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On the use of a block analogue of the Gerschgorin circle theorem
in the design of decentralized control of a class of large-scale
systems
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The paper deals with the design of decentralized control of interconnected
dynamic systems. It is assumed that each subsystem has its own control input
and that the interconnections are through the states of the other subsystems.

The purpose of the present paper is to investigate the possibility of using
the so-called block Gerschgorin theorem to evaluate the stability of the total
system, given the local controllers. This theorem enables us to determine
inclusion regions for the eigenvalues of the total system and these regions are
usually sharper than those obtained by the usual Gerschgorin circle theorem.

1. Introduction

In this paper we consider control of interconnected dynamic systems. We assume
that the total system consists of N subsystems described by

N
JT:,=A“I,+ Z A;}XJ"’B{U{, f=],2, ...,N (I)
i=1

J#i
N

where x; is an n;-dimensional state vector ( > n,=n) and u; an m;-dimensional

i=1
N
control vector ( Y, my=m ). We note that each subsystem has its own control input
i=1

and that the interconnections are through the states of the other subsystems.
In this paper, we shall discuss decentralized control, that is, we consider control
laws of the form
u=Gx; (2)

Such a control scheme is advantageous in the sense that each local control station
uses information from its own subsystem only. On the other hand, there are some
drawbacks concerning overall performance. If, for example, optimal control is
considered, the performance of a system with decentralized control will usually be
inferior to a system with centralized control. However, the most serious problem
we are faced with, when using decentralized control in the form of the control law
(2), is probably the question of stability of the overall system.

In the present paper, we shall deal with this last problem only. For the sub-
sequent discussion it is immaterial how the local controllers G, have been deter-
mined.
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The problem we are faced with is, thus, the evaluate the stability of the overall
system, given the local controllers. This question has received much attention
recently. An extensive bibliography is, for example, given by Sandell et al. (1978).

To evaluate the overall stability we may use, for example, the eigenvalue location.
One method presented by Sundareshan (1977) (see also Singh and Titli (1978)), is
based on cxponential stabilization with a prescribed degree o of the overall system
(all eigenvalues have real parts less than —a).

The purpose of the present paper is to investigate the possibility of using the
so-called block Gerschgorin theorem to evaluate the overall stability. This theorem
gives inclusion regions for the eigenvalues of the overall system. These inclusion
regions are usually sharper than those obtained by the usual Gerschgorin circle
theorem.

The advantage of using this block Gerschgorin in the stability study is that the
necessary computations are rather simple and that variations in parameters, and
to some extent also in structure, of the interconnections can be studied without much
extra computational effort.

The main drawback of the method is that the inclusion regions in general are
not very sharp, that is, the stability will usually be better than the method indicates.
This may, however, not always be a drawback, when one considers the design, since
it will result in a safe (conservative) design.

With all the local controllers given, the eigenvalues of the overall system may,
of course, be computed directly. It is, however, not so easy to evaluate the influence
on stability of parameter and structure variations of the interconnections in this
way. It is probable here that the block Gerschgorin has its greatest potential
value.

The material in the present paper is arranged in the following way. In § 2 we
present the block Gerschgorin and some related theorems. In §3 are discussed
some applications of the theorem in decentralized control systems, and in § 4 some
applications in systems with decentralized state estimation. In § 35 are given some
numerical examples to illustrate the use of the block Gerschgorin theorem.

2. The block Gerschgorin theorem

The block Gerschgorin theorem, which is a generalization of the Gerschgorin
circle theorem, was first presented by Feingold and Varga (1962). Many of the
results relating to the circle theorem can also be generalized. Below, we state the
main theorem and some related theorems. The proofs of the theorems will be omitted
here but can be found in the above cited reference. Some more results relating to the
block theorem can be found in Powers (1976), and in Kovarik and Olesky (1974).

Let A be any nxn matrix with complex entries which is partitioned in the
following manner:

[ A4y, 0 Al

A= Ay Ass ... A-,Trm 3)

_ANIANZ .es ANN

where the diagonal submatrices 4,;, i=1,2, ..., N, are square of order #;.
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Considering the rectangular matrix A4,; for any 1<i, j<N as a linear trans-
formation from the n;-dimensional vector subspace €; to the n,-dimensional vector
subspace (2;, the norm | 4;;| is defined as

| i} 1
4] = sup 1Al @
x#0 ”xHﬂJ
xefly

where |x||g, is a vector norm associated with the subspace ;.

