reservoir system, where the stochastic inflow
process has been approximated by a few discrete disturbance values in each time
step. The method is found to be faster than linear programming, previously tried
on the same system model.

1. Intreduction

Due to its complexity, the operation planning problem in a hydroelectric power
system is usually divided into an hierarchy of subproblems, according to different time
scales involved and the model complexity needed (e.g. Delebecque and Quadrat
1978). In this paper we shall deal with the medium-term planning, which is con-
cerned with the use of the seasonal storage reservoirs, with a simplificd description
of the rest of the system. Typical planning periods are from about half a year up to one
year, and the time steps used are usually one week or one month. The goal is to mini-
mize the expected value of the variable operating costs for the power company.

In the long- and medium-term planning one has to take into account the stochastic
. nature of the inflows to the reservoirs. The releases through the power stations are
restricted and the reservoir storages have upper and lower limits. The formulation of
the optimal planning problem thus leads to a stochastic optimal control problem
which has both state and control constraints; a very difficult problem. As the fluctua-
tions in yearly inflow, for instance, may be of the same size as the capacity of the reser-
voir, the noise cannot be regarded as small. Moreover, it may be sequentially correlated
and non-gaussian.

The most general way of solving such an optimal control problem, is via dynamic
programming (DP) or similar procedures, e.g. the ‘incremental water value method’
(Lindqvist 1962). This also furnishes a feedback policy, which is highly desirable.
Unfortunately one runs into the well-known dimensionality difficulties of dynamic
programming when one tries to deal with systems containing more than one or two
reservoirs. There are two ways of dealing with this problem. Either one can aggregate
all the reservoirs into an ‘equivalent’ one-reservoir system, and use dynamic program-
ming, or one can retain the reservoirs and make other approximations, both in model-
ing amd optimization. In this paper, we shall take the second approach.
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Many solution procedures for the multi-reservoir case have been suggested in the
literature. ReVelle, Joeres and Kirby (1969), Loucks and Dorfman (1975), Dillon,
Martin and Sjelvgren (1979) are examples of the application of chance-constrained
linear programming (CCP). In CCP, feedback may be incorporated through the
popular ‘Linear decision rule’ introduced by ReVelle et al. (1969). Willén (1979)
discuss these methods.

If one invokes the ‘Certainty equivalence principle’ (Bryson and Ho 1975) and
assume that the future disturbances are known, e.g. equal to their mean values, then
the optimization problem becomes deterministic and may be solved in a number of
ways. For instance, ‘corridor’ techniques of DP may be used, as by Heidari et al. (1971).
Stavnes (1969) use the Pontryagin maximum principle together with penalty f unctions
and a first order gradient method. Strictly speaking, however, the ‘Certainty equiva-
lence principle’ cannot be assumed to be valid in our case; one reason for this are the
state constraints.

Delebecque and Quadrat (1978) and Falgarone and Lederer (1978) use decom-
position techniques, whereby the problem is reduced to a problem in team theory.
Another decomposition method is that described by Egeland et al. (1981). Takeuchi
and Moreau (1974) have analysed a water supply system using a combination of linear
programming and dynamic programming. Common to all the mentioned approaches
are that they attack the problem via various approximations. Since different
assumptions are made, it is often difficult to compare the methods.

In this paper we describe an approach to the multi-reservoir case where we approxi-
mate the stochastic inflow process by a discrete time and discrete state Markov model.
This means that the inflow distribution is replaced by a few discrete values in each
time step. This leads to a finite number of realizations. The cost of each realization is
computed and the expected cost found, in terms of the controls for each realization.
The optimal values of these controls for the different realizations may then be found
by minimization of the expected cost, and we describe a differential dynamic program-
ming (DDP) algorithm for doing this. The inflow model is a special case of models
described by Jacobson and Mayne (1970) for use with differential dynamic
programming. DDP has also been applied to the hydro power planning problem by
Martin and Dillon (1977), but our approach differs from theirs in that we use discrete
time, and in the treatment of the state constraints. A similar inflow model has earlier
been used in conjunction with linear programming (Gjelsvik and Haugstad 1980), and
an aim of the present work is to see if a DDP approach can reduce computer require-
ments.

