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A theoretical study of the scattering of ultrasound from blood
BJORN A. J. ANGELSEN¢t
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A theoretical treatment of the scattering of ultrasound from blood is given,
assuming that the blood behaves essentially as a continuum. The scatterin g then
arises from fluctuations in the mass density and compressibility of the blood,
which is caused by a fluctuation in the red cell concentration. An expression for
the received signal in ultrasonic blood velocity measurements is given. The
stochastic properties of the signal are discussed with reference to the information
content about the velocity field of the blood. Since the signal is Gaussian, all
available information is contained in the power spectrum, which is a blurred
approximation to the velocity distribution in the region of observation.

1. Introduction

In recent years there has been considerable interest in using the Doppler shift of
backscattered ultrasound from blood to study the blood velocity in arteries. Blood is a
mixture of formed elements in a surrounding liquid, the plasma. The scattering arises
mainly from the red cells (erythrocytes) which by far outnumber the rest of the formed
elements, both in quantity and volume (Burton 1965, Shung, Siegelmann and Reid
1976).

Brody and Meindl (1974) and Newhouse, Bendick and Varner (1976) have given
theoretical treatments of the received scattered signal in ultrasonic blood velocity
measurements, using the assumption that the cells are independent scatterers.

In normal blood the volume concentration of cells is approximately 45%. The
closest packing that may be obtained without deforming the cells is 58% (Burton
1965). This means that almost all of the cells will be in contact with one or more of the
others at each instant of time. This strongly indicates that the assumption of non-
interacting scatterers will not hold. This has also been confirmed by experiments of
Shung et al. (1976).

The compressibility and mass density of the cells differ only slightly from those of
the plasma. The scattering is therefore weak and can be approximated by first-order
scattering in which waves which are scattered twice or more are neglected. To avoid
the problem of interaction between the cells we treat the blood as an isotropic con-
tinuum. The scattering then arises from fluctuations in the compressibility, w(r, t),
and the mass density, p(r, #), of the continuum. By this the cell interaction is contained
in p and « which simplifies the problem.

Each red cell has a volume of approximately 90 m (Burton 1965) while the ultra-
sonic wavelength at 2 MHz (an actual frequency) is 750 pm. A blood element with each
side equal to A/10 will contain more than 1000 cells in the average (Shung et al. 1976).
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Concerning wave-motion this element will be a point. Since the cells are strongly
interacting, this fortifies the assumption of our continuum approach,

The fluctuation of « and p is caused by the fluctuation in the cell concentration
ny(r, t). The correlation length of ny will be so small compared to the wavelength that
it can be considered S-correlated in space. By this the spectral properties of the scattered
wave can be computed. Due to the 3-correlation of n, these will basically be the same
as for non-interacting particles. The interaction will mainly affect the total power of

the scattered wave.

2. Stochastic properties of cell concentration
Let

HT(I’, t)=n0(r, t)+n(r, t) 1)

where ny=(n) is the local average of ny and # is the fluctuation of ny around ny,.
¢ ) denotes ensemble average. The local average, #o, might be a function of space
due to, e.g., axial migration in the blood vessels, and also of:time for time-varying
velocity fields. However, the variation in ny will be slow compared to that of n.

In the following we shall need the correlation function of # in space and time. We
will not need the details of the function over distances below A/10. We note that the
interaction between the cells is not likely to extend more than a couple of cell diameters,
and the volume of (A/10)? contains a large amount of cells. Therefore we can assume n
to be approximately 8-correlated in space for a fixed time, ie.

nlr, Dn(r+§, 1)) =n(r, 1))8E) - @

For the correlation function at two different times two factors are of importance:

(i) Diffusion.

(ii) The convection of the cells in the velocity field u(r, ).
Diffusion in blood is a slow process and it is, therefore, evident that convection will
dominate the time change of n in flowing blood. If n is strictly 8-correlated in space
for a fixed time, convection will give the following correlation function.

