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For a plankton model system, a horizontally uniform distribution becomes
unstable if the zooplankton component carries out diurnal vertical migrations
in an ocean with a speed difference between the currents in upper and lower
waterlayers. With turbulent diffusion included in the model, the instability
occurs beyond a threshold speed difference. A numerical estimation of the
threshold and of the critical patch size gives reasonable values.

1. Introduction

Plankton is very inhomogeneously distributed in the ocean. In the vertical direc-
tion, the plankton concentration varies in a well-known dependence on physical
factors, like light and nutrient concentrations (e.g. the model by Slagstad 1980, and
references given there). But in the horizontal direction, the variations of the plankton
densities (patchiness) do not follow so clearly the change of the environmental
conditions. Indeed, on the large scale, well above 10 km, the plankton varies with the
distance from the coastline, with the large scale ocean currents, determined by the
geography of the bottom, and with other physical factors (e.g. Wroblewski 1976).
But, on the intermediate scale, 1 km-10 km, large plankton fluctuations are ob-
served that cannot be connected to the variations of the physical conditions (Platt
and Denman 1975, Steele 1974, Ebenhh 1979). A review of the mathematical
analysis of patchiness can be found in Fasham (1978).

In this article, we shall prove that, in a model situation under quite general con-
ditions, a horizontally uniform plankton distribution is dynamically unstable. This
means a decay into patches occurs spontaneously. The model contains two plankton
components: phytoplankton and zooplankton. The zooplankton carries out diurnal
vertical migrations. It undergoes a daily shift against the non-migrating phyto-
plankton, due to its temporary residence in deeper waterlayers, if one assumes a
velocity difference between surface ocean currents and deep water currents. In-
tuitively considered, such a shift should change nothing if the starting distribution is
uniform (spatially homogeneous in horizontal direction). But the instability of the
uniform plankton distribution, due to such an effective horizontal migration of the
zooplankton, will be proved mathematically.

The turbulent diffusion tends to smooth out any spatial inhomogeneity, hence, it
acts as a stabilizing factor. With diffusion included, one obtains a critical value for
the speed difference that separates stable and unstable conditions. In §2, a linear
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difference equation model is developed; in § 3, spatially uniform and periodic solu-
tions are compared. Diffusion is added, in § 4, and the threshold speed difference is
calculated. -

2. A linear difference equation plankton model

In the following, P and Z stand for phyto- and zooplankton. As the starting point,
a slightly modified Lotka-Volterra system is chosen:

P=AP—aPZ—eP?
Z=BPZ—yZ

This system differs from the classic Lotka-Volterra system only by the damping
term with parameter . The quadratic term makes the model more flexible, since it
allows the description of damped predator—prey oscillations. The plankion system
may be considered as a system showing damped oscillations which become stimu-
lated by the annual change of the physical conditions. A Lotka—Volterra system is,
however, nothing more than a very crude simulation of the natural plankton system.
The most crucial shortcomings of this simulation are

(@) the limitation of phytoplankton growth due to nutrient shortage (only
roughly contained in the term —eP?) and

(b) the neglection of size distribution and life cycle of the zooplankton.

For the purpose of an analytic stability analysis, however, the model must be kept
as simple as possible.

The parameters A, o, p and v can be used for a fit of equilibrium densities of P
and Z, of oscillation time and of relative oscillation amplitudes. But the stability
properties do not depend upon all of these parameters. Two parameters disappear
after proper scaling of P and Z:

P=MP(1—2)+<P(1—P)
Z=BP-1)Z

For stability investigations it suffices to consider the model linearized in the neigh-
bourhood of the equilibrium state P, =Z_=1. With the introduction of the deviation
p=P—P, and z=Z—Z_, one obtains

p=—ep—kz

z=Pp
A final scaling of the deviations p and z and of the time gives

p=—ep—z
} 0]
Z=p

Here, the damping e is the only parameter which remains. The other parameters
are removed by simple scalings. The system (1) has a scaled oscillation time of
Ag=2n[1/(1—€*[4) for 0<e<2, and it shows exponential behaviour for e=2. The
observed oscillation time T, of 20 to 30 days (estimated e.g. from the length of the
spring bloom) corresponds, hence, to a scaled time interval of A, (=2« for e<1);
and the time unit of 1 day corresponds to A=A,.1 day/To=0-2...0-3.
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A further simplification is possible by transforming the differential equation (1)
into the linear difference equation system (2) with finite time-steps:

p 1—eA —Allp

(t+8)= ® @
z A 1 z

In the next sections, the diurnal migration of the zooplankton and the turbulent
diffusion is added to the system (2). There, interest will be concentrated on the change
of the dynamic stability due to these extensions. In order to investigate the stability,
the eigenvalues A, ; of the matrix 4 from (2) have to be calculated:

l—eA —A
A—
A 1

(@]

We find |[A| =1 for e=A, corresponding to the marginal undamped oscillations
of the differential equation system (1) with e=0. Hence, by the transition from (1)
to the difference equation system (2) the parameter e changed its meaning slightly.
For A<e<2, the system (2) shows damped oscillations with an oscillation period
~2m. For 2<e<(1+A?)/A the system (2) approaches the equilibrium in an ex-
ponential way. For e>(1+A?)/A, nonsense oscillations of period 2A appear which
become undamped for > (44-A?)/2A (Fig. 1).
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Figure 1. Eigenvalues of the matrix 4 (eqn. (3)) in the dependence on the damping para-
meter e. In the case of complex eigenvalues (e<2), the absolute values are given. For
the time step A, the value 0-5 is chosen here as well as in the following figures. For a
reduced A, the figures stay qualitatively unchanged but the different effects appear
less pronounced.
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Since the results in the next sections depend only slightly on the damping para-
meter e, accurate numerical values for € are not necessary. The statements on spatial
stability will be valid for plankton systems with undamped or weakly damped
oscillations (e ~A) as well as for the case of strong damping (X 1).

3. The effective horizontal migration of the zeoplankton

A vertical migration of the zooplankton separates it from the phytoplankton
for roughly half the day. If there is a horizontal velocity difference v between upper
and lower waterlayers, then a selected patch of zooplankton, after a vertical down
and up migration contacts the phytoplankton at a new position. There is a daily
horizontal shift L of the zooplankton relative to the phytoplankton. The length L is
determined by the vertical velocity profile and the vertical migration amplitude; it
will be in the order of v day. A reasonable estimate for L is | km (v=2 km/day=
2-3 cm/sec). For a mathematical analysis of this situation, the space is divided in the
direction of motion into compartments of length L. By choosing the scaled time
interval to be equivalent to 1 day, any ‘numerical diffusion’ is avoided because the
zooplankton component becomes shifted by exactly one compartment per day:

[ P ] [Pr]
(t+A)=4 @) (4)
Ziga Zy

Here the index i (integer from — oo to o) denumerates the compartments. A special
solution of (4) is the uniform solution (no dependence on i), thus. the solution of
(2). But other solutions are possible; especially easy to construct are spatially periodic
solutions.

For a spatial period 2L one finds from (4):

[P ] [1 0 0 0] [P, ]
z, 0 0 0 1|4 O}z
(t+0)= ® )
P2 0 01 0O 4]|lp:
A (0 1 0 0] | 2, |

where 4 and QO are 2 x 2 matrices.
The stability of the system (5) is determined by the eigenvalues of the product
matrix in (5). It can be seen that (5) decays into

[P+ p1+p: ]
(t+A)=4 (1)
_Z1+z3J _21+22J

N [P, _Pz-
(t+A)=4 )
| 21— 23 | | Z1— 22 |

1 0 1—eA —A
A= A=
0 -1 A -1

[ Py —Pz-

with
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Hence, two of the four eigenvalues of the product matrix in (5) are the old values
A1,z from (3). The other two eigenvalues are the eigenvalues 1,2 from A4:

m.z=—?:c\/[(l—§)2+&] @

—par1+3A%2>1 for AS0O5

There is always |, | > 1 (Fig. 2). This means dynamic instability of (5). The nature
of this instability can clearly be seen in the reformulation (6) of (5). The matrix 4
acts on the differences of the plankton concentrations in the neighbouring compart-
ments. An initial difference increases. In Fig. 3, a solution of the system (5) is com-
pared with a solution of (3).