Hence we shall not investigate the validity of the inflow model, instead we will
concentrate on the optimization when the inflow model is taken for granted. It may be
said that the inflow model is crude, but as we have seen, the problem is so difficult that
simplifications are needed. So we use the present model because it is computationally
feasible, while not treating the inflow as completely deterministic. In § 2, we describe
the power system. § 3 deals with the DDP-algorithm used, and §4 gives results of
test runs for a five-reservoir system.

2. Mathematical problem formulation
2.1. Power system description

We consider a system with n hydroelectric power stations, each with one reservoir,
with arbitrary hydraulic coupling between the reservoirs. We restrict ourselves to the
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Figure 1. Example of system structure.

case when all power stations are feeding into a concentrated network represented by a
single busbar, as shown the example of Fig. 1.

An electric power company has to cover a certain fixed demand for electric power,
often called the firm power. To do this, the company may supply power from its own
hydrolectric and thermal power stations, and it may buy power from other power
companies or from the Power Pool. Surplus power may be sold. We shall consider
thermal power as bought power, since its marginal cost is known quite well.

The problem of seasonal planning is to determine a strategy to tell how much power
should be bought or sold next week or month and how much water should be released
from each storage reservoir, so that the expected value of the operating cost is mini-
mized.

The decision-dependent operating cost for a certain time period is the cost of buying
power (including thermal generation), minus the income from selling surplus power,
and minus the value of the water remaining in the reservoirs at the end of the period.
Let the time period be divided in N time steps. We then seek to minimize

N—

J=E{—¢’(x(N))+ kZ l(k)} M

=0

Here E{ - } denotes expectation. x(N) is the final state of the system, and L(k) is the net
cost of buying power in the kth time step. ®(x(N)) is a scalar function reflecting the
final value of the water. Actually we have a problem with an infinite horizon that we
approximate by a problem with a finite horizon at k= N. In multireservoir models the
choice of @ is one of the main difficulties; this will be commented on in § 4. No dis-
count factor is included in (1). This is probably fair, as the time horizon is only of the
order of a year away.

Let there be m ‘types’ of power exchange, each with constant marginal price. Then
L(k) is given by

m

Liky=¥ c(k)K(k) 2

r=1

G2
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and the power balance equation is

m

Y P+ ¥ K()=D06) @)
=1 =

Here
m=number of exchange types
n=number of power stations
¢,(k)= price of energy of the fth type in time step k
K,(k)=amount of energy bought of the rth type in time step k
D(k)=electric energy demand in time step k
P,(k)= electric energy delivered to the busbar from the ith power station in time
step k

The future ¢,s will not all be accurately known, but we shall treat them as known
here. The demand D is also uncertain to some extent, but will likewise be regarded as
known. Thus the only stochastic element in the problem formulation is the inflow,
which is believed to be by far the most important stochastic variable in the real
problem.

If the firm power demand cannot be covered, we have rationing, and it is common
to include this as types of exchange in (3), so that formally the power demand is always
met. In (2) these terms act as a sort of penalty function. The associated cost coefficients
are chosen high to indicate high social costs of shortage. Selling power means that the
corresponding K, is negative, but by suitable shifting of the zero for each such term in
(3) we may regard all K, as non-negative. D may then not be equal to the ‘firm’ power
demand. We obtain the following constraints:

P Pk) < P
“)
0< K (k)< K™
We define
x(k)=storage in the ith reservoir at the end of the kth time step, in volume units
(e.g. Mm?)
g(k)=vector of releases with components g,(k)
gi{(k)=release from the ith reservoir in time step &, in volume units
v(k)=noise vector with components ;(k)
v(k) = controlled inflow to the ith reservoir during the kth time step, in volume units
z,(k)=overflow from the ith reservoir during the kth time step
The state of the reservoirs is then given by the state vector x(k) = [x,(k), ..., x (k)]".

In general there may also be other states, e.g. for description of the inflow process.
The reservoir system will evolve according to the equation

x(k + 1)=x(k)+ Bg(k)+ B'z(k) + v(k) 3)

subject to

x;""" éx‘(k)éx;m‘ i= 19 s (6)
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and
z(k)=0 i=1,...,n (7

B and B’ are reservoir coupling matrices with elements b;; and b';; respectively.