<n(r, On(r+E, t+7)>=(n?(r, 0)H8[E—8(r, £, 7)] 3)

where r-+¢ is the position of the fluid element at time ¢+ which at time ¢ had the
position. r. However, since é-correlation is an approximation only, variations of the
velocity field over the correlation length may cause violations of eqn. (3).

As an example, consider parabolic flow in a circular tube with radius a. Take two
points on the radius, one a/2 and the other a/2+2/10 from the tube axis. When the
inner point has moved a distance L, the outer point has lagged (A/10) - (2L/a) behind
the inner point. We are interested in L <af2 which gives a distance between the points
of 4/2/10 which still indicates validity of eqn. (3). Thus velocity gradients will
broaden the correlation peak. For flows which are not too turbulent, the 8-correlation
still seems a good approximation for actual values of + (< 100 ms). The effect of turbu-
lence becomes more clear, perhaps, if we look at the motion of a single scatterer. If the
velocity vector of a single scatterer changes drastically as it passes through the range
cell, turbulence will broaden the Doppler spectrum received from that scatterer.
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(n?> will depend on the velocity field and the interaction between the cells.
Turbulence will increase (n?) since local accelerations in the velocity field will cause a
separation between cells and plasma due to their different mass densities.

The cells will both attract and repel each other. The attraction has a complex
nature, and reveals itself in the formation of rouleaux (Burton 1965). However, this
bondage is so weak that the rouleaux break down into individual cells when exposed
to the shear gradients of normal velocity fields. The repelling force is mainly mechani-
cal in origin and occurs as a reaction when the cells get in contact and are pushed
towards each other.

For non-interacting particles in a fluid at rest (n*>=n, (Landau and Lifshits 1963).
When the cells interact, attraction will increase the fluctuation while repulsion will
decrease the fluctuation. If the blood is at rest for a sufficiently long time that rouleaux
may form, we may have (n2} >no. Under moderate flow velocities where the rouleaux
have broken down, we have (12> <nq, while turbulence will increase (n*> due to the
separation described above.

3. Wave motion in blood

Let p(r, 1) be the wave pressure at position » and time ¢, and u(r, f) be the velocity
of displacement of a fluid located at r. According to the above discussion, we assume
that adiabatic elastic compressions of the blood can be described by the law for single
phase fluids

op 1
—=—=V 4
ot K “ @

The momentum equation for a fluid element will be

o
) v ©)

where the convective part of the acceleration has been neglected since it is small.
We split both p and « into their averages plus a fluctuation term

K(", t)=Ko(l‘, t)+K1(r’ t)
(6)

P(r’ t) =P0(P', t)+ Pl(r7 t)

where «o={«x> and po={p).
We further assume that
x(e, )= (o, 1)
dno

@)

d
pule, ) =22 ne, 1)
o

In wave motion u will change much faster than p in eqn. (5) by which p may be taken
outside the differentiation. Combining eqn. (4) and egn. (5) we obtain

1 o*p
1 = Mty 8
V(P Vp) KatZ 0 (8)
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By substituting eqn. (6) into eqn. (8) and rearranging terms, we obtain

92 2
vz, 1.0 iz,g p+V(%Vp)

—-Zz--a_ﬁc Koat_z

®
1

PoKo

a
il

Possible variations in the wave velocity ¢ due to cell mi gration are small and may be
neglected. The coefficients «,/x, and p,/p are small quantities and eqn. (9) may be
regarded as an inhomogeneous wave equation with a weak source-term given by the
wave itself. This is an appropriate form to be treated by standard methods used in
scattering theory (Morse and Ingard 1968).

Suppose there is an incident wave po(r,f), and write the total field as
P=po+pi+p,+..The partial term p,,, is the solution of eqn. (9) when p, is
inserted on the right-hand side. The zero order term, po, will propagate by a homo-
geneous wave equation with wave velocity ¢, be scattered to produce p,, which in
turn is scattered to produce p,, etc. Since the scattering is weak, the magnitude of the
terms will decrease rapidly, and p,, which is the first-order scattering term, will be a
good approximation to the scattered field (Born approximation),

We shall study the scattered field for a time harmonic incident wave

Po(r, ) =Re {po(r) exp (iwo?)} (10)