Note that if the partitioning in (3) is such that all matrices 4,; are 1 x 1 matrices
and |x]g,=|x|, then the norms |4,;| are just the moduli of the single entries of
these matrices. As no confusion arises, we shall drop the subscripts on the different
vector norms, except that we shall use the notation |x||, to denote the Euclidean

norm | x|, E[ Yy (x,)’]m.
i

Now, using the |x|,-norm, the norm (4) is equivalent to
14i5] =/ Amax (5)

where A, is the largest eigenvalue of the matrix 4,,4,,".
In the following, we also need the relation

. _ o A x|
(J 4,4~ = inf —2—

# xzo |Ix]
xell;

()

where A;; is assumed to be non-singular. We can define (]|4;,7'!)~' to be zero
whenever Aj; is singular.

Theorem 1 (Block Gerschgorin)
For the partitioned matrix 4 of (3), each eigenvalue of A4 satisfies

N

(A=)~ D~ < X [ A4ud ()

k#j
for at least one j, 1 <j< N,

In (7), 1; denotes the n; x n; identity matrix.

It is worth while to note that if the partitioning of (3) is such that all the diagonal
submatrices are | x1 matrices and |x| =|x|, then Theorem 1 reduces to the usual
Gerschgorin circle theorem.

In Theorem 1, we see that each eigenvalue X of an arbitrary n x n complex matrix
A necessarily satisfies (7) for at least one j, 1 <j<N. Now, for the partitioned matrix
A of (3), let the Gerschgorin set F; be the set of all complex numbers z such that

N
(|4 —2L)~) ' < kE. IA4ul, 1<j<N (8)

k#j

From (6) we then conclude that the Gerschgorin set F; always contains the eigen-
values of 4;;, independent of the magnitude of the right side of (8) and independent
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of the vector norms used. According to Theorem 1, all the eigenvalues of A lie in
the set F defined as

F= U F, €))

The following theorem which is also a generalization of a familiar result of
Gerschgorin, may be useful.

Theorem 2
m
If the union H= |J F,, 1<p,<N, of m Gerschgorin sets is disjoint from the
Jj=1
remaining N—m Gerschgorin sets for the partitioned matrix A of (3), then H con-

m
tains preciscly Y n,, eigenvalues of A.
J=1

Going back to Theorem 1, the difficult point in applying this theorem is to
develop the left side of (8). For our application here to the stability study of inter-
connected systems, we shall require that each Gerschgorin set F; consists of the
union of circles. To this end, we use the following theorem:

Theorem 3

Let the partitioned matrix A of (3) be such that its diagonal submatrices A, are
all normal (4 matrix is called normal if it commutes with its conjugate transpose).
If the Fuclidean vector norms [ x|, are used for each subspace Qj, 1 <j< N, then
each Gerschgorin set is the union of n, circles.

In view of (8), the centre of the n, circles are the eigenvalues of 4, and the radius
is equal to the right side of (8).

We note that Theorem 3 puts rather severe restrictions on the diagonal sub-
matrices. This point will be discussed in more detail in § 3.

The last theorem we present here concerns the interchange of columns and rows
in Theorem 1. Since the eigenvalues of 4 and AT are the same, we may replace
column sums by row sums in the above theorems. Let us define

N N
R= kzl 4], C;= kEI 4w, 1<j<N

k#j k#j
Theorem 4
For any «, 0<a< 1, each eigenvalue A of A4 satisfies
(A=A ) <R Cit = (10)

for at least one j, 1 <j<N.

3. Stability of interconnected control systems

Let us consider the system (1) with the decentralized controllers (2) and assume
that all parameters are known. We would like to evaluate the stability of the overall
system in the way that we determine inclusion regions for the eigenvalues. We saw
in the previous paragraph that, in order that these inclusion regions may be easily
determined, we require that they are unions of circles. This again requires that the
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diagonal submatrices, which here are 4,;+ B;G;, i=1,2, ..., N, must all be normal.
We can, however, hardly require that the designers of the local control systems come
up with controllers that make these diagonal submatrices normal. It will, therefore,
usually be necessary to modify the diagonal subsystems specially for the stability
study.

