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A splitting algorithm for fast and slow modes of ocean hydrodynamics is pre-
sented. The purpose of the splitting is to reduce the large amount of computational
work needed for simulating long real-time periods. The essential point of the
splitting is that the external gravity wave terms are extracted from the fully
three-dimensional equations of horizontal motion, allowing the reduced equations
to be integrated with a larger time step than the original model. The fast external
gravity waves are traced by a depth integrated system which is weakly coupled to
the reduced three-dimensional momentum equations. The split model shows a
radical decrease in computational time and the accuracy is of the same order as
in the non-split case.

1. Introduction

This paper deals with the development of a mathematical and numerical model of
ocean hydrodynamics for computation of velocity fields, temperature fields and
salinity fields. The modeling work is a part of the Norwegian research program
HAVBIOMODELLER (OCEAN BIO-MODELS) which deals with modeling of the
marine ecological system of the Barents Sea. For further description of the program,
the reader is referred to Balchen (1979).

A finite difference modeling technique that provides reasonable results in a variety
of ocean circulation problems has been documented in the literature (Leendertse et al.
(1973), Leendertse and Liu (1975, 1977, 1978)). This modeling approach is fully three-
dimensional, as opposed to the horizontal mean flow modeling in more common use.
Vertical structure and exchange mechanisms may be highly significant in some
applications, so that the development of three-dimensional modeling techniques
represents an important and necessary advance.

One of the major problems related to three-dimensional modeling has been the
time consumption of computer simulations. This paper describes a method for
reducing the computational time by splitting the horizontal velocity components into
two parts. One of the resulting components is the mean depth-integrated value of the
horizontal velocity, while the other is the deviation from this mean throughout the
depth. The former is mainly governed by the external gravity wave terms. The resulting
equation of mean horizontal motion is integrated stepwise with a time step subject to
the same restrictive stability condition as in the non-split case. However, the resulting
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equation is two-dimensional, which implies much less computing time than in the case
of three dimensions.

The remaining three-dimensional equations of velocity deviation throughout the
depth involve only internal gravity waves, advective modes and other types of slow
modes which are not likely to dominate the stability considerations. Explicit difference
schemes of the vertical eddy viscosity terms in the latter equations may introduce a
stability limit on the time step which is as restrictive as that caused by the external
gravity wave terms. To solve this problem, eddy viscosity terms are treated implicitly
in the vertical direction.

This splitting procedure for the horizontal momentum equations reduces the total
simulation time radically. The rate of reduction depends on the number of depth
layers, complexity of vertical exchange models, etc. However, a rough estimate for a
6-layer model is a reduction of about 95Y%;.

An increase of the time step for the reduced three-dimensional momentum equation
implies a linear increase of the time discretization error since the numerical method
used is first-order accurate with respect to time. This is of minor importance in our
application, since the space discretization errors are likely to be dominant.

Finally it should be mentioned that the idea of splitting itself is not a new one (see
Gourlay (1977), Marchuk (1975) and Peaceman and Rachford (1955)), but our
approach differs from what is found in the literature. Rather than using splitting as a
way of breaking a multidimensional problem down into a sequence of one-dimensional
problems (mathematical splitting), this paper describes a splitting of physical modes
(physical splitting). The latter approach is also taken by Madala and Piacsek (1977),
but their approach deviates entirely from ours in the numerical algorithm used. In
§§ 2.2 and 2.3 the algorithm and its implementation is described. In § 2.4 boundary
conditions are considered. Chapter three contains simulation results under various
conditions. Comparisons between the split and the non-split model are given.

2. Modeling of physical oceanography

The matter of interest is the space-time motion of the sea. The following equations
are given in a Cartesian coordinate system with the x- and y-axes directed to the east
and north, respectively, while the positive z-axis is oriented upwards. The horizontal
plane z=0 coincides with the undisturbed sea surface.