Since x, and p, in eqn. (9) are time dependent (blood motion), the scattered field will
not contain a single frequency. We therefore assume a solution of the form

p(r, t)=Re {p(r, t) exp (iwot)} (11)

Inserting this into eqn. (9) and neglecting the time derivative of P compared to that of
exp (iwyt), we obtain

VEp+ko® p=—ko? ynp+y,V(nVp) (12)

where ko=w/c, y.=ko~! dx/dn, and Yo =po~ " dpldn,. Equation (12) is studied in
Morse (1968). The Born approximation to the scattered field may be written

Bor, 1)= 1! d*¢{ko? 7. Glr —§)po(§) +v,V:G(r —~E)Vho(E)n(E, 1)
(13)

exp (—iko|r|)

Glr)= dnr]

R is the region containing scatterers. The first term under the integral is a monopole
source term which arises from the fluctuation in the compressibility, while the fluc-
tuation in the mass density produces the second term, which is a dipole term.

4. Scattering of a plane wave
Let the incident wave be given by

Do(r)=A exp (—ikyr) * (14)
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where A is the amplitude and &, the incident wave vector. We study the far field (i.e.
¥cR=¢/r<1) which permits the approximation

exp [—i(kor—kE)]

G(r—8)= 7
wr
(15)
ky=ky =20."
r cr
Equation (13) then takes the form
A 2 exp(—ik k- k )
b, )=t 2ol X koD [ K Kol ¢ e, 1y exp ik~ ko8] (16)
dn ¢ r ko R

The volume integral is the space Fourier transform of n. We thus get interaction
between the incident wave and the partial wave of the scattering fluctuation which
satisfies the Bragg condition of interference. This illustrates a well known result in
incoherent scattering theory (Morse and Ingard 1968).

The differential scattering cross-section o(6, ¢) per unit volume is defined by

dPy (Ir?
aQ LV

o(0, ¢)=

3

where (dP) is the relative power scattered through the differential solid angle dQ
(I> is the intensity scattered in the direction (6, ¢) and I, is the total intensity incident
on R. V is the volume of R and 6 is the angle between k, and k,. This gives

1wt
o6, $) =12 —g— v+, cos 6} > a7

where

>V = lg d3{n*(E, 1))

The scattering intensity is space dependent and proportional to the frequency in
the fourth power. For a suspension of solid elements in a liquid as blood is, the total
mass density will depend on the cell concentration as

PO(’10)=Pp+nO(Pc_Pp) (18)

where p, and p, are the mass densities of plasma and cells respectively. By measuring
the wave velocity, the compressibility may be calculated as xo=c~?po~*. This has
been done for several values of n (Angelsen 1975). Using p.=1-1x 10> and p,=
1-03 x 10® kg/m? (Burton 1965), we obtain

¥,~0:065
. (19)
Ve —02

This gives an angular dependency of the scattering crossssection as shown in
Fig. 1.
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Figure 1. Polar diagram for the differential scattering cross-section of a plane wave from
blood. HCT ~40-50%,.

5. Receiver output in ultrasonic blood velocity measurements

In ultrasonic blood velocity measurements the blood vessel will normally be in the
near field region of the transducers. The complex pressure amplitude of a single
frequency transmitted wave may be written

pr(wo, r)=Ax(wo, r) exp [—igr(wo, r)] (20)

where w, is the angular frequency of the wave. A1 and ¢y are real. If the transducers
and distances are such that the plane wave approximation may be performed,
ér="kyr+const, ky=npw,/c where ny is the unit normal vector to the transmitting
transducer surface.

The scattered field may from eqn. (12) be represented by the following source
density

a

—ko® v br(rIn(r, 1)+ ,Vin(r, )VPr(r)] 21)

By reciprocity, a monopole source density with angular frequency wo and magni-
tude m(r, 1) in a region R will produce the following output of a receiving transducer

e(t)=—Re {a exp (iwot) 1{ d*m(E, t)ﬁn(E)} (22)

« is a complex constant of proportionality and pr(E) is the complex amplitude of the
pressure wave when the receiving transducer is excited with a voltage of angular
frequency wy.