In order to make the submatrices

A'y=Au+B,G,
normal, we shall here discuss two methods, one of which is general and one more

specialized.
The general method is to diagonalize the submatrices:

My=" A"y My=A, an
where M|, is an eigenvector matrix of A4’;;.

It is always possible to design the subsystems A4°;, so that they can be diagonalized,
and we define

"My, 0 0 0
p—| O Mz O 0 a2)
| 0 My |
The total system becomes
i Al % Mll-l A12M12 : e E Mll-l AINMNN ]
Mz~ Az My, | A,
A=M"'"AM=
| May~t Ay My Ay i

This being a similarity transformation, the eigenvalues are left invariant.

Since the eigenvalues of the subsystems are already known, the only computa-
tions left concern the norms of the different off-diagonal submatrices. Using the
result from § 2, the Gerschgorin sets F; can now be constructed.

To simplify the norm computations, we may use the fact that

4B <]4] | 8] (14)

This will, however, take place at the expense of some sharpness of the regions.
Another method to obtain normal submatrices is based on the fact that if, in a
matrix, we multiply column number ‘i* with a constant &k and row number ‘i* with
1/k, then the eigenvalues remain invariant. The use of til§ method is, however,
rather limited, since the submatrices have to be of special form if it is to work.




112 0. A. Solheim

In § 5 we shall illustrate the two methods presented here by means of numerical
examples.

4. Decentralized state estimation

If all the states of the different subsystems are not directly measurable, a possible
solution is to use local state estimators. (We assume that all subsystems are
observable.)

The decentralized estimation problem has been studied by, for example, Siljak
and Vuk&evié (1978). We shall here be concerned with the stability problem only,
and not with the performance of this type of estimation.

Assume the local measurement vectors

yi=Dlxb i=l’ 23 sy N (15)

In order to estimate the states x; of each subsystem, we construct estimators of the
form

N
i‘=4‘lu£[+ 121 A‘ ,+B;u‘+K;(Dix¢—D,£,), l-=1,2, -..,N (16)

i#l

where * denotes estimated quantities and K; is the estimator gain.

We shall not be concerned here with how the estimator gain is determined. We
only assume that all gains K; are known.

The control law (2) is changed to

u=Gfy an

The total system with feedback and estimators now becomes

i J'Cl g All wae AlN - BlGl e 0 X1 ]
jN ANl e ANN 0 wee BﬂrGN XN
= (18)
J'Cl KID! “en 0 Cll ses AIN 21
2 -§N il i 0 P KDDN ANI - CNN ﬁﬂ h
Where C“=AH—K‘D‘+B¢G‘.
By applying the transformation
— Xy = - : x, -
f ] rio |
XN ‘ XN
== (19)
Ax, 2
: I -1 :
[Axy ] | 2y




Design of decentralized control of large-scale systems 113

to (18) we get

] ’3’1 1 [ (411+B,G)) ... Ay -B,G, .. 0 T > T
A o 0 ’ 0 0
in Avi - (Aw+ByGy) | 0 .. —ByGy X
: =l
A-x.l 0 s 0 ? (All—KlDl) saw Al" Axl
: Az, Asy
_MN_. - 0 0 = Am (ANN_KNDN) Jl MN_

Thus, we have separated the eigenvalues of the feedback systems and the estimators.
By using the methods of § 3, we may now determine inclusion regions for all eigen-
values of (20).