2.1. Basic equations and the non-split model

In the given coordinate system the equations of horizontal motion for an incom-
pressible source-free, turbulent and rotating fluid are given by the vector equation of
evolution

| |
v, + [VT(ov") )T+ (wo),=Fv— - Vp+aVv+- 1, Q2.1)
p p

where the following notations and symbols are used:

v=[u, v]T — where u, v are the velocity components in the x- and y-directions,
respectively ,

w — velocity component in the z-direction

o 0|7 J
V=|—,— | —gradient (VIV=V?)
ox oy
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0 f

F= -— where f is the Coriolis parameter
—f 0
p — sea water density
p — pressure
a — horizontal eddy viscosity coefficient

=%, 1?]T — where 7*%, % are the vertical stress components in the x- and
y-directions, respectively

Vertical exchange of momentum is incorporated by the last term of eqn. (2.1). It
is given by

!' T = (bvz)z
P -

where b is the exchange coefficient or the eddy viscosity coefficient. A discussion of the
choice of eddy viscosities is included in the Appendix.

Neglecting the acceleration in the vertical momentum equation this equation
reduces to the hydrostatic equation

P:=—rg 2.2)

The ocean fluid may be considered as incompressible which implies that the
following continuity equation is valid

VTo+w,=0 (2.3)

The space-time variations of water density, p, are modelled by a functional relation-
ship

p=p(S,T) 24)

where § and T are the salinity and the temperature of the water, respectively, These
scalar fields are modelled by a balance equation in the form

¢+ V() +(we), =Ky Vic+(Kyc,),, ¢=8,T 2.5)

where K, and K, are the horizontal and the vertical mass (thermal) diffusion
coefficients.

For numerical solution of the eqns. (2.1)-(2.5), the flow region is partitioned into
a finite number of boxes. A vertical intersection is shown in Fig. 1. The staggered
distribution of the dependent variables in a general box is illustrated in Fig. 2.

The finite difference approximations of the eqns. (2.1)~(2.5) can be divided into
three categories:

(i) derivation of the layer-integrated equations
(i) approximation of space derivatives of the layer equations (2.6)
(ili) approximation of time derivatives giving a time-stepping procedure
L2
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Figure 1.
hickness varies in the horizontal plane in accordance with the actual

bottom layer t

depths of the ocean. The top layer thickness varies with space and time due to the rise
and fall of the sea surface.

Figure 2. A three-dimensional distribution of grid points. The locations of the velocity
components are indicated on the extracted box. The remaining model variables are

associated with the centre points of the boxes.

The non-split scheme is quite identical to the one used by Leendertse ef al. (1973).
The order of calculation is as follows:

(i) compute pressure gradient terms at level 7,
(i) compute vertical velocity at ¢,
(iii) compute elevation at 2,4 L (2.7)
(iv) compute temperature and salinity at #,4, )

(v) compute density at Z,4+1
(vi) compute horizontal velocities at £, 4
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For the horizontal velocity an explicit leap-frog time-stepping scheme in the form
vn+l=vn—l+2AtDn,n—l (28)

is used, where D contain all terms contributing to a time rate of change of ». A similar
procedure is used for both salinity and temperature. For further details the reader is
referred to Leendertse ez al. (1973).

2.2. Derivation and analysis of the split model

As mentioned previously, the non-split model is very time-consuming due to the
rather restrictive stability condition,
Ar< = Al=min {Ax, Ay} 2.9)
<o, Al=mi , Ay 9
v/ (2gH)
associated with the given method for the linearized model. In order to improve on this
severe condition for the full three-dimensional model, the external gravity wave terms
are extracted from the 3D-modelt and traced by a depth-integrated 2.D-model. In this
way a larger time step may be used in the reduced 3D-model. The 2D-model, however,
must be integrated using a small time step restricted by inequality (2.9). The overall
procedure is then likely to be much more efficient than the non-split procedure. The
larger the number of layers, the larger is the reduction in computing time. The time-
stepping of the two models is illustrated in Fig. 3.

time
- —
Atyn=N-At,g
7 —2 —\
n-N n n+N
S - | 3D
t—+—t———t—t——t————— 2D
!
Aty

Figure 3. Time-stepping of the split equations. The three-dimensional (3D) model of slow
mode computations operates with a time-step Afap=1loin—1n while the two-
dimensional (2D) model of fast mode computations operates with a time-step
Atyp=1ty41— I, i.€. Atsp=NAt,p. A typical value of N is 30.

