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The defence of a valuable target—a control theoretical analysis
K. M. MJELDE+
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A problem is considered of the defence of a valuable target against enemy
attacks, such as to minimize the total number of successful attacks during a
given period of time. Defence weapons are allocated to:

(1) The attack of approaching enemy combat forces, or
(2) attrition of his weapon-supply systems.

A control theoretical formulation of the problem is given. Properties of optimal
allocations are derived and criteria for the optimality of pure defence allocations
of the type (1) given above.

1. Introduction

A military scenario is analysed, where a valuable target of side 1 is defended
against attacks from side 2, side 1 allocates weapons to:

(1) the defence against approaching enemy combat forces, or
(2) the attrition of the enemy’s supply systems.

The objective of the allocations is to minimize the total number of successful enemy
attacks against the valuable target during a given period of time, so that the target
will be capable of receiving reinforcements at the end of this period. As an example,
the valuable target may be an airbase, which is defended against attacks from a
given number of enemy airbases; the defender allocates aircraft to two missions:

(1) the attack of enemy aircraft in the air, or

(2) the attack of enemy airbases.

Another example is given by the defence of an important strategical position against
enemy infantry and artillery attacks; the artillery of the defender is allocated
against:

(1) enemy infantry, or

(2) artillery.

The purpose of this work is to derive general properties of optimal allocations,
including bounds of the optimal solution and sufficient conditions for the optimality
of pure defence allocations.

The problem is formulated and analysed in terms of the theory of optimal control.
The weapons’ supply rates of the two sides decrease according to non-linear func-
tions of :

(1) the number of successful enemy attacks against the valuable target of the

defender, or

(2) the number of attrition allocations against the attacker.
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Although the problem involves a finite number of weapons and is discrete in nature,
it is analysed by the application of a continuous model; the main interest being to
obtain insight related to the nature of optimal strategies, rather than to derive
detailed allocation plans for the weapons. A similar approach was applied by Taylor
(1978) in the analysis of fire-support strategies, using a two-sided continuous differ-
ential game theoretical model of the Lanchester (1916) type. Isaacs (1965) analysed
battles of attrition and attack by game theoretical arguments; his models are the
continuous counterparts of the discrete models of Berkovitz and Dresher (1960)
and of Fulkerson and Johnson (1957). Mjelde (1980) introduced engagement rates
of each side that decreased according to a differentiable function of a continuously
varying number of enemy attacks.

The present paper first gives a formulation of the problem and derives optimality
conditions and properties of optimal solutions. Upper and lower bounds of the
optimal solution are obtained and applied in the derivation of a criterion for the
optimality of a pure defence strategy; another criterion is derived by direct considera-
tion of the necessary optimality conditions. In the concluding section of the paper
an analytically solvable example is given with linearly decreasing weapon supply
rates. Numerical solution methods are indicated.

2. The problem
The following problem, denoted by P. is considered:
P: z=min x(T)
@0

subject to the differential equations:

1 r
X= fEI yil(y:i) — Bg(x) (1 = Z| ‘?51) (1)
.i‘i=6ig{x}¢i; f:l!_‘_,[ (2)
where
I
Y b 3)

and the initial conditions are:
x(0)=0 “4)
yO)y=0; i=1,...,1 (5)
x, y; and ¢; for i=1, ..., I are functions of the time 7 for €[0, T]; B, y; and §; are
non-negative numbers; g and h; are non-negative, strictly decreasing and twice
differentiable functions defined for non-negative arguments. The notations % and
y; refer to the derivatives with respect to r; g°, g” and #';, h"; are the first and second

derivatives of g and A,.
It is assumed that x>0 for all £ =0, which is the case if

I
E. yehi(8,:g(0)T)— Bg(0)> 0
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The paramelers of the model are defined as follows:

I': The number of weapon-supply systems of the attacker.

x: The total number of successful attacks against the valuable target of the
defender.

¥i: The total number of successful attacks by the defender against the ith
weapon-supply system of the attacker.

g(x): The rate of weapons’ supply of the defender as a function of x.

hi(y): The rate of weapons’ supply of the ith weapon-supply system of the attacker
as a function of y,.

¢:: The fraction of weapons allocated by the defender against the ith weapon-
supply system of the attacker, the fraction

(--£4)

: The effectiveness of the defender’s attack allocations.
vi: The effectiveness of the weapons supplied by the ith system of the attacker.

is allocated to defence.

