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A study of the M, tide in the ice-covered Arctic Oceant
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A model to study M; tide propagation in the Arctic Ocean based on the equation
of motion of the water and the pack ice, is considered. The mechanics of the ice
floe interaction is described by the non-linear viscous constitutive law. Various
empirical parameters entering the constitutive law are checked against the tide-
induced motion of the pack ice. The distribution of the amplitude, phase, current
ellipse in the ice-free and the ice-covered Arctic Ocean is computed and presented
in figures. Special attention is given to clarifying the distribution and peculiarities
of tide propagation in the Barents Sea. The tide-induced motion of the pack ice
has been studied carefully; numerous experiments show that residual (over
tidal period) ice drift is observed due to the non-linear ice floe interaction. It is
found that both resjdual ice drift and periodical ice motion may lead to ice
redistribution, setting the areas of ice convergence and divergence.

1. Introduction

The problem of the M, tide distribution in the Arctic Ocean, solved by Kowalik
and Untersteiner (1978), is considered again with respect to tide—ice interaction.
The tide pattern in the ice-free ocean is presented in the first part of the work. The
Arctic Ocean is open to both the Atlantic and Pacific, the non-linear terms in the
equations of motion are included, and the space grid step is twice as short as in the
previous computations. The shorter step allows greater details, of tide distribution
in the adjacent seas to be presented. The inclusion of the White Sea in the model,
which is a very strong sink of tidal energy, has caused a significant redistribution of
tidal energy in the Barents Sea. The tide in the Barents Sea is studied and the computa-
tions are compared with observations and computations presented by Sgibneva
(1964). The tide wave pattern in the Arctic Ocean is close to the previous results.

Periodic openings and closings in the pack ice were discovered in calm weather
during early voyages to the Arctic by Nansen and Zubov (1955). This phenomenon
occurred along the coast of Siberia and in the Greenland Sea but not inside the
Arctic Ocean. Legenkov (1958) set up a model to determine jce divergence and
convergence from the available observations of tide and current. The first mathe-
matical model of tide motion in the polar seas was built by Kagan (1968), though
he did not include internal ice interaction. Kheysin and Ivchenko (1973) developed
a model of the periodic oscillation of ice induced by tides, with the interaction
between ice floes included. They postulated a viscoelastic model of the ice mechanics
and studied the variations of the ice compactness due to the tide in the Sea of
Okhotsk. The pattern of ice velocity in time was also computed. A simplified model
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of the ice as a viscous material by Sodhi and Hibler IIT (1980) showed in a straight-
forward manner the time lag between water and ice velocities when tide propagates
in the ice-covered sea.

One of the most difficult and yet important problems in the study of tides or
wind driven motion of the ice is specification of the ice mechanics model. The
situation in this field seems to have been accurately described by Rothrock (1975):
“we suffer now from too many hypotheses and too few data of sufficient accuracy
to test them critically”. To represent internal ice interaction we apply the non-linear
frictional law proposed by Rothrock (1975). Tide is a phenomenon of a short dura-
tion, therefore, the thermodynamical processes of ice growth and decay will be
neglected and only ice mechanics will be considered. Though we shall deal with
the exact partial differcntial equations our feeling is that the result of computations
from the tide-ice model are to a certain degree of a qualitative nature. Ice mechanics
is a new domain which is developing very fast but the lack of experimental know-
ledge is still acute, see e.g. Pritchard (1980). The empirical coefficients which enter
the constitutive law are still not very exact, and the expression proposed by Rothrock
(1975) has never been tested against the tide motion. Therefore, part of our effort
is directed to the elucidation of the tide-ice interaction under diversified conditions.
Because of the non-linear ice mechanics, computations show the existence of a
residual ice motion over a tidal period. How important this phenomenon could be
in nature is a moot question. The presence of the ice cover leads to the decay of the
tide amplitude and to the time lag between the ice and water velocities. It is found
that the latter feature depends in a complicated manner on the viscosity parameters
of the ice and the water.

2. Basic equations and certain numerical problems related to tide modelling in the
Arctic Ocean

The problem of tide in the Arctic region will be studied by a system of equations
of motion and continuity written in the stereographic polar coordinate system
(Kowalik and Bich Hung 1977);

oM mM, O0M, mM, oM,

.\'+ + > - —fMy
at pw(H+ C) ax Pw(H+ C) ¢y
4 rM,

= — " H+ — e el
mp,g(H+{) ox (HT 0r,
8M,+ mM, 8{\4,_'_ mM, B{M,,_I_

o pH+L) ox p(H+L) oy

oL rM
= —mpg(H+1) —— 2
dy (H+1)p,
cM, oM, e¢

=2 3
8x+6’y+pwat0 )

'\/(Mx2+My2)+m2AAMx+T§,x (])

VM + M) +m*AAM,+ 7, (2)

The ice motion induced by tide will be considered by the following system of equa-
tions (Rothrock 1970);
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In the above equations;

X, y are horizontal coordinates, with x and y directed along 0° and 90°E
longitude, and with origin at the North Pole. In all expressions where
x or y are subscripts, they denote the components of a vector and are
directed along the x and y axes, respectively;

M., M, are the components of the water mass transport vector M;
MI,, MI, are the components of the ice mass transport vector MI;
T{x Tgy are the components of the water stress vector
F,, F, are the components of the internal ice force F ;

{ is the elevation of water surface or ice surface above the undisturbed
level.
02 02
A =5 + % = Laplace operator;
H=water depth; i
r=bottom stress coefficient having a constant value of 3 x 1073,
A=lateral eddy viscosity (kinematic) coefficient taken as 5 x 10® cm?/s;
f=Coriolis parameter;
g=gravity acceleration;
pw=water density taken as 1 g/cm?3;
m=scale factor relating a stereographic map to a sphere;
p=ice density, equal to 0-9 g/cm?;
HI=thickness of the ice.