Pr(wo, 1)=Ag(wo, r) exp [ —igg(wo, 1] (23)

The time variation of m is supposed to be slow compared to the wave motion.
In continuous wave ultrasonic blood velocity measurements we then get the
following expression for the signal from the receiving transducer

e(t)=Re { o exp (iwot) Rf d3¢{ko? v br(E)Pr(E) +7,VPr(E)VER(E) 1N, t)} (24)

where we have performed integration by parts on the last term. The above expression
may be written in the following form

e(?) = Re {exp (iwot)a § d*£4R(E) exp [(E)]n(E, 1)} 25)
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where a=|«| and
R=|4|
p=—r—dp+ Lat+ LA
A= ArAgiko? y—7,VdrVp} +small terms

By defining R(E)=0 for &¢R, the integration in eqn. (23) may be extended to whole
space.

When a pulsed wave Doppler meter is used, a distribution of frequencies is trans-
mitted. As shown above the scattered intensity is proportional to the frequency in the
fourth power. However, the relative width of the frequency band is generally so small
(200 kHz/2 MHz) that the scattering may be considered to be frequency independent
across this band. The effect of pulsing may therefore be incorporated by multiplying
the transmitting transducer field pattern pr by a window function S(E) which moves
with the transmitted pulse. Let z be the distance between the transducer and the range
cell along the axis of the transducer, i.e. z=|z| =}ct. 1 is the elapsed time between the
pulse transmission and reception. Then we obtain the following expression for the
received signal from the kth pulse

,(2) = Re {84(2) exp (i2ko2)}
fu(2)=a ] R, 2) exp [HE) {E, §+kTs} (26)

Ry, 2)=R(E)SE-2)

S(E) is the normalized envelope of the received pulse from a point scattered and 75 is
the pulse repetition period. In the plane wave approximation

#(E) =qE+const
- @7)
g=—(kr+ke)= —7°(n1+nn)

where n; and g are the unit normal vectors of the transmitting and receiving trans-
ducer surfaces respectively.

6. Statistical properties of the signal

We study the properties of £ given by eqn. (26) and the result may easily be applied
to the continuous wave case. It is obtained as a linear operation on the stochastic
process n(, ¢). It is reasonable to assume n to be Gaussian since it is the result of a
Jarge number of mainly independent events (the interaction between the cells extends
for a few cell diameters only). By the linear operation % will also be Gaussian. Evenif n
were not Gaussian % could be approximated by a Gaussian process since it is obtained
as a weighted average of an approximately s-correlated process (Central limit theorem).
% has zero mean since {n)>=0.

The velocity field of the blood is coded into £ through the stochastic process n.
All information of the velocity field available in £ is therefore contained in the stochas-
tic properties of %. This is determined by the second moment of £, i.e. its autocorrela-
tion function, since % is zero mean Gaussian. For time invariant velocity fields, £ will
be stationary and its autocorrelation function is the inverse Fourier transform of the
power spectrum of £. ’
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In the following we restrict ourselves to time invariant velocity fields and plane
waves. The autocorrelation function for £ is then

Ryk,l; 21, 2,)= Ki*(z)R(z2))
=a? _‘ d’g, _“ d3€2Rp(El’ 21)R,(E2, 22) €Xp ([(E2)— (€D

which by the use of eqn. (3) may be integrated to
Ri’(k7 l; Z1, 22):‘12 j d3£Rp(E.u 4] )Rp(cs z2)

. 1 2
xexp (,q.,(g) [(l—k)n—z(zz—zl)]]) @[ g

c=z+v(z)[ (-7~ (zrzl)]

We may note that it will not be possible to deduce a general velocity field from R,.
The velocity enters in R, via § in R, and in gv. The term qu(/—k)Ty is the Doppler
oscillation and will have the most significant influence on R;, while R, is much less
sensitive to its other dependencies on v.

Figure 2. Coordinate system for velocity field in a tube, eqn. (30).