(=2

B: The effectiveness of the defence.

3. Optimality conditions
Let V and V; for i=1, .., I denote the dual (adjoint) variables of x and y, for
i=1, ..., I. Writing the objective function of P in the form

T
z=min [ x(t)dt
(¢ ©

it follows that the Hamiltonian is given by:

I
H=%+Vx+ Y Vy,

i=1

The substitution of eqns. (1) and (2) demands that

I i
H=(V+1)[ X wfrf(y.)—ﬂg(x}]w(x) PR

where
Si=pV+1)+8,V;; i=1,..,1

Since S, appears as a factor of ¢; in the Hamiltonian it is convenient to work with
the dual variables V and S; for i=1, ..., ], these variables determine ¥, uniquely
from the definition of S,.

Since H is not an explicit function of the time 7 the optimal solution satisfies

(¢

for a constant ¢,.
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Equation (6) implies that

=0 if §;>0
éi
>0 only if S;= min §,,
showing that S; can be interpreted as the negative effectiveness of the attrition
allocation ¢;>0; the smaller S, is, the larger is the effectiveness of &, if S;>0, then
¢, =0. This interpretation is related to the facts that

Vs )
¥y
and
&z
V=—2=0
ex

showing that the term 8,¥; of S; measures the effectiveness of the attrition alloca-
tions, while the term B(¥ +1) is the defence effectiveness, the addend 1 of ¥ indicating
that the objective is to minimize x(7).

Defining the retrogressive time

7=T—1

the necessary optimality conditions can be expressed in terms of V' and S; as
follows:

2y :
==~ (V+DEg () +8'() _ZI $iS; 0
oS, eV
?;‘=F;+(V+l)5mh'.(y.~): i=1,...1 @)
with the initial conditions:
V(0)=0: S(0)=8: i=1,...,1 ©

4. Properties of optimal solutions
Equations (6) and (9) demand the validity of:

Theorem 1

Any optimal solution satisfies ¢; =0 for i=1, ..., I for 7=0.

The implication is that the battle ends with all defence weapons allocated to
attack the approaching enemy combat forces, it is optimal to defend the target
rather than to reduce the enemy’s supply rate.

The following result will be used:

Lemma 1

Proof

Since S(0)=8, it follows that S(7)>0 and ¢;=0 for i=1,...,I and for =
sufficiently close to r=0, which, in conjunction with eqns. (7) and ¥(0)=0, imply
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that ¢¥/c+>0 and consequently V>0 near ==0. Since ¢,5,;<0 for i=1,..., 1 by
eqn. (6) it follows from eqn. (7) that ¢¥/¢7>0 and V>0 for all = (since otherwise
there would exist a 7o >0, such that ¥(r)>0and ¢¥/?7>0for 7€[0, r4] and ¥(74)=0)
q.e.d.

For a 7€[0, T] define:

]

M(7)= {J] Si{(7)= min S,,,('r)}

Lemma 2
M(r )< M(7y) for =, =7, if Hiyd)z0fori=1,.., 1

Proof

Assume, by contradiction, that S;(7,)>S,,(7,) for i,eM(r,), i,eM(z,) and
7> 7.

Equation (8) and Lemma 1 demand that there exists a 736{r,, r,>, such that

8 ¥i, i (i (73)) < 8y, yi, 1, (i (72)) (10)
and

Si(73) > 8:,(73)

The latter relation in conjunction with egn. (6) and the continuities of S; () and
Si,(7) imply that ¢,(7)=0 in an interval I,=[r,, 73] for 7, <r,; it follows from
eqn. (2) that y; (+) is constant for rels, while y, (7) and consequently (v ())
are not decreasing when rc/; decreases.

The implication is that eqn. (10) remains valid when 75 is replaced by €l,,
which in combination with eqn. (8) imply that S; (r)>S,(7) for rels. It follows
that

Si.(r)bsiz(‘r) for €0, 73) (11}
since otherwise there would exist a =5 such that S; (75)=S,,(75), Si,(7)> S,,(+) for
7€(7s, 73, While ¢S, (7)/¢7<¢5;,(7)/fr for 7e(rs, 73> by the validity of eqn. (10)
with 75 replaced by =, a contradiction. But eqn. (11) demands that 5:,(0)> 5,,(0),
violating the assumption §; (0)=S5,,(0)=8, and the lemma follows, q.e.d.