The interaction between the ice and the water is expressed in the above equations,
by means of: (A) the water stress , which depends on the relative motion of the
/ice and the water, and (B) the horizontal gradient of pressure arising due to the sea
slope. The latter term is completely defined, but the former contains a coefficient
which is a function of the aerodynamical properties of the ice-water surface.

To derive the solution to the above system the pertinent boundary and initial
conditions should be added. Among all possible sets of boundary conditions the
chosen one should lead to the unique solution of the system (1-5). Such a set of
conditions is still undefined for the ice—ocean interaction, therefore, we shall assume,
(since the ice flow equations are analogous to the water flow equations), that speci-
fication of the normal and the tangential mass transports along the boundaries is
sufficient to derive the unique solution—Marchuk et al. (1972). Throughout the
observations, on the open boundaries, North Scandinavia—Greenland and Bering
Strait, only sea level is defined. To comply with the above requirement of unique-
ness the system of eqns. (1-5) is simplified on the open boundaries in such a way
that the value of sea level is sufficient to derive the unique solution, see Kowalik and
Untersteiner (1978).

When searching for the numerical solution of the tide—ice interaction in the
Arctic Ocean the scheme of Hansen (1962), which is explicit in time and staggered
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in space, is applied. All three variables are set apart; the shortest distance between
the grid points (/) is equal to 37-5km and the time step (7) is 62:1s. The basic
framework for computing the M, tide in the Arctic Ocean was designed by Kowalik
and Untersteiner (1978), therefore, we shall not discuss all the numerical problems
but only the new ones arising from the considerations of both water and ice in one
model.

In the equations of motion (1), (2) the non-linear advective terms, which were
not included previously, are considered. The numerical approximation of these
terms is due to Tee (1976). Generally the non-linear effects are small, therefore the
condition for numerical stability is not modified by this term.

The presence of ice does not influence the principal stability condition of the
explicit numerical scheme (Ramming and Kowalik 1980);

h

T ———, 6
m+/2gH ©)

because the replacement of the water depth (H) in (6) by the ice thickness (HI),
could change the inequality only in the case of HI> H.

The significant difficulty of preserving numerical stability of the explicit numerical
scheme is due mainly to the processes of internal friction, expressed by the lateral
exchange of momentum. Internal ice friction terms, to be considered later on,
contain expressions similar to the lateral exchange of momentum in eqns. (1) and
(2). The ice (kinematical) viscosity coefficient, an analogue of kinematical eddy
viscosity of water, takes quite high values up to 10'2 cm?/s. Therefore, the question
arises: how does the stability condition depend on the magnitude of the horizontal
viscosity?

A practical solution of this problem is to apply a series of values of the eddy
viscosity 4 from a range of 10°-10!2 cm?/s and to compute the tide distribution in
the ice-free ocean. Setting initial values to zero, the sea level is then calculated
throughout 10 tidal periods in the whole Arctic. The results in Fig. 1 depict sea level
variations in the Barents Sea for the two values of eddy viscosity 4= 107 cm?/s and
A=5%10% cm?/s. The level computed with 4=107 cm?/s does not reach the
periodical oscillation even after 10 tidal periods from the beginning of simulation;
the situation is quite different when 4 =35 x 10® cm?/s. Over the range of 10® cm?/s
<A< 102 cm?/s the numerical scheme is stable, but if 4 is increased above
10'2 cm?/s the scheme is again unstable. The general condition (6), under such
circumstances, should be assisted by the condition related to the frictional forces
(Kowalik and Untersteiner 1978);

T< (rl +2m? h—fi)/2f2 (M

The bottom friction coefficient r, ={r/p (H+ {)*]v/(M,*+ M,?) in the deep ocean
(H—o0) can be neglected. This gives us the opportunity of observing the dependence
of stability condition on the horizontal friction only. When the magnitude of A4
defined by the exchange of momentum in the oceanic turbulent processes is put
into (7), the time step T is greater than the time step derived by (6). On the other
hand, when A falls below a certain limit the time step defined by (7) may be shorter
than the time step calculated by (6). Therefore the choice of time step through (6)
may lead to instability—see fig. 1.
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Figure 1. Tide amplitude computed during 10 tidal periods in the Barents Sea (position

74°N, 34°E). Upper part-eddy viscosity 4= 107 cm?/s, lower part-eddy 4=35x 108
cm?/s.