The splitting is produced by decomposing the horizontal vector » into one vertically
averaged value, ¥, and a deviation from that mean value, »

N
v=V+b, V=—1{ vdz (2.10)
H =,

where { is the water elevation relative to the reference plane z=0, / is the distance
from this plane to the bottom and H={+A. Furthermore, the hydrostatic equation
(2.2) is integrated to give the pressure

[
p(2)=ps+g | p(o) do

+ Three-dimensional model.
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where p; is the atmospheric pressure at the sea surface. Hence,

1 1 1.
- Vp=- Vps+gV{+-Vp (2.11)
P P P
where
o [4
Vp=gV | pdo—gpVL, p=p—rpo (2.12)

The density variations, given by p, are usually much less than the constant density
parameter p,. Substituting eqn. (2.11) into eqn. (2.1) and integrating over depth yields

1 1 1
V,=FV—gV{+aV*V+— [(— 1.-) - (— 1—) ]+A 2.13 a)
H P Js P B

where 75 is the wind stress vector and Tj is the vector of bottom friction. These
expressions are determined by the boundary conditions at the sea surface and the
bottom as considered in § 2.4. 4 is given by

1 ¢ 1~
A== I:w[VT(va)]T—(wv),——— Vp+aV26] dz (2.14)
HZ, P

Depth-integrating the continuity equation, (2.3), yields
{,=—-VI(HV) (2.15)
Multiplying eqn. (2.13a) by H and substituting eqn. (2.15) give

(HV),+(VI(HV)V=FHV~gHV{+aHV*V + (;1) r> —(% r) +HA (2.13b)
§ B

which is another useful form of the depth-integrated horizontal momentum equation.
Equations (2.13) and (2.15) constitute the two-dimensional model of vertically
averaged horizontal motion of water and sea surface elevation. The source term A4 is
determined by the three-dimensional model described in the following. Subtracting
eqn. (2.13) from eqn. (2.1) gives

12 1
%, + [VT(00T) 17 + (W), =F6 —- Vp+aV?o+- 7,
P P

)] e

The last equation has almost the same form as the non-split momentum equation
(2.1) except for the advection terms, which involve non-split velocities, and the last
two terms on the right hand side, which involve the depth-integral of advection
terms, pressure terms and eddy diffusion terms. In eqn. (2.16) the term governing the
fast moving external gravity waves has been eliminated. By using the mean value
theorem for integrals, eqn. (2.12) may be written as

s
Vp=(p,—p)gVL+8(L—2)Vhy 2.17)

where p,=p(x, y, zy) for —h<z,<{. The slowly moving internal gravity waves
caused by water density variations are governed by the terms of eqn. (2.17). The
important term with respect to- stability requirements of a given numerical method is
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the first term on the right-hand side of the equation. For almost all explicit methods

this will be of the form
A
Arg—2 \/( _P ) (2.18)
VQ2gH) \ \ |p.— 5l

which is much less restrictive than the condition (2.9) for the non-split model. For
instance, if p/| 5, — p| is of order 10*, which is a reasonable value, the upper bound of
inequality (2.18) is 100 times larger than that of inequality (2.9). However, numerical
solution of eqn. (2.16) by explicit methods iS\ not likely to be affected by stability

conditions attached to the pressure term (1/p)Vp. The vertical exchange of momentum,

governed by the term (1/p)7,, is most often the critical one. A stability analysis of a

linearized pure eddy diffusion problem, solved by the explicit Euler method, gives the

following stability limitation

(Az)?
4b

At< , Az=min {h;} (2.19)
k

where b is the vertical eddy diffusion coefficient. This may in some cases cause limita-

tions on the time step that are too restrictive. Due to this fact an implicit treatment of

the vertical eddy diffusion terms is needed in order to eliminate the stability constraints

imposed by eqn. (2.19).