1 if g, enters the ith reservoir
byy=4 —1 if g; leaves the ith reservoir (8)

0 else

b’;; has a similar definition with z instead of ¢. g, and z; do not necessarily go the same
way.
The endpoint states x(/N) are considered free, except that (6) must be fulfilled, and
it may be required that
x{(N)= x{N)min )

Here and in the following we shall neglect the ‘uncontrolled’ inflow to a power
station. This is inflow that does not come through a reservoir and must be used
instantaneously. Inclusion of this into the present model is considered straightforward,
however. '

Let g be the mean water flow through a power station during one time step and P
the mean electric power output. Let » be the efficiency of the power station, so that
P=nq. We neglect water head variations, and assume that

n=const. (10)

for P<P,, where P, is the point of maximum efficiency. Above P, we take the
efficiency as (El-Hawary and Christensen 1979)

n=mo—a(P-P,)* (1)
where 94 and @ are constants.

2.2 Inflow modeling

We assume that the inflow vector v can take on only discrete values d,, ..., d, and
further that v can change only at times k,, k,, ..., k; in the period k=1, 2, ..., N—1.
Here v(k,) is the value of v shortly after the transition at time k,. If o(k;)=d, we have
v(k)=d,, k=k, ....,k;,,—1. A is the number of different d-vectors, and I is the
number of disturbance transition points. We define ko =0.

The transition of » from d, to d; at time k, has probability

prob (v(k,)=d;|v(k;- 1) =d)=p,’ (12)

where

A
Zl D=1 r=1, .., A4, i=1,..,1 (13)

v(k), d, and d, are vectors with dimension n.

In the following we shall assume that #(0) is given. Figure 2 schematically shows
how the state variable trajectories decompose when there are two possible disturbances
in each transition (4=2). We shall refer to a line segment of Fig. 2 as a ‘branch’. Thus
in Fig. 2 there are seven branches. We assume that the value of the disturbance is
known to the controller immediately after a transition, and the state of the system is
then given by x and ».
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Figure 2. Example of multiple trajectories in the case of two disturbance values at each
transition point.

2.3. Control policy

We shall choose as control vector u=[P7, K717 and the g,(k) will be considered as
functions g;(P(k)). Feedback is introduced in that there is a separate control vector
u{w, k) for each disturbance value, that is, one control vector for each branch in
Fig. 2. Here o denotes one disturbance sequence. Let € denote the set of all w. u(w, k)
is chosen so that the power balance constraint is satisfied for each realization we().

In practical operation one would most likely use only u(1) out of the computed
controls. When time step no. 1 is finished, one would translate the time scale so that
the next time step becomes the first and repeat the calculations.

3. Solution by differential dynamic programming
3.1. The differential dynamic programming algorithm

To solve the optimal control problem we use a discrete time version of the method
described by Jacobson and Mayne (1970). We employ a first-order method, with small
variations in control. Here we outline the algorithm, while some details are given in
the Appendix.

Assume that a control policy = is given. Let Jy(x(k), v(k)) be the expected cost of
taking the system from state [x7(k), ¥7(k)]" to a feasible final state using policy #. Then

J;=E{“¢(x(w>)+ T L), k)} (14)

Since = need not be optimal, J, is not necessarily the optimal cost function.

Let # be a nominal policy and let @ and X be the corresponding nominal
controls and states, respectively. Write the transition equation of the system as
x(k + 1)=f(x(k), u(k), v(k), k). For a time step k with k+1#k,, ..., k; we have:

Jk(xa ”)=L(“9 k)+ Jl:-l- l(ﬂxs u, v, k)’ 0) (l 5)




Stochastic seasonal planning in MHP systems 137

In the DDP method eqn. (15) is expanded in a Taylor series in x and # around the
nominal trajectory and the expansion is used for computing an improved control
policy. Consider a realization o of the inflow process. We define

a(w, k)=[irst-order change in cost function J, due to changes in control

(&, 5, k)= —% Ju(x, b) (16)

x=xlk)

—n is equivalent to the quantity ¥, used by Jacobson and Mayne (1970). We shall
usually suppress the dependence on x and » in the notation. For a hydroelectric power
system x may be termed an incremental water value.