The horizontal eddy viscosity also enters into the condition which defines the
stability in the short wave domain (Kagan 1970);

T<1(r,2+m*24/h?) @)

Considering again the deep ocean case, when r, ~0, and taking into account both
(7) and (8), the range of variations of the horizontal viscosity is defined;

fh\? 1 [/ h\?
T(;) S’Kﬁ'(ﬁ) 9

Taking the values which will be applied in computations of M, tide in the Arctic
Ocean; h=37-5km, T=62-1s, f=14x10"*s"! m~0-9; the range of 4 for the
stable’computation is found from 2-1 x 107 cm?/s to 1+4 x 10** cm?/s.
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3. Tides in the ice-free ocean

To derive the solution of system (1--3), the no-slip condition is specified at the
coast. On the open boundary between Northern Norway and Central Greenland,
the sea level is specified by Kowalik and Untersteiner (1978), and in the Bering
Strait by Siindermann (1970). Co-tidal and co-range lines derived from the numerical
computations are plotted in Fig. 2 and Fig. 3. The phase angle is referred to Green-
wich and is expressed in degrees. In Fig. 4 the velocity along the major axis together
with direction of rotation along the ellipse is given. Figure 5, which is comple-
mentary to Fig. 4, depicts boundaries between positive (counterclockwise) and
negative (clockwise) directions of rotations. Knowledge of directions of rotation in
tide ellipse may help to discriminate between tidal and inertial oscillations, because
their periods in the Arctic Ocean are often very close (Hunkins 1967).

The M,-tide entering the Arctic Ocean between Greenland and Scandinavia is
divided by Spitsbergen into two branches. The main wave enters through the
Greenland Sea and the secondary wave propagates around Scandinavia towards
the White Sea. The results in the Arctic Ocean follow the same general pattern
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Figure 2. Co-tidal lines of the M, tide in the ice-free Arctic Ocean. Phase angles in degrees
are referred to Greenwich (solar time).
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GREENLAND

Figure 3. Co-range lines of the M, tide in the ice-free Arctic QOcean, amplitudes in cm.

described by Kowalik and Untersteiner (1978). The tidal wave travels around the
amphidromic point off North Canada. In the adjacent seas the present picture is
more detailed. On the North Siberian Shelf in the East Siberian Sea and Laptev
Sea, the amphidromic points are clearly seen. This proves that not only dissipation
processes occurring over the North Siberian Shelf (Kowalik 1979), but also energy
scattering processes play a significant role in tide propagation. The details discerned
in the present computations are due to the improved space resolution. Comparing
the present results with Kowalik and Untersteiner (1978) it is seen that the amplitude
is now somewhat smaller. The White Sea is taken into account in the present com-
putation, therefore the tide entering this sea is dissipated to a great extent, and this
in turn influences the amplitude distribution in the whole Arctic. The tide pattern
in the Arctic Ocean was analysed by Kowalik and Untersteiner (1978), the ncw
results provide an opportunity to study the tide propagation in the Barents Sea.
From Fig. 2 and Fig. 3 it is observed that the tide wave propagates around Scan-
dinavia and enters into the shallow and narrow White Sea, where it attains (by our
calculation) an amplitude of 2 m. Not all the energy is directed towards the White
Sea; part of the wave being reflected back toward the Atlantic Ocean; the other
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Figure 4. Major axis of the M, tide ellipse in the ice-free Arctic Ocean. Arrows indicate
the direction of rotation along ellipses.

branch propagates toward the North. Superposition of the reflected and incident
waves forms an amphidromic point (Taylor 1921). In the Barents Sea two distinct
amphidromic points and a decayed one (off the coast of Novaya Zemlya) are
observed. The first is situated between Spitsbergen and North Cape and the second
between Spitsbergen and Franz Josef Land. Both amphidromic points are shifted
from the geographically mean position. The shift is related to the amplitudes of the
forward and backward Kelvin waves. The dislocation always takes place towards
the coast where the tidal amplitude is smaller, see e.g. Nekrasov (1975), Kowalik
(1979).

Sgibneva (1964) compiled data relating to the M, wave in the Barents Sea.
Basing on a simplified set of equations she also computed the phase and amplitude
distribution. To compare both results, Fig. 6 contains the co-tidal lines from
Sgibneva (1964)—continuous line, and computed by means of the set of eqns. (1-3)—
dash line. The locations of the amphidromical points are quite close and also good
phase resemblance is observed along the Scandinavian Coast. Somewhat unusual is
the clockwise rotation around the amphidromic point between Spitsbergen and
Franz Josef Land in Sgibneva's (1964) results.
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Figure 5. Direction of rotation along the tidal ellipse. Plus denotes counter-clockwise
direction and minus clockwise direction.

In Table 1 computed M, tides are compared against the observed values at
several points around the Barents Sea. Gauge data are taken from-tables published
by the International Hydrographic Bureau in Monaco. The best agreement between
the computations and the measurements is around Scandinavian coasts. The overall
comparison clearly shows that the computed amplitude and phase are smaller than
the measured values. The complicated geometry around islands cannot be adequately
described by the grid mesh of 37-5 km. Because the observations are usually taken
from the tide gauges situated in narrow bays or close to the coast, the result of the
computations can be improved by improvement of the horizontal resolution.

4. Tide-ice interaction

Equations (4) and (5) express the lateral motion of the jce by means of the mass
transport, if the ice has velocity u and v along x and y coordinates, respectively, and
thickness HI, then,

HI

: HI
ML= | pudz; ML= | pvdz (10)
0

0
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Figure 6. Cotidal lines of the M, tide in the ice-free Barents Sea. Continuous line, accord-
ing to Sgibneva (1964); dotted line, present model.