In the common pulsed Doppler measurements z, =z,. We orient the £;-axis
along v and denote the position in the §,, §, plane by o (Fig. 2). We also change
(I-k)T,—= to give R, for the continuous Doppler signal from a certain depth.

Ry(7)=a* § d*cFlo, v(c)7Kn*(s)) exp [ig(c)7]
(30)
Flo, o(s)7]= | d&3Ry[E, zIR,[E+v(0)7, 2]
The fluctuation <n?) is a function of & only, since all points along a streamline in

rectilinear flow have identical properties.
The power spectrum of £ is obtained as the Fourier transform of R,

o, w—gv(a) |
! ve

Gw)= | drRiryexp (~ium)=a [ dPo( @) F—y e )

F(o, w)= i? drF(s, 7) exp (—iw7)

- ’ ]
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The physical interpretation of this expression is that a fluctuation travelling along a
streamline through o gives a burst of oscillations in the Doppler signal as it passes
through the range cell. The power spectrum of the burst is a frequency band given by
F, centred around the Doppler frequency w =gquv(o). The width of the band is inversely
proportional to the duration of the burst in time and thus proportional to v(e). The
average power is proportional to (n?(e)).

When the transit time is sufficiently large, we may use the following approximation
(Angelsen 1975)

where

AZL(G) = j d£3Rp2 [g’ z]
A=R(2, )

In this expression L is an equivalent transit length. This gives the following approxi-
mation to the spectrum

G w)=2mA2a* | d* o (n*(s) ) L(c)d]w —qv(s)] (33)

The above equation may be integrated to give

g g § ap MO “
. Guw) =2t | dp =] (34)

['(w) is the family of curves in the o-plane satisfying
w=g¥(o) (35)

and}; is the arc length parameter along I'. If £ is the same for all ¢ satisfying eqn. (35)
for fixed w, G; may be obtained from G, by a convolution

Gw)y= | dw f'[{w,‘iﬂ(ii)]léf(w) (36)
w w

— ©

where
F[O’(W), qv(‘“; W):l

_5 doFlo(w), ]

(37)

w w w

@f[w’qu(w—W)] %

is the spectral band obtained from the scatterers with velocity v=w/[q,, normalized to
unit power. We have defined ¢, as the component of g along v. A convelution formula
like the above cannot be obtained in the general case.

As an example we calculate G, for the following velocity profile in a circular tube
of radius a

(o) ="vo ﬂl—;] 0<o<a (38)
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o is the radial position coordinate. p=2 gives parabolic flow, while p oo gives plug
flow. We assume that the region of observation is uniform with length L across the
tube and that (n?)> =const. Normalizing to unit power we obtain from eqn. (34),
Wo =gV

4ar

w

Go(w)={ pwo (1 =

wWgo

1-(2/p) we[oi wO]
) (39)

0 else

The velocity profiles and the spectra are shown in Figs. 3 and 4. The singularities in
G, will not be found in G due to the convolution in eqn. (36). These spectra are the
same as those obtained by Roevros (1974) using a simplified analysis on independent
scatterers.

7. Discussion

The received signal is the projection of the fluctuation n(€, t) onto the kernel
R;, exp (i), eqn. (26). For the plane wave approximation, this extracts the Fourier
component of n which satisfies the Bragg condition of reflection, § 4. We note that it
is the fluctuation rather than the total concentration which preduces the scattering.
The reason for this is that if nr were constant, we could always find a scatterer which

0 else

" Lz{—";—z[l-r%)”}
v

p+e_

Vo = v

P

]

0 5 10
g/a

Figure 3. Blunt velocity profiles in a circular tube. 7 is the mean velocity across the vessel
lumen. .
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Figure 4. Approximate power spectra, G;(w), for the Doppler signal from the blunt velocity
profiles. @ is the mean angular frequency of the spectrum.

cantels the signal from another scatterer. Thus it is the variation in ny which causes
scattering. This is a general situation in incoherent scattering.