In terms of » a Hamiltonian is defined:

H(x(k), u(k), —n(k +1), v(k), k)
=L(u(k), k)—x"(k+1) « [x(k) + Bg(k)+ B'z(k) + v(k)]  (17)
In each time step improvements du(k) in control are computed by minimizing
AH(k)= H(x(k), (k) + 8u(k), —x(k +1), v(k), k)

AH is the change in H due to changes in u with fixed x. To take care of the power
balance constraint (3) and the state variable constraints (6) and (9), we define an
augmented Hamiltonian function by

AG)=Hi)+ A(k)[mc)— % k- ¥ P,(k)]
4 - [xth) + Bg(k) + B'2(k)+ 1(k)— ¥
ST - [x— x(K) — Bg(h) ~ Bo(k) ()] T - (k) (19)

Here p, ¢ and v are vectors of Kuhn-Tucker multipliers (Luenberger 1972). The
recursive equations for a and » become

¢
w0 =—= B (20)
a(k)=a(k + 1)+ AH(Kk) @n

At each branch point @ and x follows the ‘addition rule’ (Jacobson and Mayne, 1970)
)C(i, dﬂ ki_ ) = Z pr.s‘u(i’ dsv kl"‘ ) (22)
a(f, dr- kt* )= Eprs‘a(i’ ds’ kl+) (23)

Summary of the algorithm

(1Y With given x(0) solve the system equation

x(k +1)=f(x(k), u(k), v(k), k)

in this case eqn. (5) in forward time using nominal controls @#(w, k) for all weQ)
and k=0, ..., N—1.
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(2) At the final time, put
2d(x)

®(N)=
X | x=30)

24

and solve backwards on each trajectory branch the egns. (20) and (21). Where
branches meet, use (22) and (23). If the nominal trajectory hits a state boundary,
then x is computed via the necessary conditions (A3)-(A4).

(3) In forward time, for all w compute changes 8u to minimize AH and compute new
states x(w, k) with u#+ Su instead of #. When state variable limits are met, proceed
as described in the Appendix.

Put a(0)=0 and solve equation (A 9) along each realization, giving a(x, d, k)
for k=0, 1, ..., N—1 and all w. Also compute the cost J(w) for each realization.
Compute the new expected cost, J, and the estimate of the reduction in expected
cost () as

J=E{J(w)}= a:;n (@) («)
a=E{a(x, d, N)}= Eﬂ p(w)alx, d, N)

Here p(w) is the probability of the realization w|s|p(e) may be calculated from the
inflow transition probabilities using Bayes’ rule.

(4) « is now the estimated cost reduction for this iteration. Calculate AJ=J—J, the
actual change in cost. If AJ<0 and

A
umc (e.g. ¢=0-5) (25)

la
then the new trajectories and controls are accepted. Otherwise €,(k), k=0, ..., N—1
are reduced and step 3 is repeated. If this occurs more than a specified number of
times on the same iteration, an error exit is taken.

(5) If |e| <e€o then stop. ep is a small quantity.

(6) Set X(w, k)=x(w, k) and #(w, k)=u(w, k) for all k=0, ..., N—1 and all w.
Reset €, and e, and go to step 2.

A simple way of finding a starting trajectory is to assign preliminary values to »
and perform a forward run with (A 8) and (A 9) relaxed.

Remark

A key point in the algorithm is that the solution is always kept (formally) feasible.
This is possible because of the rationing terms in the power balance equation (3), which
act as penalty terms in (1). This might lead to oscillations in the incremental cost of
power, A, from one iteration to the next on branches where state limits are met, with
corresponding ‘bouncing’ on the state constraints. €, would then have to be reduced
and might eventually become so small that little progress would be made. However,
this has not been a problem in the tests run.