Amplitude (cm) Phase

Location
Observed  Calculated Observed  Calculated

Scandinavia

69°38-8'N, 18°52'E 87-6 76 39° 26°

69°55'N, 32°02'E 99-1 77 151° 140°

69°05'N, 36°18'E 130-8 102 220° 180°
Novaya Zemlya

76°56'N, 68°58'E 15 9 323° 125°

76°16'N, 63°03'E 15-2 9 283° 150°
Franz Josef Land

81°48'N, S57°51'E 16-6 12 182° 50°

80°20'N, 52°48'E 9-3 14 262° 160°
Spitsbergen

79°56'N, 18°18'E 28-1 19 114° 16°

78°13'N, 15°38'E 48-1 24 33° 355°
Bjornoya

74°29'N, 19°12'E 34-2 28 42° 5P

Table 1. Observed and computed amplitudes and phase angles of the M, tide in
the Arctic Ocean.
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Assuming the ice is not spread evenly over the whole surface the compactness (N)
can be inserted into the above expression;

MI,=pNuHI; MI,=pNvHI (11)

The expression pNHI denotes concentration or mass per unit area; in the computa-
tion to follow pNHI is equal to 200 g/cm?.

Any interaction between the water and the ice in the system of eqns. (1-5), is
described by two forces, i.e. the pressure gradient and the water stress. The former
is fully defined if the sea level distribution is given over the sea, the latter we take as,

Tex=Ru—~u ) —u,)* + (v—v,)2 ]2 (12 a)
70y =R0—0)[(u—u,)* +(@—0,)?]1? (12 b)

Here u,, and v,, are the components of the water velocity vector.

Water stress is sensitive both to the relative motion of the water and the ice,
and to the magnitude of the=coefficient R. The water drag coefficient is a function
of the aerodynamic properties of the ice-water interface and the relative motion,
its magnitude range from 3 x 10~3 to 5-5x 10~3.

For the pack ice drift in summer due to wind, McPhee (1980) estimated the
water drag magnitude to be from 4 x.10-2 to 5-5 x 10-3. Tide-ice interaction occurs
permanently, while the ice cover changes seasonally due to growth and decay.
During winter, with the thick ice cover over the ocean, the drag coefficient may
diminish to 3x 103 which is characteristic of the flow regime over the bottom.
Also our computations will be performed with R=3x10-3, and we shall indicate
the influence of the variable drag coefficient on the overall picture of the tide-ice
interaction. :

The main problem to be clarified before the water—ice interaction can be studied
is the formulation of a constitutive law which relates the stress (o) transmitted
between floes to the variables in the problem formulated by the system (1-5). The
mechanism of ice interaction in the simplest case can be expressed by a linear viscous
model, when the ice stress is proportional to strain rate tensor—Glen (1970), Campbell
(1965). Sophisticated models of the internal interaction, when the ice thickness is
related to the ice strength and the pack ice is treated as elastic—plastic or non-linear
viscous material, were proposed by Coon er al. (1974) and Hibler III (1979). Treat-
ment of pack ice as an elastic—plastic material, even in the case of the very simple
constitutive law proposed by Kheysin and Ivchenko (1973), brings into consideration
additional variables, not specified in the system (1-5). In the present work the non-
linear viscous constitutive law proposed by Rothrock (1975) will be taken into
account because it contains the variables specified in the equations of motion. The
mechanical behaviour of ice is considered only; we shall assume that during 12 hours
the ice thickness can be regarded as constant and thermodynamic processes, neglected.
The force F in eqns. (4) and (5) acting on the ice floes due to the internal ice stresses
is given by the divergence of the stress tensor (e1;);

a X,
F=24  NHT (13)
ox;

;
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The stress—strain relationship is defined as follows;

ay;=2mé;+(A—n)éyd ;—poy, (14)
Here i, j are indices; they take the value 1 or 2, where 1 stands for the x coordinate,
2 stands for the y coordinate. The strain-rate in (14) is expressed by the ice velocity

as,
L )
. cu; C'ltj
S (15)
CxJ- Xy

Rothrock (1975) suggested that the tensile stress is negligible compared to com-
pressive stresses, with component (p) in (14) given by;

cu; cu;
p=—AP—, when —<0
le GX'
(16)
u;
p=0, when —20
ox;

Finally, introducing (14), (15) and (16) into (13) the components F; and F, of the
force due to the internal ice stress are derived;

o (eu v\ ¢

Fx'—‘l:nAu+Ar—(i—+i—) -éeil pNHI (17 a)
dx\éx c¢y) ©x
o {cu v\ op

Fy=| nBv+ A= [ =—+— |-= | pNHI (76)
ey\ox oy) @y

In the ensuing computations both bulk (1) and shear (n) viscosity coefficients are
taken to be equal A=n=AI The ice velocity components in the above expressions
are denoted by u and v or by u, and u,. Throughout all indexed expressions the
Einstein summation convention is used. The constituent law has never been tested
against tide propagation in an ice-covered ocean. In this law at least two empirical
constants, which express the mechanism of floe interaction, are unknown, i.e. the
coefficient of viscosity (47) and the pressure coefficient (4P). The magnitude of the
viscosity coefficients is quite difficult to estimate. In the case of mean ice drift in
the Arctic Basin or in the Weddell Sea, Campbell (1965), Ling et al. (1980) found
the coefficients by tuning the computed pattern of circulation to the observed one.

The coefficient of viscosity, being a function of ice strength, changes from values
which are close to the water eddy viscosity—during the summer period—when pack
ice is loose and the floe interaction is practically negligible, up to large values—
during winter—when ice motion is stopped completely due to the thermodynamic
processes of ice growth.