We have assumed above, in the construction of the estimators, that the inter-
connections A;; were exactly known. If this is not the case, it is possible to evaluate
the influence of inexactly known interconnections on stability by introducing the
difference

MH=AIJ—AU. (21)

between the actual value of the interconnections and that used in the estimators.
The system matrix in (20) becomes now

" (41:+B,G)) ... An -B,G, 0 T
ANI. sea (AHN+B.NGN) 0 sae _BN'GN (22)
0 e My L An—KDy) e Ay
| Ady, 0 An® - Any—KnDy

We note that it is no longer possible to separate the eigenvalues but the methods
of §3 can still be used to evaluate the stability. We note, for example, that any
discrepancy in the actual value and the nominal value of the interconnections will
increase the corresponding inclusion regions.
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5. Numerical examples
Example 1
Consider the following system with decentralized control:

[Au-w,cl; Ara ] 2 —4; 0 1
Al= i

Ay Az, +B,G,

Using the vector norm |x|, we get |4,,]=|4:,]=1, and further
(A4y—zl)~ ')~ =min {| -6—z|, | -2—z]}, i=1,2
The inclusion region F; thus consists of the points z for which
|-6—z|<1, [-2-2z|<1

so that F; is the union of two disjoint circles, Fig. 1.

Im

CIRCLE THEOREM

BLOCK GERSCHGORIN

Figure 1.

The usual Gerschgorin circles for the matrix A* are all given by the single circle
|—4—z]| <3, Fig. 1. We conclude that in this case the block Gerschgorin theorem
gives significant improvement over the usual circle theorem.

The eigenvalues of the matrix A* are —1, —3, —5, —7.
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Example 2
Given the system
- 5 o -
AIZ
1 -1
A=
-2 0
Axy
Using the local controllers
[ —-36 —60
G= , i=1,2
| —12:4 —6-4

the eigenvalues of the subsystems become —5, —8.
The total system becomes

[ =56 —60] ]
Az
—024 —T-41
Al= ;
{56 —60
A2y
| i —024 —74 |

In order to make the diagonal submatrices normal, we multiply row 1 and row 3
with 0-2, and column 1 and 3 with 5. Choosing

0 ¢
Au =An=
0 0

we get
[ —56 —12 0 0-2¢; ]

H

=12 =74 : 0 0

A= ,
0 02 —56 —12

0 0 -12 -74

The inclusion regions Fj, i=1, 2, consist of the union of circles with radius 0-2¢,
and centres at —5 and —8. This is illustrated in Fig. 2 with €; =5. The eigenvalues

of the total system are —4-:64, —5-48, —7-52, —8-36.
Now we change the interconnections to

0 €
Al2 =A21 =
e, 0
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1‘Im
00 17
7/;}7’ -//%/’ I Re

Figure 2.

The modified system (with normal diagonal submatrices)

56 -12 ¢ 0 02 ]
—12 -74 | 5, 0
Al= ;
0 02 —56 —12
| 5 0 i-12 —74

now becomes

In this case the inclusion regions consist of circles with radius max {|0-2e, |, |Se,|}
and centres as before at —5 and —8 We note that as long as e, <0:04¢,, the
inclusion regions are the same as in Fig. 2. With ¢, =5 and €, =02, the eigenvalues

of A' are —4-12, —5-58, —7-42, —8-88. See Fig. 3.

b 1
78 6§45,k -3 -2 -l Re
% 77
Figure 3.
Example 3
Given the following system with decentralized control:

[ -2 =3! 0 €]

2 -7, 0 0
Al= :

0 e —2 -3

| 0 o0 2 -7 |
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In order to get normal diagonal submatrices, we may diagonalize each sub-
matrix. Here the eigenvalues of the submatrices are —4 and —35. Using the eigen-
vector matrix

31
My, =M=
21
we get (see eqns. (12) and (13))

M=1A'M=

—4e —2¢! 0 =5

The inclusion regions consist of the union of circles with radius 5¢ and centres at
—4 and —5. This is illustrated in Fig. 4 where ¢=0-2. The eigenvalues are — 3-69,
—4:5+j-0-39, —5:31.

Im

Figure 4.

6. Concluding remarks

It has been shown how the block Gerschgorin theorem, which is a generalization
of the Gerschgorin circle theorem, can be used to study the stability of inter-
connected systems. The advantages of the method are that the necessary computa-
tions to be carried out are rather simple, and that variations in parameters and
structure of the interconnections can be readily dealt with. The main drawback
concerns the sharpness of the inclusion regions obtained by the method, and more
investigations are required to clear up this point. The numerical examples presented
in this paper indicates, however, that for the chosen systems the method gives a
rather good evaluation of the stability.
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