3.2. Programming of the algorithm

The algorithm described in § 3.1 has been programmed in FORTRAN for a
NORD-10/S minicomputer.
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The program is restricted to the case of hydraulically parallel power stations.
Further, the time between two consecutive disturbance transition points has been taken
as one time step. These time steps may be of different lengths. This corresponds to
the linear programming approach by Gjelsvik and Haugstad (1980).

In the present program version all quantities, both trajectories and controls, are
kept in-core, the space available being 64K of 16-bit words. For five reservoirs we
may have approximately 350 branches (refer to Fig. 2) without exceeding the main
memory.

4. Test runs

As a test model for our algorithm we have chosen a simplified representation of the
system of Ser-Trendelag Kraftselskap (S-TK) which is a regional power company
that supplies power to local power companies.

We emphasize that our main goal is testing the algorithm, hence we will not be too
much concerned with details in the modeling, and much of the data that we use are
simplified. Many of the simplifications were initially made in order to be able to apply
the “Power Pool optimization model” described by Egeland et al. (1981) to the system.
This system was also used for the linear programming computations of Gjelsvik and
Haugstad (1980).

The simplified model consists of five parallel subsystems, each represented as a
single power station. They are: Driva, Nea, Fosen, Lundesokna and an aggregated
representation of various small power stations named ‘Miscellaneous’. The station
Lundesokna represents an aggregate of two cascaded power stations. Nea and Driva
are owned together with other power companies, and our representation corresponds
to the fractions owned by S-TK. ‘Fosen’ represents three parallel power stations in the
coastal region of Trendelag.

Two test cases were run, one with starting time at week no. 40 (autumn) and one
with starting time at week no. 12 (spring). In both cases the final time is taken as the
end of week no. 39 next year.

Power system data

The data used for the power stations are given in Table 1. The overall power station
efficiency is represented as in the eqns. (10) and (11) with @ in (11) fitted from the data
in column 4 of Table 1. In addition to this the transmission losses are included in the
power station efficiency function. We assume that the transmission loss for station
no. i is quadratic in P; and that the loss is 159, when the power station is operating at
maximum rating.

The weekly firm power demand in GWh/week is approximated by

D(k)=261+5 - cos (257%)

The cost function L for power exchanges is assumed to be as given in Table 2. The
maximum exchange on each step is represented as a percentage of the firm power.

The minimum power production values used (in GWh/week) were: Driva 7-56,
Fosen 2-0, Lundesokna 1-68, and zero for the other subsystems. Minimum power
production, power demand etc. for time steps more than one week long are obtained
by summation of weekly data.
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COLUMN 1 2 3 4
Point of best

efficiency Efficiency Efficiency

Max. output (Po) in per below P, A ED.

Name P...(GWh/week) cent of Py, per cent per cent
Driva 17-64 90 100 90
Nea 11-76 100 100 90
Fosen 10-95 73 100 920
Lundesokna 10-26 74-5 100 920
Miscellaneous 4-44 72 100 920

Table 1. Data for power stations. The efficiency refers to the power station.

Maximum
exchange, in  Marginal
Step per cent of cost
no. Text firm power  (ere/kWh)
1 Selling 250 2-0
2 Selling 150 3-0
3 Selling 10-0 50
4 Buying 5-0 8-25
5 Buying 5-0 12-75
6 Rationing 6-0 33-0
7 Rationing 4-0 360
8 Rationing 252 49-0
9 Rationing 3-1 76-0
10 Rationing 31 107-5
11 Rationing 66 157-0
12 Rationing 750 190-0

Table 2. Cost function for exchange of power. Step 3 is not present in weeks 18-39.

Final value function

We assume the final value function to be additive, as

5
o= ¥ dix)

(26)

An aggregated single-reservoir model of the system existed, and expected incre-
mental water values were computed for this model. The sample runs use the end of
week no. 39 as final time, and the computed incremerital water values at the end of this
week were assigned to 2¢,/2x; in a manner such that storage in each reservoir has the
same incremental value at the same relative filling in per cent. ?¢,/¢x; is shown in

Fig. 3.
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Figure 3. Final expected incremental water value for sample runs.