2.3. Numerical solution and implementation of the split model

In the split model the same order of calculation with respect to the dependent
variables is used as in the non-split model. The finite difference approximations are
also of the same kind, i.e. central differences replacing space and time derivatives.
For eqn. (2.16) this results in the layer equations

h,
(M) + [V (B, )T + 8,(wiy) = Fhy b, — = Vpi+aVi(hiy,)
P

+39, (1 'r) —’E [(1 T) —(1 r) :I—hkA (2.20)
p Ju H P /s P /B

where T is the wind stress, Tz is the bottom friction and 7, is the momentum
exchange between layer number 4 and number k+ 1. Furthermore, 8, denotes the
central difference operator. Neglecting the approximations of the horizontal space
derivatives, the following numerical scheme is used

(B ¥ =(ho )"~ Y+ 2NAt |: — V7 (hve, ) — 8, (wyw)"

’n' Fal n LN
+F(h ) — (f Vpﬁ) +aViH(h )N
K

+8, (L e :v) - (”_k){(f T)“ b (_' -:)M} —(hkA)"“"] 2.21)
P H P /s P /s

for all layers, k =1(1)K, where K is the local number of layers. Having defined the
three-level scheme of eqn. (2.21), two main problems are encountered. First, the
approximation of the integral term A"*" given by eqn. (2.14) should be accurate and
efficiently implemented. Second, the implicit terms of eqn. (2.21) give origin to a system
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of linear, algebraic equations that must be solved for cach water column. Solutions to
these problems are given in the algorithm below. The determination of A"*" is based
on definition (2.10), which implies

¢
§ 9dz=0,1>0
Zh

which has the discrete counterpart

K
(hkﬁk)" =O, n> 0 (2.22)

k=1

Summing eqn. (2.21) over k and using eqn. (2.22), gives

k=1

(HA )"+N = ﬁ [ - V(hkva )" — 8 (wiv,)" — (ll—? e;’k)nil (2.23)

The numerical algorithm for the split model of horizontal momentum is summarized
in the following:

Algorithm
For all water columns of the 3D-model,

@) Wi 47=0
Wi 3" =Wiy 4" — VT (v, )", k=K(— 11
nEN= (n=N L 2NAL . wy"
which gives preliminary elevations at 7, y-
(ii) (h ) Y =(hd )~V +2NAE™" k=K(—1)1

where E contains all the explicit terms within the brackets of eqn. (2.21). This
gives preliminary velocities, ¥, at the time-level 7, ».

1 X
= 2 (AdF)y*

HA n+ N
(iii) (HA) INAL &,

which is accumulated from step (ii). This defines A"* ¥,

(iv) (A" N =BV +2NAL {32 (_1_" Hnﬂq)_(ﬁ)"li(_]_ T)n+N
Pk H P Js
_(_1_ T)"+N:|—(hkA)"+N}
P /B

for k=1(1)K, which constitute a linear system of equations for By .

9"t N, since "tV is given by

Szvkn +N

n+N "bk"
n+N
hy

T tN=p, (2.24)
and tg"*N=1,"*¥ and ©y"*" =7y, """, which,are the surface wind-induced
stress and bottom current-induced drag, respectively. The latter conditions
are discussed in § 2.4. Here it is noted that when <5"*" does not depend on
"+, a tridiagonal system of equations results which is easily solved because
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of its simplicity and its diagonal dominance. For implicit bottom stress
computations the reader is referred to §2.4. Continuing with the depth-
integrated 2D-model, for m=n(1}(N+n—1):

(v) gm+ 1= =1 _QNNT(HV )"

(vi) HmHipmt=fm=tpm=t 4+ 2As |:FH"‘V'"—gH’"VC"'—aH'"‘1V2V”"1

1 m+1 1 m+1
o) o) e
P P

where A"V is given from (iii). This gives the total horizontal velocity
(vii) p N =P Lt k=1(1)K

Note that the depth-integrated model involves a source-like term A"*" evaluated
by the 3D-model. A suggestion is that A" and A"*" should be used to produce linear
interpolation values of the integral term at the equidistant interpolation points
fns 15 Ins 2y ++os tysn @nd replace the discontinuous source term by a continuous one in
the depth-integrated model.

Temperature and salinity fields, given by eqn. (2.5), are calculated in the same way
as in the non-split model. The only difference is that vertical exchange of heat and salt
are modelled implicitly because of the larger time step that is used in these calculations.