The compressive non-linear stress incorporated into the equation of state (14),
and which relates the pressure (p) of the ice to its convergence, should eventually
lead in the case of convergence to suppressing ice motion. Therefore, the magnitude
of the pressure coefficient 4P in (16) will be defined over the range of the largest
Al To find the value of the ice viscosity coefficient (A1) responsible for suppressing
the ice motion we start our computations with the linear viscous model (p=0).
A sequence of investigations was carried out in the Arctic Ocean with the set of
eqns. (1-5) to evaluate the influence of variations of Af on the behaviour of the
system. AJ ranged from 10° cm?/s to 10'! cm?/s, the other parameters were fixed:
oNHI=200 g/cm?, R=3x10"3 A=5x10" cm?/s. The ice and water velocities
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Figure 7 (a). Water and ice velocity in the Barents Sea (position 74°N, 34°E), computed
using the linear viscous model of the ice floe interaction. Eddy viscosity of water
A=5x10% cm?/s, ice friction coefficient, 4/=10° cm?/s (upper part), AI=10'°
cm?/s (lower part), water drag coefficient R=3 x 10-3.

(along the x-axis) at an internal point of the Barents Sea (74°N, 34°E) are plotted in
Fig. 7(a) and 7 (b). If the value of A7 is close to the magnitude of the horizontal
eddy viscosity 4, the ice and the water velocities are of the same order ; when 417
increases, noticeable differences can be seen if water and ice velocities are compared.
Finally when the friction coefficient growth as high as 10!! cm?/s, the ice velocity is
suppressed down to 0-1 cm/s. Two phenomena can be seen in the results of the
computations, i.e. the decay of the ice velocity and the time lag between the water
and the ice velocities.

The observed time lag between the velocities is dependent on the ice viscosity
coefficient but the dependence is more complicated than the one postulated by
Sodhi and Hibler ITI (1980). The lag is close to zero if Al is close to A, but the same
situation is observed for the very large AI—see Fig. 8. This shows that the lag is a

M.L.C. " M
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Figure 7 (b). Water and ice velocity in the Barents Sea (position 74°N, 34°E), computed
using the linear viscous model of ice floe interaction. Eddy viscosity of water
A=5x10% cm?/s, ice friction coefficient, 47=5 x 10'° cm?/s (upper part), AI=101*
cm?fs (lower part), water drag coefficient R=3x 103,

complicated function of the internal ice stress and attains the largest values when AI
is somewhere inside range 10°-10'! cm?/s.

Friction through the viscous stresses suppresses the ice oscillations and when the
ice friction coefficient attains a high enough value, the ice motion is stopped, but
this phenomenon also depends on the energy transport from tide to ice oscillation.
To describe the role of the water stress in the energy transport process the magnitude
of the water drag coefficient 3 x 1073 in expression (12) was replaced by 5-5x 1073,
and a set of experiments over the previous range of 47 was carried out. The higher
water drag coefficient has a definite impact—the motion is not suppressed even
when AI/=10! cm?[s—Fig, 8; this feature occurs if the coefficient is increased to
1012 cm?/s.

Finally, we can return to the pressure term in (14), and it stems from the above
experiments that the pressure coefficient 4P ranges from 10'* cm?/s to 10'? cm?/s.
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Figure 8. Water and ice velocity in the Barents Sea (position 74°N, 34°E), computed using
the linear viscous model of ice floe interaction. Eddy viscosity of water 4=5 x 108
cm?/s, ice friction coefficient, A7=10'° cm?/s (upper part), Af=10'! cm?/s (lower
part), water drag coefficient R=5-5x10~3,

A comparison of these results and these found by Campbell (1965) and Rothrock
(1975) for the wind-driven motion of pack ice gives surprisingly good agreement of
both values.

The linear viscous model is not compatible with our understanding of ice, there-
fore, series of experiments on tide-ice interaction, with the full non-linear constitutive
law (14), will be performed. In the first experiment AP was fixed at 10'° cm?/s which
is well below the above range; in the next experiment 4P was increased to 10'* cm?/s.
The change due to the variation of this parameter, as can be seen from Fig. 9, is
very considerable. The course of the water velocity around the mean value is com-
pletely symmetrical, The ice velocity, on the other hand, depicts asymmetry; small
when AP=10'" cm?/s, and considerable when AP=10'! cm?/s. All the results we
have presented are from the point inside the Barents Sea, so to provide a comparison,
Fig. 10 gives the results, from the point close to the entrance to the White Sea. The

M2
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Figure 9. Water and ice velocity in the Barents Sea (position 74°N, 34°E), computed using
the non-linear viscous model of ice floe interaction. Eddy viscosity of water 4= 5 x 10®
cm?/s, ice friction coefficient, 47=10° cm?/s (upper part), 4A7=10'° cm?/s (lower
part), pressure coefficient, AP=10"° cm?/s (upper part), AP=10'! cm?/s (lower
part), water drag R=3x 1073,