Inflow data

For each subsystem, historical inflow data for the years 1931-1960 were available,
in units of GWh/week. For the sample runs, we have chosen to work with 3 discrete
inflow states for the whole system (not 3 independent for each reservoir) in each time
step except the first. This gives 121 branches. Using only 3 different inflow states
implies that the inflows are treated as nearly fully correlated between reservoirs. The
test system lies within one main part of the country, so the correlation will be quite
high, but there may be some difference between inland and coastal subsystems, as
Nea and Fosen, respectively.

The choice of the inflow states d,, d,, d; and the estimation of the transition
probabilities were done as described in Gjelsvik (1980). Essentially, for each time inter-
val between the chosen transition points, the 30 observations are ranked according to
total inflow and then divided in 3 groups (with 9, 12 and 9 realizations respectively).
d, is taken as mean values in the ith group. After the groups for each time interval are
constructed, the p,;s are determined by simply counting transitions between groups
according to the observed total inflow series. 30 years of data is somewhat short for
this procedure, because 9 probabilities are estimated from a total of only 30 transitions.

Test case 1

Five time steps were chosen, starting at weeks 40, 41, 12, 20 and 26 respectively.
Here the 3rd time step enters a new year.

The initial storages were chosen as 939, of the upper limits. Figure 4 shows the
extreme state trajectories obtained. All the other trajectories lie in the hatched area.
Week numbers refer to end of the week in question. Figure 5 shows the domain of the
mean power production of each subsystem, in GWh/week. It should be noted that the
extreme control values for a power station do not necessarily correspond to the extreme
storages for that power station. Figure 6 shows the variation of the incremental cost
of power.

Test case I

Five time steps were used, starting at weeks no. 12, 13, 18, 24 and 31 respectively.
The initial storages were chosen as: Driva 45%, Nea 209, Fosen 36 %, Lundesokna
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Figure 4. Domain of state trajectories in test run I.

309% and Miscellaneous 5 %,. The domain of the state trajectories obtained are shown
in Fig. 7.

Discussion of the results and the model

In both test cases, state trajectories have quite a large variation during spring and
summer. This is because the inflow in these seasons is large and often has a stochastic
variation that is a large fraction of the reservoir size. For the Driva power station,
large variance in trajectories may be partly due to the high minimum production
required. (It is possible that in the real system this requirement exists only during part
of the year.)

In test case I, the state ranges for the Fosen subsystem between the end of week
no. 40 and the end of week no. 11 in the next year are unrealistically large. The reason
for this is that in this coastal subsystem there is quite high inflow during winter.
Shorter time steps should have been used here, but the lengths of the time steps chosen
50 as to have relatively short time steps in the spring and summer seasons, where the
total system inflow varies rapidly. It is only the Fosen subsystem that has this large
(compared to reservoir size) inflow variation during the winter season.
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However, the variation in trajectories shown in Figs. 4 and 7 is not likely to appear
in practice, because in a real-world application computations would be repeated each
week, with new inflow forecasts for the first week (or the first few weeks). Hence the
- computed controls for the first time step are of primary interest.

Test case I was run with several different starting nominal controls to see whether
this would influence the final answer. Table 3 show the controls finally obtained for the
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first time step, and one sees that the results differ slightly. This is not unexpected,
because there are so few constraints on the electrical connections within the system.
This makes it cheap to shift hydroelectric power production from one station to
another, shifting in the reverse direction in another time step, to get the same final
storage. However, the variations in Table 3 are small compared with other approxi-
mations in the model.

The controls computed for the first step will naturally depend upon the inflow
modeling, both the number of time steps and the number of discrete inflow values used
in each time step. This sensitivity has not been investigated here. In general one can
say that one should use as many time steps and discrete inflow values as computa-
tionally feasible. It is especially important to have as short time steps as possible around
the time when spring melting starts.
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Starting trajectory no.

| 2 3 4
Driva 7-56 7-56 7-56 7-56
Nea 5-53 5-79 572 563
Fosen 5-07 4-91 5-07 5-10
Lundesokna 4-78 4-56 4-66 4-85
Miscellaneous 2-43 2-54 2-35 2:23
Exchange 14-69 14-69 14-69 14-69

Table 3. Controls for the first time step for various initial nominal trajectories.
In GWh/week.