2.4, Boundary conditions
The wind stress is given as a function of the wind velocity w,

TS=vPa|wa|wa (225)

where p, is the air density and v is some proportionality constant. The bottom stress
term is also given by a quadratic law

t53=Cpp|vk|vk (2.26)

where C is Chezy’s coefficient and pp is the water density in the bottom layer. The wind
stress of eqn. (2.25) is easily implemented nto the implicit treatment of vertical
momentum exchange. The condition of the bottom friction is more difficult to handle
implicitly in the split model. The reason for this difficulty is twofold: (i) it is a non-
linear condition, (ii) the depth-integrated velocity V is not known at the advanced
time-level ¢, y. The condition is

1
(— T) =CI”K|”K=C|5K+V|(5K+V)
P /B

An explicit difference replacement of the last equation is

1 n+N
<_ 'c) =C v vog" (2.27)
P B

which implies that the equation of step (iv) of the algorithm defines two tridiagonal
systems of equations for each water column (one system for each horizontal direction).
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Simulations indicate that this approximation produces false oscillations starting
from the bottom. Instead a quasi-implicit replacement of eqn. (2.26) is used :

1 H+N
(— T) =Clog" V| ("N + V) (2.28)

P /B
In this case the system of equations is no longer tridiagonal. In addition to the three
diagonals the coefficient matrices contain non-vanishing elements in the last column.
The latter approximation is much more stable than the approximation of eqn. (2.27).
The bottom stress condition of the depth-integrated model is handled in a similar
way by

m+1
(_ T) :Clvxn—N|(i~,Kn+N+ Vm—l)
P

B

3. Simulations

In the first section of this chapter a comparison of the non-split model and the
split model is done. The main object is to examine the computational efficiency of the
split procedure versus the non-split one. The results are presented in the Table.
Another important question is whether or not the split procedure gives numerical
approximations of the same order of accuracy as the non-split procedure. The answer
is more of less given in Figs. 6-7 and comments on this are given below,

Slow mode  Computing Reduction Computing time/  Non-split/split

time step time (%) real time time ratio
(minutes) (minutes)
2 25-38 0 1/13 1-0
40 2:16 914 1/153 11-8
80 1-59 93-7 1/208 16-0
160 1:36 94-6 1/242 18-6

Comparison of computational efficiency for problem B using different slow mode
time steps. (Fast mode time step is 2 min.)

As mentioned before, only simulations on a closed boundary domain are presented
in this paper. However, in a later report open sea boundary conditions will be intro-
duced into the existing model. To test the computational code of the split model,
several test cases have been investigated. Simulation tests of variable complexity both
with respect to boundary geometry and driving forces have been performed. The
driving forces were mainly wind stress at the sea surface and the initial salinity distribu-
tion. In § 3.2 (Figs. 9-12), results simulating wind and density driven currents are
shown. These demonstrate the model’s ability to produce physically reasonable
simulations.

3.1. Comparison of the split and the non-split model

Two problems for numerical tests of the efficiency and the accuracy of the split
procedure were considered.
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' Problem A

This simulation is designed in order to test the accuracy of the split model as
compared to the non-split model. The problem is defined on a two-dimensional vertical

) section of an oceanic domain. The numerical grid is arranged in a 24 x 6 grid as shown
in Fig. 4. The grid size is 25 m in the vertical z-direction and 40 km in the hori-
2 zontal x-direction. The initial conditions are given by zero velocity throughout the

basin, an initial salinity distribution as shown in Fig. 5, and a level sea surface. The

wind 10m/s

z ]
mT e e L T e s A S S s e B -—FEmean surface level
1 B layer 1
-25 =
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: -50 4— =
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| 753 ¥ =
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- -100: — =—" Z
3 “layer 5
-1252 =
3 - layer 6
o T T 0 T DAV W S HH,IHH“\.;‘fldtbottom
80 160 240 320 400 480 560 640 720 8OO km
X

Figure 4. The rectangular flow region of Problem A. The flat-bottomed basin was divided
into 6 depth layers of constant thickness 25 m.
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Figure 5. Initial salinity profile of Problems A and B [kg/m?]. The initial distribution of
salinity of the three-dimensional problem is obtai'ned by rotating the vertical profile
of the figure about the vertical axis SB.
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system is driven by a wind stress generated from an easterly wind velocity of 10 m/s
along the sea surface. The wind stress will set up an easterly current in the positive
x-direction in the surface layer, and a westerly current in the bottom layers. The model
is run for a 13 h period of real time, and some results are shown in Figs. 6 and 7. The
currents of the slow mode part of the model at x=480 km and at different depth
layers are shown in Fig. 6 for different values of N. As expected, we observe that the