The continuum approach has resolved the problem of interacting scatterers. Since
the wavelength is long compared to the correlation length of n, §-correlation of n can
be assumed, and thus the effect of interaction is contained in {#?).In normal flowing
blood, we will have (n?)» =n,, the value for non-interacting scatterers. This has been
experimentally confirmed by Shung et al. (1976). Turbulence will increase {n? ) due to
the difference in mass density between cells and plasma which causes separation. This
will increase the scattering, which is confirmed by in vivo measurements. The scattered
signal is generally strong from turbulent jets as in mitral and aortic stenosis. The
amount the scattering is increased is left for experimental investigation.

The effect of turbulence upon scattering from a mixture of solid elements in a liquid
such as blood, is different than for a pure liquid. For a pure fiuid the interaction
between flow and a wave arises from two effects. The one is the compression of the
fluid caused by the turbulence. This modulates the mass density and compressibility
of the medium. The other arises when the convective velocity becomes comparable
to the sound velocity, by which the convective acceleration in eqn. (5) cannot be
neglected.

The first effect is negligible in normal turbulence for practically incompressible
fluids such as plasma. When particles arc present in the liquid, however, we get a
similar modulation of the mass density and compressibility by the flow, as discussed
above.

Apart from increasing the scattering, turbulence will also affect the Doppler
spectrum. This can be viewed as a violation of the 8-correlation property in eqn. 3).
As discussed in § 2, a more illustrative way to describe the effect of turbulence is to
follow a single scatterer. If this has a straight path through,the range cell, we will
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obtain a spectral band from the scatterer given by F in eqn. (31). If the velocity com-
ponent along ¢, v, changes during the transition, additional broadening of F will occur.
The amount of broadening will depend on (Av,2>/{v,>?, where Av, is the variation
in the velocity of the scatterer.

Assume that the signal from the scatterer has the form

2(t)=a(t) exp (iw(H)t)
w(t)=q - w(1)

The Fourier-transform of this signal is
F(w)= | dt a(r) exp (iw(t)t) exp (— iwt)

and

o0 - [=e} d
_j' dw o|F(w)|? _j dr a(t) exp (iw(t)t) = [a(t) exp (iw(D)1)]

f dw| F(w)|? [ }O dt a*(1)

wl=

j‘o dw »? |F(w)|? j'o. dt [% a(t) exp [iw(t)]]

f des | E(w) |2 _f dt a¥(1)

If the transit time broadening of the spectrum can be neglected and w < w, we obtain
B w)
D w?)

where ensemble averaging over different w(z) is performed.

The scattering intensity is proportional to the frequency in the fourth power,
which is also confirmed by the experiments of Shung et al. (1976).

The value of y, given by eqn. (19) is greater than —0-166 which is obtained for
a single scatterer, Shung et al. (1977). This is reasonable since the wave in blood
observes an average compressibility which is less than that for pure plasma. In their
experiments Shung ez al. have used a cell concentration of 109%,. This is at the upper
limit of what would give independent scatterers, and a smaller value of y than that
obtained in whole blood should be expected. (In addition the blood sample in our
measurement is likely to have been different from theirs.) The scattering cross-
section of blood obtained here will thus have a smaller space variation than that
obtained by Shung et al.

The general form for the power spectrum of the received signal for rectilinear
time invariant flow and plane waves is given in eqn. (31). Actually the plane wave
assumption, is an approximation since the beams have finite extent, and thus are
composed of a distribution of plane waves with different g-vectors. In our approxi-
mation, the finite extent is taken care of by the amplitude factor R,. This gives a
finite transit time of a fluid element through the region of observation which in
turn gives the line width of F, eqn. (31). G,, eqn. (33)-is the distribution of the
velocity component along g, w=gqv, in the region of observation, weighted with
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L. G, will thus be a blurred version of this velocity distribution, the blurring
caused by the finite transit time.

For small transducers and by focussing when $=g€+const is not a good
assumption, additional broadening of the single scatterer line will occur.

All available information in £ of the velocity field is contained in G, (§ 6). The
maximum information that can be extracted from ultrasonic blood velocity measure-
ments is this blurred velocity distribution. By knowing G, as a function of zand know-
ing the beam pattern, the velocity field can, however, be restored in simplified situations
(Jorgensen, Campan and Baker 1973).
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