Solutions of the system (4) with arbitrary periods 2D =nL (n>2) can be investi-
gated in the same way. One has to calculate the eigenvalues p, ,(¢) of the matrices

Ay
1 0
Ag= A &)
0 exp (i¢)

$=mlL|D=2n|n

Eigenvalues: p,,,(¢)

It turns out that the absolute largest eigenvalue occurs for ¢ ==, hence, for the spatial
period 2L (Fig. 4). This must be interpreted in such a way that the model plankton
approaches a periodic structure with a characteristic length L which is proportional
to v,
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Figure 2. Absolute values of the eigenvalues of 4 (solid) and of 4 (broken). There is always
| k2] >1 which means instability (A=0-5, see Fig. 1).
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Figure 3. Comparison of the spatially uniform solution (smooth curve with slow damped
oscillations, e= 1) with a spatially periodic solution. The uniform solution is unstable;
a small initial difference between neighbouring compartments becomes amplified.
The vertical axis gives the deviations of the phytoplankton density from the equi-
librium value in arbitrary units. The time axis is divided into 1 day intervals corres-
ponding to A=0'5 (see Fig. 1).
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Figure 4. Eigenvalues of the matrices A 4. The angle ¢ is proportional to the inverse oi' the
spatial wavelength 2D (eqn. (8)) (A=05, see Fig. 1).
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Of course. in nature the speed difference v between upper and lower waterlayers
is not a constant. It changes strongly with tides and wind. A periodic structure
cannot be expected in reality but this does not devaluate the instability proof above.

4. The turbulent diffusion

The turbulent diffusion reduces the differences of the plankton concentrations
between neighbouring compartments. The simplest mathematical formulation of the
effect of the turbulent diffusion is the action of a matrix X

l:l—}x 3k ]
K= s O<«k<l
I 1—4x

P Zy
and
P2 Zy
If the turbulent diffusion were the only driving force, the characteristic lifetime of

density differences between neighbouring compartments, 7, would be 1 [x days. Intro-
ducing K in system (5) one obtains:

on

b 1—3« 0 4 0 1000 N
. 0 1-3« 0 3« |looo1|f4 07z
(t+4)= (1) ©)
P 0 1-3 0 floo10flo 4]l
| 2, | | 0 ik 0 1-4«jj0100] | Z2 |

This system can be decomposed in the same way as the system (5):

(p1+p2 ] P1tp2
(t+A)=4 [ ] o

_Zl-l-Zz_ Zy+ 2,

[Py —Pz- Pi—

t+M)=(1-)d [ Z] (3)
Z,—2Z,

Two of the four eigenvalues of the product matrix in (9) are again the A,z of
(3), while the two other eigenvalues v, , now are the g, , of (7) but reduced by a
factor (1 —«):

| 21— 23 |

"x,z'—‘(l-")ﬂ-l.z (10)

If « exceeds a critical value, the system (9) is stable because |v2| is less than 1,
even if |p,| is larger than 1.

M.IC. G
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A numerical value for x can be derived from the measurements of the turbulent
diffusion in the ocean. If the turbulent diffusion is described in analogy to the mole-
cular diffusion by Fick’s law with a diffusion constant «g, one finds that «g is depen-
dent on the scale L of the diffusion process (Okubo 1971):

we(L)= (1 km)(L/1 km)* 5 % kg(1 km)(L/1 km)
xg(1 km) =, km?/day

Individual observations yield values from 0-01 to 0-1 for x, with a mean value of
0-05. For solutions of eqn. (9) with spatial period 2L, the constant « in the matrix
K and in (9) can now be obtained from xg:

w(L)=w,7*[(L]1 km) (1)

Now, from |v,| =1 and from the observed oscillation time T, (§ 2), a critical velocity
difference v.,;, can be calculated. By using eqns. (10), (7) and (11) one obtains:

Kerie=1—1/| pe2 | ®3A?
Ax2m.1day|T, with To=(20. .. 30) days
Loy /km=1,202[A? = (200.. . . 500),
Verit = 2Lerityaay

This estimation does not take into account that for x#0 the most probable spatial
wavelength 2D is larger than 2L. The scale dependence of the diffusion constant x

EIGENVHLUE - |VE(PHI)| 381/]_
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Figure 5. FEigenvalues of the matrices (1—«($))A,. The angle ¢ is proportional to the in-
verse of the spatial wavelength 2D. Different curves correspond to different values of
the quotient «,/(L/km). The curve with the critical value of this quotient is dotted
{«=1 and A=0-5, see Fig. 1).