LAYER 1

0.2

O LAYER 2
%ol

~

2

P

—

= LAYER 3

g oo v

Lt TIME (HRS)

LAYER 4

~0.1

LAYER S
LAYER B

o OTe 2 MIN NN

S 40 {N=20)
i 80 {N=40)
5 180 (N=80}

Figure 6. Slow mode layer velocities along the central vertical line as functions_of time
(Problem A). After about five hours there is a nearly stationary horizontal flow field
in all layers except the bottom, which needs a little more time to approach stationarity.
The non-split (PT=2 min) and the split procedure (DT=40, 80, 160 min) produce

results that differ slightly in the transient period, due to different discretization errors.

VELOCITY <M/SEDD

DT 2 MIN (N=1)
S e 40 IN=20)
=y 80 (N=40)
180 { N=BO)

Figure 7. Fast mode depth-integrated velocities at the centre point as functions of time
(Problem A). The four curves of this figure are produced together with the corres-
ponding curves of the layer velocities of Fig. 6.
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deviation between the split model (N > 1) and the non-split model (N=1) increases as
N increases. The steady state deviation is, however, zero. During the transient period
the deviation between the split and the non-split model is sufficiently small except,
may be, for the case where N=80 (Af;,=160 min). Figure 7 shows the fast mode
velocities for the same values of N. Again we observe no significant variation between
the non-split and the split simulations. As a conclusion we may say that a slow mode
time step of 80 min seems to be quite acceptable.

As a final note on accuracy, we should mention that the approximation of the
non-linear bottom stress condition of eqn. (2.26) for the split model may be critical to
the overall procedure. Although the pure implicit treatment of the vertical exchange of
momentum is an unconditionally stable procedure internally, the bottom stress
approximation of eqn. (2.28) may cause the total procedure to be only conditionally
stable. Further analysis of this problem is needed. Presently a moderate slow-mode
time step less than 90 min is used, in order to eliminate growing instabilities from the
non-linear condition at the bottom.

Problem B

Problem B is designed to test the computational time efficiency of the splitting
procedure when used on a general 3-dimensional closed domain. As an example the
bottom topography of the Barents Sea is used as a model domain (see Fig. 8). The
open boundaries are artificially closed in order to simplify the computations. Results
from more realistic simulations using open boundaries will be published later.

The grid used is a 24 x 24 grid in the horizontal plane and 6 layers of variable
thickness in the vertical direction (25 m, 25 m, 50 m, 100 m, 100 m, 200 m). The
horizontal grid size is 40 km.
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Figure 8. Depth map of the Barents Sea. Distance between isolines is 100 m. The flow
region of Problem B was the Barents Sea with closed boundarigs. The layer thickness
of the 6-layer model were 25, 25, 50, 100, 100 and 200 m from top to bottom.
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The initial velocity field is set to zero and the initial sea level is horizontal. The
initial salinity is given as a symmetric distribution around the vertical axis at (x, y)=
(480 km, 480 km). A vertical cut through this axis yields the same salinity field as
shown in Fig. 5.

The external driving force is a south-westerly wind blowing with a strength of
10 m/s. Some of the simulation results are shown in Figs. 9 to 12. Figures 9 and 11
show the total horizontal velocity field for different times and for different depths.
The velocity vectors point outwards from the grid points (indicated by dots in the
figures), and the strength of the current is indicated by the velocity scale given below
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Figure 9. Horizontal velocity fields for times 2, 10 and 18 h, and depths 12-5, 75 and
250 m.
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Figure 10. Left: Sea surface elevation plot for times 2, 10 and 18 h. The elevation vary
between 20 cm below and 20 cm above the mean sea surface level. The land areas of
Novaya Zemlya are marked by +, the northern parts of Norway by ,/ and Spitzbergen
by “\.. Right: Salinity distributions for the east/west section located at y=480 km
for the times 2, 10 and 18 h. Note that each layer is represented by the same thickness
in the figure.

each velocity plot. We observe the combined effect of the current fields of the surface
wind stress, the density gradients, the Coriolis force and the boundary geometry
including the free surface. The free surface elevation is shown at different times at
the 3D-plots to the left in Figs. 10 and 12.