Lemma 2 and eqn. (8) shows that if

M()Y={iy, ..., i}
then
Sil?’i,h(ii(yl]}:'Sikhkhrik(yik); k=1, ..,n
which, when combined with eqns. (2) and (3), gives the following result:

Theoremn 2
Assume that #"(y;) =0 for i=1, ..., I. If Si(7)<0 for ieM(r) an optimal solution
is obtained from:

0 for igM(+)

di(r)= 1
1+ 82 v:h"i(v:) E 1/8; vl {(¥5)
JeM(x)—{i}

and for i€{l, ..., I} either ¢,(7)=0 for 7€[0, 7] or there is a 7,€[0, T] such that if
¢71)>0for a 7, > 7, then ¢,()>0 for all 7e{+q, ;> and ¢(+)=0 for +€[0, ,].

for ieM(+)
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Proof

If S)(+) <0 for ¢[0, T] and ieM(7), the value of 7, is determined from Sy(7,)=0,
g.e.d.

The theorem shows that for sufficiently small planning periods the defender
allocates all weapons against approaching enemy combat units during the whole
planning period. For longer planning periods there is a time 7, such that attrition
allocations are applied for 7> 7, and directed against supply systems with the
largest negative effectiveness value S,: the weapons being partitioned between the
various supply systems according to the values of ¢;. When ¢; becomes positive,
it stays positive until the forward time to=7—7,, new positive ¢; may appear
during the time interval [0, 7o]. All positive attrition allocations will simultaneously
become zero at time f, and pure defence allocations are applied in the final time

period [, T).

5. Bounds of optimal solutions
Let ¢, and &; be lower and upper bounds of the optimal control 4,:

§15¢1~<~9Si

for instance given by ¢,(t)=0 and $,(t)=1 for ¢€[0, T]. It will be demonstrated that
the following system of differential equations, derived from eqns. (1). (2), (7) and
(8), generate bounds of x, y;, ¥ and S, as the notation indicates.

X igl )’i”:(li)‘ﬁg(i)(l“ gl ‘51)

X= Z vilu(¥e) - ﬁgfx)(l . :)
1
i

J'- !g(x)$i* I—I ]

Fi=0g(x)ii i=1, ...,

v ,

—=—(V+DEg'(x)+g'(x) 3, & min (0. S,)

L i=1

cV ! i

= —W+DBEE® +g'(X) X ¢ min (0. 5))

i=1

.S 5 ;

—B_‘_""Sn/f(y"'])h f(}g) !—"lon‘-,!
vV
—;“3‘5‘;+5f71(i74 I)hl(.]’i) i=1,....17

with the initial conditions:
x(0)=x(0)=0
Y0 =5(0)=0: i=1.....7
¥(0)=V(0)=0
S0)=S0)=p; i=1,..1
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Theorem 3

If g"(x)=0and h"(y;)=0 and if x, V and v, 8, for i=1, ..., I correspond to an
optimal solution of P, it follows that:

x<x<X, V<V<V and pig<pi<iin 5,<85<8; fori=1, ..., 1
Proof
Extend the definitions of the functions g and #; by:
g(x)=g(0)+g'(0)x for x<0
hy)=h{0)+ 1 (O)y, for y; <0

and consider the differential equations for x and y, with the initial conditions:

x(M=7n<0 (12)

yil0)=§>0 (13)
It follows that

x(0) <x(0)

yi0)>y(0)

and consequently that x(1) <x(z) and y(r)> y;(r) for 7 sufficiently close to 0.  Assume,
by contradiction. that there exists a 7 such that x(¢)=x(z) or 3,(1)=y{t) and select
the smallest such value of 1. denoted by 1,. [ x(15) = x(1,), it follows from x(1) < x(¢)
and F(1) > yi(r) for r€[0, 1,) that x(ry< x(¢) for 1[0, 1,), which is impossible in com-
bination with x(0)=n<x(0)=0 and x(to)=x(to). A similar argument applies if
Fl1o)=yi(to). The implication is that x(t)<x(f) and y,(1)>y(t) for the initial
conditions (12) and (13); the result for 5=¢;=0 follows from the continuity of
solutions of differential equations with respect to initial conditions, see Coddington
and Levinson (1955). The other statements of the theorem follow from the assump-
tions that g"(x) >0 and #"(y;)=0, gq.e.d.