Instability of a uniform plankton distribution 91

means that the maximum of |v,(¢)| =(1 —«)|u,(¢)| with ¢==L/D does not appear
at ¢=m, as is the case for [v,(¢)| (eqn. (8) and Fig. 4). The uniform distribution is
marginally stable, if this maximum is 1 (Fig. 5). In this way more correct estimates
can be obtained:

Lo /km=(50. . .200) «,

Ugrie = 2Lcritfdir

Dcﬂl.=(2 re. 4)L¢:m

For x;=0-05 and T,=20 days one finds v =5 km/day and D_,;,=10km. D,
can be interpreted as a characteristic diameter of a patch, which forms spontaneously
if v exceeds v,

5. Conclusion

In this paper, it has been proved that the vertical migration of the zooplankton
destabilizes a horizontally uniform plankton distribution. Inhomogeneities in the
plankton distribution become amplified due to the described mechanism (Fig. 6).
Patchiness may be created in that way. There are certainly other mechanisms in-
volved in the dynamics of patches (Steele 1974, Ebenhoh 1979), but an internal
instability of the uniform distribution is most interesting.

The model in this paper allows the derivation of a critical speed difference and
of a characteristic patch size depending on only two simple model parameters and
on a diffusion constant. If the speed difference between upper and lower waterlayers
exceeds the critical value, the uniform distribution decays into patches of a charac-
teristic size. In the model, a constancy of that speed difference is assumed. This is
never fulfilled in nature but the instability proof is not devalued by that complication.

An estimation of the characteristic patch size gives numerical values in the order
of 10 km. These quite high values should not discourage us because the model is
based on very simple Lotka—Volterra-like equations which are far from describing
the real plankton. Furthermore the zooplankton may have a social behaviour that
counteracts the diffusion.

Finally, other patch-creating mechanisms (e.g. inhomogeneity of the vertical
turbulences, schools of fish), cannot be neglected. In a previous paper (Ebenhtsh
1979), a ‘dynamic patchiness model’ is presented, in which several such mechanisms
are presumed to act together. The cooperative action of different patch creating
mechanisms makes it hard to ‘prove’ by observation the action of any one of these
mechanisms individually. The satisfying result of the estimation of the critical velocity
difference and of the characteristic patch size is an indication of the validity of the
patch creation conception presented here. A suitable experimental check, however,
would require detailed simultaneous measurements of the plankton densities, of the
velocity profile and of the vertical migration amplitude.

An interesting extension of the model would be the assumption of a food-depen-
dent amplitude of the vertical migration. This would lead to a feedback system with
quite new stability properties. The zooplankton could be prevented from drifting
into areas of poor food supply.

The vertical migration of the zooplankton seems to be a mechanically simple
process (orientation on a light intensity reference level), with surprising consequences.
In addition to the often discussed functions (e.g. protection against being seen,

G2
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Figure 6. Amplification of a local distortion in the plankton distribution. Given are the
deviations of the zooplankton density from the steady state value in arbitrary units.
The curves follow from above in 1 day intervals. The start curve contains a local
reduction of the zooplankton. The shift of the distortions in horizontal directions is
due to the horizontal transport of the zooplankton in the decper waterlayers relative
to the surface water. The horizontal axis (distance) is divided into intervals of length
L (e=1 and A=0-5, see Fig. 1).

energy conservation), it may serve as a tactic for finding food (Isaac et al. 1974),
and it may lead to a ‘granulation” of the density distribution which is important for
feeding and breeding of fish.
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