As our model uses mean controls over long time intervals, the emptying of a reser-
voir is not penalized if enough electrical energy can be produced at the other power
stations. However, in a real system the emptying of a reservoir means that the asso-
ciated power station cannot participate in the covering of the demand in the heavy
load hours. Thus, while on the mean enough energy is available, the production
capacity is too small in hours of high demand. Our model can be adapted to this case
in several ways. One is to specify a minimum mean production, as we have done for
some power stations, it being understood that this production corresponds to the need
in the hours of high demand. Another way is to specify a minimum storage greater
than zero, to act as a buffer against large variations in inflow. A third method would
be to split each time step in two, one representing accumulation of hours of low load,
the other accumulation of hours of high load.

A major problem in seasonal planning with a finite horizon is the choice of the
final value function ®(x). As in the test case, incremental water values from long-term
planning by an aggregated model may be used, but the problem is how to assign values
to each subsystem. In general, one cannot assume that the additive form (26) is valid.
Final value functions may also be constructed from operational experience, by assign-
ing values that favours final storages in some desired interval. We have not investigated
the sensitivity of the results of the test runs to changes in the final value function.

Performance of the optimization algorithm. Computing time

Several runs of test case I were done to determine the best values of €, in (A 8) and
€; in (A 9). It turned out that the algorithm performs well with €, so large that the
constraint (A 9) never becomes active. For €, we put

‘1(k)="1 T,

where T, is the length of the kth time step in weeks. Values of €', between 0-02 and
0-05 gave good results. Initial cost reduction may be slightly faster with a larger €',
but computing time will increase, since it may become necessary to repeat step 3 of the
algorithm.

In the test runs we put €, so small that the convergence criterion in step 5 was
never fulfilled. Instead the algorithm stopped at the specified maximum number of
iterations.
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Figure 8 shows the expected cost as a function of the number of iterations for one
run of test case II. It seems that about 20 iterations is enough, taking into account that
we have made many approximations and that the system is stochastic. The computing
time for 20 iterations in test run II was 1-5 minutes of central processor unit (CPU)
time, solution output included. The total 80 iterations took about 7-5 minutes. The
computer time needed for one iteration in the test cases was about 2-7 seconds. It is
reasonable that the computing time should be roughly proportional to the number of
branches, in our case we get 22 ms CPU-time per branch. There is some scope for
improving this. The program could also be extended to cover more complex systems,
including systems with cascaded reservoirs, but then it will be more complex and time-
consuming.
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Figure 8. Expected cost vs. number of iterations, test run I1.

A model of the same system with the same number of branches was treated by
linear programming (LP) by Gjelsvik and Haugstad (1980). They used the commercial
LP-system FMPS on a UNIVAC 1100/21 computer. The final value function was
composed of three linear segments for each reservoir, and the power station charac-
teristics were taken as piece-wise linear. CPU-time for optimization was then 87
minutes, with a possible reduction if an advanced starting basis had been available.
The UNIVAC 1100/21 is from 3 to 10 times faster than the NORD 10/S computer
(depending on problem), so referred to the same computer our method may be esti-
mated to give an improvement over LP with a factor of order 5. In addition, non-linear
final value functions are easily handled. Part of the improvement occurs because we
stop before the ultimate optimum is reached.

5. Conclusion

The DDP-algorithm used for the multi-reservoir system offers considerable savings
in computer time and space as compared to linear programming, while at the same
time allowing a non-linear final value function. However, it may not be as robust as
linear programming.




Stochastic seasonal planning in MHP systems 147

The approximate inflow model used is crude, and unless one uses many discrete
inflow values, one is limited to power systems geographically so confined that their
inflows may be regarded as fully correlated. A difficulty with the method, as with most
other methods, except the incremental water value method, is the choice of the time
horizon for optimization and the assignment of a value function for the final storages.

Appendix

Details of the DDP-algorithm

Necessary conditions for optimality
At the optimum

—=0 i=1,...,n+m (A1)

or u; must be at one of its bounds. When we use the Kuhn-Tucker conditions and
eliminate the multipliers between (A 1) and (20), the following necessary conditions
for optimality are obtained for reservoir no. i, i=1, 2, ..., n.