Considering the current development at z=12-5m, as shown in Figs. 9 and 11,
it is seen that the surface drift current is predominantly to the right of the wind
direction due to the Coriolis effect, except along the southern and the eastern boun-
daries where a belt of longshore drift is established. Near the middle of the ocean the
surface drift current is also influenced by the initial salinity distribution, giving rise
to an eddy pattern in the final stage of the simulation.
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Figure 11. Horizontal velocity fields for times 26, 34 and 330 h, and depths 12-5, 75 and
250 m.

At z=75 m the horizontal movement of water is characterized by a broad counter-
clockwise eddy in the middle of the sea, generated by the combined effect of the
salinity distribution and the surface elevation. The horizontal pressure gradient is
directed toward the centre of the basin in this upper part of the sea. The bottom
currents at z=250 m are mainly determined by bottom topography.

The effect of wind stress and vertical momentum exchange on the salinity distribu-
tion is shown to the right in Figs. 10 and 12. These figures show the space-time
variations of the salinity profile at the middle west—cast section of the flow field. An

expected vertical mixing of salt and less salt water in the upper part of the ocean is
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Novaya Zemlya are marked by +, the northern parts of Norway by /" and Spitsbergen
by \.. Right: Salinity distributions for the east/west section located at y=480 km
for the times 26, 34 and 330 h. Note that each layer is represented by the same thick-
ness in the figure.

obtained. Note the upwelling at the western boundary and the downwelling at the
eastern boundary.

We shall not discuss the simulation results any further, but turn to the time
efficiency of the splitting scheme for this computational problem. The efficiency
results are tabulated in the Table. ,

The computer used is a medium size Nord-50 computer having a floating multiply
execution time of approximately 5 ps. From the Table we observe that when using a
slow mode time step of 80 minutes, which is shown to give the required accuracy, the
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split procedure is 16 times faster than the non-split procedure, and one month of real
time simulation needs approximately 35 hours of computer time as compared to 56
hours computer time in the non-split case.

4. Conclusion and summary

A method for efficient numerical solution of the three-dimensional hydrodynamic
equations of sea motion has been presented. The method is based on a splitting of the
equations in a fast mode part and a slow mode part. The fast mode part includes the
external gravity waves and the slow mode part represents the remaining part of the
total model. A weak coupling term takes care of the interaction between the fast- and
the slow-mode model parts. This algorithm is implemented by using an explicit leap
frog type time scheme, except for the vertical eddy diffusion terms of the equations
where a time implicit procedure is applied.

Two test problems are solved by simulation using this mode splitting procedure.
First a two-dimensional problem is solved on a vertical grid to test the accuracy of the
procedure. These results show no significant deviation from the non-split simulations
when the time step of the slow mode part of the model is increased from 2 minutes (in
the non-split case) to 80 minutes. Second, a fully three-dimensional problem on a real-
istic bottom topography is solved. Computer time measurements show that for slow
mode time steps of 80 min, the split model simulations are 16 times faster than the non-
split simulations.

Hence, a very satisfactory increase in computational efficiency is obtained without
a noticeable decrease in accuracy.

Appendix
Choice of eddy viscosities
When modelling ocean currents, the horizontal and vertical exchange of momentum
comes into consideration. The horizontal eddy viscosity is assumed to be a constant.
The vertical eddy viscosity, b, is calculated, taking as a base the kinetic energy
equation (Phillips 1966)

blo,|2+2 pb,—e=0 (A1)
Po

The parameters in this equation are related as follows

b=cole e=cie3l a=b,[b (A2)
where [ and e? are length scale and kinetic energy of the turbulent flow, respectively.
Introducing (A 2) into (A 1) gives

c, b

g
blv, |2+ pb —— —=0
]vl +P0P 7 e It

Denoting £ pz|v,| =2 as Ri, and since —%z 1, the expression for the eddy viscosity
Po Co ,

takes the form (A3)
b=1?|1,| (1 +oRi)*
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In the case of non-stratified fluid this expression is simplified to the well-known
Prandtl formula which relates eddy viscosity and length scale

b=1u,] (A4)

Together with expressions (A 3) and (A 4) the empirical formula of Munch and
Anderson (1948)

b=bo(1+PRi)"* (A5)

is used. Here b, is eddy viscosity in non-stratified fluid and B~ 10, «~x0-5.
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