effect of tide-ice interaction is different in both figures. One has to remember that
the ice motion induced by tides is not only due to the set of parameters chosen in
the constitutive law; it depends also on the relative motion of ice and water. One
conclusion from the above figures follows clearly: if the ice velocity is averaged
over the tide period, the residual ice motion will be present. Therefore, due to non-
linear ice mechanics, tides induce a permanent pack ice circulation. Residual ice
motion in the Arctic Ocean is plotted in Fig. 11. The magnitude of the ice velocity
is rather small; over a large area of the Central Basin and along the coast of Greenland
and Alaska, the values are below 0-1 cm/s. Velocities of several cm/s are seen in the
White Sea and in the south-east part of the Barents Sea: another area of higher
velocities is situated around the New Siberian Islands. An interesting conclusion
which follows from the pattern of residual currents is that the ice motion induced
by tides may lead to the quick clearing of ice from the White Sea during spring.
Generally speaking, residual currents are a function of the ice strength and they
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Figure 10. Water and ice velocity near the entrance to the White Sea, computed using the
non-linear viscous model of ice flow interaction. Eddy viscosity of water 4=35 x 108
cm?/s, ice friction coefficient, 47=10° cm?/s (upper part), Af=10'° cm?/s (lower
part), pressure coefficient, 4P=10'° cm?/s (upper part), AP=10!! cm?/s (lower part),
water drag R=3x 103,

can be very small: A—in summer, when interaction between the ice floes is negligible,
and B—in winter, when the ice is thick and internal stresses increase to large values.
The pattern plotted in Fig. 11 thus represents the autumn or spring conditions.
Finally, we have to stress that the parameters chosen for the computation of the
residual ice motion are not strictly related to the ice strength encountered in nature,
therefore, the picture may bear scant relation to the actual drift and should be
accepted with certain caution.

A question may arise of whether residual ice motion can be observed in nature.
It cannot be resolved properly without measarements of ice drift in the Barents Sea
and particularly in the entrance of the White Sea. On the other hand, it is clear that
the non-linear and elastic—plastic constitutive law should lead to the non-linear
effects in pack ice mdi"ement.-,gTQ'qoh:firm, at least partially, the results derived
above, we have applied a viscoelastic constitutive law specified by Kheysin and
Ivchenko (1973). Residual ice motion retains its previous character, and its value
depends on the magnitude of the bulk modulus of ice elasticity.
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Figure 11. Residual (over M, tide period) ice motion in the Arctic Ocean as a result of
application of the non-linear constitutive law.

It is worthwhile to mention that along with residual ice motion, which is of
transient character (in time), in shallow areas of strong tidal motion the perma-
nent current is present due to non-linear tide interaction. In the Arctic Ocean, this
phenomenon influences the pack ice motion along the south-eastern coast of the
Barents Sea, in the White Sea, and probably in the vicinity of the New Siberian
Islands.

Analysing, in turn, the tide distribution, it follows from all the figures that neither
the linear nor non-linear model influence the tide distribution very much. The tide
chart of the Arctic Ocean covered with ice, shown in Fig. 12, was based on the
following set of parameters: 4=35x10® cm?/s, AI=10'" cm?/s, R=3x10"3. The
overall distribution is very close to that observed in Fig. 1 and Fig. 2, but the ice
induces both phase lag and amplitude decay. In the areas of small tidal amplitude
the variation is quite negligible, but in areas of strong tides, i.e. the south-eastern
part of the Barents Sea and in the vicinity of the New Siberian Island, the amplitude
change is several percent.
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Figure 12. Co-tidal lines (dotted) and co-range lines (continuous) of the M, tide in the
ice-covered Arctic Ocean.

5. Conclusions

The M,-tide in the ice-free and ice-covered Arctic Ocean is studied through the
system of non-linear equations (1-5). Numerical solution of the problem cannot be
derived in a straight-forward manner, mainly because the pack ice has very high
internal friction. Due to this fact, the stability condition of the explicit numerical
scheme is reconsidered and the new condition is set by the inequality (9). An applied
numerical scheme has better space resolution than the previous model of Kowalik
and Untersteiner (1978), therefore it allows the tide entering from the Bering Sea
and the White Sea area to be taken into account. The overall tide pattern in the
Arctic Ocean remains the same, the new details appear in the near coastal zone.
The main result of the ice-free model concerns the tide distribution in the Barents
Sea. The comparison with the observations, also generally quite good, reveals in
one of the amphidromic points and opposite rotation in the numerical model and in
Sgibneva’s (1964) observations. Our assumption is that Sgibnev’s result might be
erroneous due to scant tidal data.

To study tide propagation in the-ice-covered ocean, the non-linear viscous
constitutive law is taken. First of all, since the law was not tested against the tide
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niodon, a sequence of investigations was carried out to find the range of variability
of the coetficients. The magnitudes derived are in surprisingly good agreement with
the results found for the wind-driven motion of pack ice by Campbell (1965) and
Rothrock (1975), The wufluence of the ice cover on the tide propagation leads to a
time lag between the ice and water veloeities and to decaying of the tide amplitude,
The times lag is shown to be a complicated function of the ice frictional coefficients
and the drag between water and ice. As the overall picture of the tide in the ice-
covered Arctic Ocean is very close to the pattern of the ice-free ocean, this confirms
the small 1nfluence of ice on the long waves propagation.

As 4 by-product, due 1o the non-linear constitutive law, a residual (over the tide
period) ice motion is obtained. Presently it is difficult to ascertain how important
this transient phenomena could be, but together with the residual tide motion it
can lead to the ice redistribution in the shallow areas of the Barents Sea, White Sea
and in the vicinity of the New Siberian Islands.