(a) The state boundaries are not hit. x,;™" < x,(k + 1) < x;"**. Then

(k)= rkc+1) (A2)
(b) There is overflow, x(k +1)=x,"** and z,(k)>0. Then
w(k)= (k) (A3)

(c) The reservoir is emptied, x,(k+1)=x,"" or it is full without overflow,
x(k+1)=x;"* and z(k)=0. Then
oP

k(k)=A E: + ri(K) A4
In (¢) it is assumed that P, is not at one of its bounds, which is reasonable. Here (i)
is the index of the reservoir downstream the ith reservoir. I’(i) is the index of the
reservoir to which overflow goes. If there are no downstream reservoirs the down-
stream xs are put equal to zero. The conditions above are well-known in the context

of the ‘incremental water value method’, see e.g. Gjelsvik (1980).

Computation of improved controls

Introducing du(k)=[8P,(k), ..., 8P (k), 6K (k), ..., 6K.(k)]" we obtain from (18)
and (17) to first order

" n

AH=const+ Y ztK((k)+ Y ¢, (k)sP,(k) (AS5)

=1 i=1
where

2 -1
" (k)=(rilk + 1)~ rya)(k + 1)) (5%) i=1,...,n (A 6)

¢;* is the incremental cost of hydroelectric power production at the ith power
station, i=1,...,n. In a conventional DDP-algorithm, the system equation
x(k + 1)=f(x(k), u(k), v(k), k) is solved in the forward direction, using nominal
controls, and the x-equations in backward time, computing changes to the controls.
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We have modified this standard procedure somewhat. Since » does not depend
explicitly on x except at the final time, or when a storage limit is met, the optimal
controls for given » do not depend on x either. Hence they may be computed on the
next forward run. If a state variable constraint is hit on the new forward run, then the
controls are changed so as to keep the trajectory in the feasible domain.

8u must be kept small in order that éx be small. When 8u is otherwise unrestricted,
a natural choice is

eA k)
Su(k)=— (k) ) (A7)
where (k), k=0, 1, ..., N—1 is ‘small’. However, 8u given by (A 7) may violate the
constraints of type (3), so instead we require, in analogy by (A 7)

|8P (k)| <ei(k)|e,"(k)—~ Mk)| Vi, k (A8)

A(k) is not known, so we approximate it by A(k), the value of (k) in the preceding
iteration. To be safe, we also require

|6P (k)| <eai, k) Vi, k (A9)

Now the problem is to minimize AH of eqn. (A 5) subject to the constraints (3), (A 8)
and (A 9) and also the K-constraint of (4).

Since AH is linear with linear constraints, it might be minimized by linear program-
ming. However, since the only constraint other than single bounds is eqn (3), we
choose to minimize H by loading successively more expensive resources (8P or K)
until (3) is satisfied. A is found as the marginal cost of the last resource loaded.

If a reservoir limit is met on the forward run, the expansion (A 5) for H must be
modified. To ensure that the state variable constraints are not violated, we proceed as
follows:

Let x(k) be the new state at time k. If f(x(k), a(k), v(k), k) is in the interior of the
state space, then check the limits of P to be sure that x stays within the interior.

If fi(x(k), u(k), v(k), k)>x,* then put ¢,¥=0 in (A 5) and constrain 8P, so that
fi(x(k), u(k), o(k), k) < x;/"** is not possible. (In the latter region ¢;* = «,(k + 1), so ¢, is
discontinuous. 8P, is so constrained that we stay on one side of the discontinuity.) If
fi(x(k), a(k), v(k), k) < x;™" then P, is decreased so as to make f,(x(k), u(k), v(k), k)=
x;™". The 8P;™* for the other power stations have to be chosen so they are able to
take up the deficit if that is economical.

In the forward direction, the recursion formula (21) for a(k) may be written

a(k+1)=a(k)—AL(k)
—x7(k)  [x(k)— X(k) ]+ %"(k+ 1) + [x(k+ 1) —-X(k+1)] (A 10)

with
AL(k)=L(i(k)+ Su(k))—L(i, k)
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