It may be possible to apply the values of S; and S; to improve the bounds ¢; and
¢;; for instance: if S(r;)=0 and S(7)>0 for 7€[0, r;], it follows that §,(+)=0 for
€[0, 7;]. The improved ¢, and ¢; are then used to derive new bounds x, X. y;, yi. V.
V, S; and S,. N

In the application of numerical solution technigues to the problem P, the bounds
of x, y;, ¥V and S; given in theorem 3, are useful in the derivation of initial estimates
of these quantities.

6. Pure defence criteria

An optimal solution (¢,) of P is defined to be a pure defence strategy if and only
if ¢,(t)=0 for 1[0, 7] and i=1, ..., L.

Theorem 4
If ¢"(x)=0 and h;"(y;)=0 for i=1, ..., I a pure defence strategy is applied if
min min Sy(7)>0
i rel0, 7]
or if

I
min [-—,S"-g' ( Z y;h;(O)T) I 5s71h-‘f0):| =0
F=
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Proof

The first criterion follows from the definition of Si().

In the demonstration of the second criterion note that S(0)=g for i=1, ..., ],
and the continuity of S/(z), imply that ¢(=)=0fori=1, ...,  and 7€[0, =,] for some
7,>0. If ¢;=0fori=1, ..., I, eqns. (7) and (8) demand that:

¢S , ) '
w,:T.:}:(V'{' DI-P*g'(x)+ 8wl (y)] i=1,..,1

which in combination with

g"(x)=0, M0O)=0 fori=1,..,1I

and

i
=]

0<y; <8,g(0)T

demands that:

Since S;>0 for i=1, ..., I, the optimality condition (6) requires that ¢; =0 for all
[0, T and i=1, ..., I, q.e.d.

7. Concluding remarks
Assuming that

2(x)=g(0)— Gx
hy)=h(0)—Hyy;; i=1,..,1
and that ¢, =0 for i=1, ..., I, it follows that

cS;
T
cT

_'.".-exp (ﬁGT)[BZG-‘Sf}"fH[}: .f‘— I. aena f

Assume, without loss of generality, that:

Sy Hy = m?x (®iH,)

L]

A pure defence strategy applies if [B2G—8,y,#,]>0; for G, H; and y; flixed this
gives a parabola

- G B?
yild;
in the (B, 6;) plane, separating the pure defence strategies from the possibly mixed
attrition strategies; a family of parabolas may be parameterized by the value of
(Gfy, H,).
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Outside the pure defence region, solution of eqn. (14) gives:

exp (BGr)—1

SI(T)‘—“,B"'[)BzG-Sl)’lHI] ﬁG

and
Sl(f)ﬂsi(‘r); fﬂ'tl,___‘i
demanding that ¢,(¢)=0 for [0, T] and i=2, ..., I. Since S,(7,)=0 for

sl SWIHE.
: BG SI?IHI_BZG

$i(r)=0 for [0, T) if r, 2T

1 for tef0, T—7,]
di(t)= if r,<T
0 forte[T—r+,,T]

is seen that

Considering the general problem P, the result of Theorem 2 can be used to construct
a numerical solution algorithm based on a search for a number 7, such that all positive
allocations ¢,, if any, become zero for == 7. Specifically, order the enemy targets
ie{l, ..., I'} such that

51)!1}?' I(O) "-{... 52]’2!”2(0) 4_5; wina £ 6[}’["3’,(0)

and integrate egns. (1) and (2) in the forward direction with the initial conditions
(4) and (5) and ¢,(7) given by Theorem 2, and the set M(r) determined from
M(=)={1, ..., k} iff for i=1, ..., k:

Syl (0) < 83" i(1i) < Ok 1¥us 1 k41(0)

The integration proceeds until a selected time fy=f—7,, assuming that ¢,(7)=0
for 7€[0, 7] and i=1, ..., I. With y(1)=y(t,) for te[ty, T] and x(r) given from the
solution of the differential equation:

I
x= gi yihi(yito))—Bg(x): tefto, T

eqns. (7) and (8) for ¥ and S; for i=1, ..., I are solved retrogressively, noting that
Theorem 2 implies that S; (v)=S;,(7) for any {i,, i,]< M(7,). A value 7,* is deter-
mined from S; (7,*)=0 for i,eM(z,). An optimal solution has been found if 7o=17,*
(with sufficient accuracy); otherwise a trial and error procedure is started, in which
7o is increased or decreased depending on whether =, < 7,* or 7> 7%
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