Appendix 1. Dissipation of the tidal energy

Model of the ice-tide interaction developed for the Arctic Ocean allows us to
solve a number of related problems. Jeffreys (1921) suggested that the tidal energy
dissipation against the bottom is a principal cause of a secular acceleration of the
moon. Now, we consider the dissipation of the tidal energy against the ice cover to
supplement the results presented by Kowalik and Untersteiner (1978) for the ice-free
Arctic Ocean. Energy dissipated 1s proportional to the scalar product of the stress
and water velocity vector. In the ice-covered ocean the stress at the ice—water inter-
face i3 present, along with the bottom stress, therefore, it is reasonable to assume
that the ice may be responsible for higher energy dissipation. The actual situation (s
mere complicated. We shall study this penomenon only through application of the
Iinear frictional model. The energy dissipated in the whole Arctic Ocean per unit
time (i.e. averaged over one M, tide period) as a function of the different ice friction
parameters is given i Table 2, If the ice friction coefficient A/ is close to the
magnitude of the eddy viscosity coefficient of water—A, the velocity of both ice

Al (cm?/s) E, (erg/s) E; (erg/s) E,+ E; (erg/s)
R=3x10"3

5« 108 12946 x 1047 — 1:2946 x 107

10° 12946 < 1047 - ) 12946 x 107

1010 1-1494 % 1017 1-6087 x 104° 1-3102 x 1017

3% 10t 1-0924 % 1017 41279 x 10*¢ 15052 % 107

101! 1-0264 x 1017 5-012 x 10'® 1-5276 x 10*7
R=55x10"3

10° 1-2946 x 107 — 12946 x 10*7

1gte {1131 = 10%7 0-10872 x 107 1-2218 x 1017

3x 100 89681 x 10'e 2:6025 x [0 11571 x 10*7

101! 8-1133x 106 31895 x10'6 1-1303 x 1017

Takle 2. Tidal aneroy (erg/s) dissipated in the Arctic Ocean per unit fime due to

bottom friction (£, ) and ice friction (£;) for different friction coefficients of
the ice (A7), constant eddy viscosity of water 4=35x10% cm?/s, and two

values of the water drag coefficient R.
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and water is close, and the water stress against ice is negligible. The overall dissipation
is due only to bottom friction. An increase in the coefficient 47 causes an increase of
dissipation at the ice-water interface, If 47=10'! cm?/s and the drag coefficient at
ice-water surface R=3x 1073, the overall dissipation increases by only 189, as
comparedto the ice-free ocean. In the second set of experiments when R=5-5x 10~3
the overall dissipation even decreases and when 47=10'! cm?fs, its value is 11%
small as compared to the ice-free ocean. It is clear, therefore, that the ice induces a
higher dissipation which, on the one hand, leads to an increase in tidal energy
dissipation against the ice but, on the other hand, it results in smaller water velocities.
This in turn leads to a smaller amount of energy being dissipated against the bottom.
Therefore, one may conclude that the amount of dissipated energy depends on the
ice strength as expressed by the ice friction coefficient 47, on the aerodynamic
properties of the ice-water surface expressed by the drag coefficient R, but it will
not differ greatly from the dissipation in ice-free ocean.

From the above experiments, a situation somewhat closer to nature can be
depicted in the following manner: the dissipation against loose ice is characterized
by the second set of experiments, when the water drag is equal to R=5-5x 103
and the frictional coefficients are in the range 47=10%-10° cm?/s. If the ice compact-
ness increases, the dissipafion is better described by the first set of experiments,
with the water drag R=3x10"? and the frictional coefficients in the range 10°-
10** cm?/s. The largest energy E,+E;=1-527x10'7 erg/s is dissipated when the
ice is assumed to be nearly perfectly rigid (4=10'! cm?/s). The amount of energy
dissipated in the ice itself is at least two orders smaller compared to E,+ E,.

Appendix 2.© Maximal shear

The process of tide propagation can be of practical significance to navigation
through ice if it leads to the existence of openings (leads) or closings in the pack ice.
A uniform deformation throughout the ice field does not set any openings. Therefore,
it will be of interest to define, or to give a measure of the non-uniformity of deforma-
tion. The concept of maximal shear of water velocity (or, briefly, maximal shear)
can serve this aim best. The magnitude of maximal shear (V,) is expressed in the
following way (Kuznecov 1951),

ou, ov,\?2 ou, ov,\? 112
o L T e 18
A (-5) ()] as)

The distribution of ¥ in the ice-free Arctic Ocean is plotted in Fig. 13. The most prob-
able areas for the appearance of ice leads, where V, exceeds 10~6 s~ 1, are the Barents
Sea and the coasts along Siberia, especially in the vicinity of the New Siberian Islands.

Numerical experiments in the ice-covered Arctic Ocean show that the ice does
not influence greatly the distribution of maximal shear.

Phase of the maximal shear is coherent only over a distance shorter than 500—
700 km.

In the paper by Kowalik and Untersteiner (1978) the possibility of ice redistri-
bution by the tide motion was characterized by divergence of velocity. The maximal
magnitude of shear (in present calculation) and maximal divergence (in previous
calculation) are generally confined to the area of large velocities. The use of shear
is related to the experimental fact discovered by Thorndike that the ice deformation
is better reflected in shear than in divergence, see Rothrock (1975).
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Figure 13. Distribution of maximal shear of water velocity in the Arctic Ocean due to the
M, tide. The numbers in the figure should be multiplied by 10351,

A CKNOWLEDGMENTS

This work has been sponsored by The Royal Norwegian Council for Scientific
and Industrial Research through the-research programme HAVBIOMODELLER
(Ocean Bio-Models).

I wish to express my deep appreciation to Professor Jens G. Balchen and staff
of the Division of Engineering Cybernetics, University of Trondheim for the fruitful
discussions and generously offered help throughout the work.

I am also indebted to Professor Norbert Untersteiner, University of Washington,
Seattle, who made most welcome comments towards improving my understanding of
ice physics.

REFERENCES

CampBELL, W. J. (1965). The wind-driven circulation of ice and water in a Polar Ocean.
Journ. Geoph. Research, 70, 14, 3279-3301,

Coon, M. D., Maykur, G. A., PRITCHARD, R. S., RoTHROCK, D. A., and THORNDIKE, A. S.
(1974). Modeling the pack ice as an elastic—plastic material. AIDJEX Bulletin, 24,
1-105.



A study of the M, tide in the ice-covered Arctic Ocean 223

GLeN, J. W. (1970). Thoughts on a viscous model for sea ice. AIDJEX Bulletin, 2, 18-27.

Hansen, W. (1962). Hydrodynamical methods applied to the oceanographical problems.
Proc. Symp. Math.-Hydrodyn, Meth. Phys. Oceanography. Mitt. Inst. Meeresk.,
Univ. Hamburg, 1, 25-34.

HiBLer III, W, D. (1979). A dynamic thermodynamic sea ice model. J. Phys. Oceanogr.,
9, 815-846.

Hunkins, K. (1967). Inertial oscillations of Fletcher’s Ice Island (T-3). J. Geoph. Res., 72,
4, 1165-1174, -

JerFreys, H. (1921), Tidal friction in shallow seas. Philos. Trans. R. Soc. London (A), 221,
239-264.

KaGaN, B. A. (1968). Hydrodynamical models of tidal motion in the sea (Gidrometeoizdat.
Leningrad), pp. 218.

KAGAN, B. A. (1970). On the features of some finite-difference schemes used at numerical
integration of tidal dynamics equations. Izv. Atmospheric and Oceanic Physics, 6, 7,
704-7117.

KueysiN, D. Y., and IvcRENKO, V. O. (1973). A numerical model of tidal ice drift with
allowance for the interaction between floes. Izv. Atmospheric and Oceanic Physics,
9, 4, 420-429,

KowALIK, Z. (1979). A note on the co-oscillating M,-tide in the Arctic Ocean. D¢, Hydrogr.
Zt., 32, H.3, 100-112.

KowALk, Z., and BicH Hung, N. (1977). On a system of hydrodynamic equations for
certain oceanographical problems in the region of the earth’s pole and the stability
of its solution. Oceanologia, 7, 5-20.

KowaLik, Z., and UNTERSTEINER, N. (1978). A study of the M, tide in the Arctic Ocean.
Dt. Hydrogr. Zt., 31, H.6, 216-229,

Kuznecov, D. 8. (1951). Hydrodynamics (Gidrometeoizdat. Leningrad), pp. 392.

LEGENKOV, A, P. (1958). On the theory of tidal concentration, dispersion and compaction
of ice in open sea. Probl. Arkt. Antarkt., 5, 5-17.

LiNG, C. H., Rasmussen, L. A., and CAMPBELL, W. J. (1980). A continuum sea ice model
for a global climate model. In Proceedings of the AIDJEX Symposium (University of
Washington Press), pp. 187-196.

MarcHUK, G., GorbDev, R., KAGaN, B., et al. (1972). Numerical method to solve tidal
dynamics equation and results of its testing (Novosybirsk: Comput. Centre), pp. 78.

McPueg, M. G. (1980). An analysis of pack ice drift in summer. In Proceedings of the
AIDJEX Symposium (University of Washington Press), pp. 62-75.

NEKRASOV, A. V. (1975). Tidal waves in the adjacent seas (Gidrometeoizdat. Leningrad),
pp. 247.

PRITCHARD, R. S., (ed.) (1980). Sea Ice Processes and Models. Proceedings of the AIDJEX
Symposium (University of Washington Press), pp. 474.

RAMMING, H-G., and KowALIR, Z. (1980). Numerical modelling of marine hydrodynamics
(Elsevier. Amsterdam-New York), pp. 148-154.

RoTHROCK, D. A. (1970). The kinematics and mechanical behaviour of pack ice: the state
of subject. AIDJEX Bulletin, 2, 1-10,

RoOTHROCK, D. A. (1975). The mechanical behaviour of pack ice. Annual Review of Earth
and Planetary Sciences, 3, 317-342.

SGIBNEVA, L. A. (1964). Tides in the Barents Sea. Trudy Okiean. Instituta, 75, 5-19.

SopHI, D. S., and HisLEr III, W. D. (1980). Nonsteady ice drift in the Strait of Belle Isle.
In Proceedings of the AIDJEX Symposium (University of Washington Press), pp.
177-186.

SUNDERMANN, J. (1970). The semi-diurnal principal lunar tide M, in the Bering Sea. Dt.
Hydrogr. Zt., 23, H.3, 91-101.

TAYLOR, G. 1. (1921). Tidal oscillations in gulf and rectanguiar basins. Prec. London Math.
Soc. Ser. 2, 20, 143-181. '

Teg, K. T. (1976), Tide-induced residual current, a 2-D nonlinear numerical tidal model.
J. Mar. Res., 4, 603-628,

ZuBov, N. N. (1955). Selected works on oceanology (Voenoye Izd. Moscow), pp. 266-270.



