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On ultrasonic MTI measurement of velocity profiles in blood flowt
BJORN A. J. ANGELSEN}§ and KJELL KRISTOFFERSEN{}
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A theoretical analysis of Doppler frequency estimators proposed to be used in
ultrasonic MTI measurements of velocity profiles in blood flow, is given. The
estimators give an output in form of a single analogue voliage and the relation
of the output to the Doppler spectrum is discussed. Three new estimators are
also proposed. All estimators work fairly well for narrow-band Doppler spectra,
but errors are found when broad-band spectra are present.

1. Introduction

The moving target indicator (MTI) (Skolnik 1962) is used for detecting weak
radar echoes from moving objects in a background of strong clutter echoes from
stationary targets. The basic principle is to compare the echoes from two following
pulses and detect the change in the signal:

(1) By subtracting the echoes of one pulse from the echoes of the next, the echoes
from stationary targets are removed. This method is called fixed target
cancelling (FTC).

(ii) After the echoes from fixed targets have been removed, the phase change
between the echoes of adjacent pulses can be compared, in order to determine
the velocity of moving objects (Doppler effect).

More advanced FTCs than the one above can be constructed in order to reject
signals from targets with velocity below a certain limit (comb filters) (Skolnik 1962).

Recently there has been some interest in applying this method for estimating
velocity profiles in blood vessels by comparing the backscattered signal from ultra-
sonic pulses (Grandchamp 1975, Brandestini 1976, 1977). Although the basic prin-
ciple is simple and appealing, it requires storage of the echoes, which complicates its
experimental application. In biological measurements the scattered signal from blood
can be as much as 60 dB below the signal scattered from slowly moving tissue.
Therefore a higher order comb filter is necessary for FTC, which requires storage of
the echoes from several pulses. The FTC problem is, however, not considered here.

The simplest Doppler frequency estimator is a phase comparison between the
echoes from adjacent pulses. This works well when a single Doppler frequency is
present. In blood velocity measurements the scatterers are distributed in space with a
space dependent velocity field. Owing to the limited space resolution (minimum
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pulselength, wave diffraction) in such measurements, the Doppler signal from a
range cell will be composed of a spectrum of frequencies. It is then interesting to
know the response of phase estimators to such signals.

In this paper we derive the expected value of Doppler frequency estimators
proposed for the use in MTI ultrasonic blood velocity measurements. We also give
three new estimators. It is discussed how the expected values for the different esti-
mators relate to the Doppler spectrum.

2. Formulation of the problem

Let a train of short ultrasonic pulses with angular r.f. frequency w, and repetition
frequency f,=1/T, be transmitted towards the blood vessel. w,=2=f, is the angular
repetition frequency of the pulses. The received signal from the kth pulse may be
written as (Angelsen 1980)

elz)=Re {£(2) exp (i2ko2)} (1)

where z is the depth of the range cell from which the signal is received and ko=
wofc. ¢ is the velocity of sound.

z=}ct @

where ¢ is the elapsed time between pulse transmission and echo arrival. The complex
envelope X, may be split into the in phase, x4, and quadrature, y,, components by

2(2)=x(z) +iy(2) (3)
We also note that we can write
el(z)=Vi(z) cos [2koz+$i(2)] “4)
where
Vi=|%| and = /% (%)

%(z) with z as a fixed depth parameter can be considered as samples of the continuous
Doppler signal £,(z) from the range cell at depth z. We consider time invariant
velocity fields. ®, can be obtained as the integral of uncorrelated contributions over
the volume of scatterers. It is, therefore, a zero mean stationary gaussian process
(Angelsen 1980). Thus all available information in £ about the velocity field is con-
tained in the power spectrum Ggiw, z) of £ or its autocorrelation function Ry, z).
In the following we shall omit z from our formulas where this is not confusing,
assuming that we are studying the signal for a fixed depth z. We then have

Reo(7)=2R(7) + inr(")) (6)
where the correlation function R,,(7) is defined as
Rp(r)={p™(t)g(t +71)>

* denotes complex conjugation and {(-)> denotes ensemble expectation. We have
used that R,,=R,, and R,,= — R,, for e, to be stationary.
The power spectrum of £, is given by the Fourier transform of Ry, i.e.

Gew)= _jwdr Rio(r) exp (—iwr)
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which gives
Geg(@)=2{G ) +iG,,(w)}

Grn@) =HGae(w) + Gae —w)} | @)

1
Gyp(w)= 2 {Gee(0)— G —w)}

R, is an even, while R,, is an odd, function in =. This is equivalent to G, (—w)=
G,{w), while G, (—w)= — G,(w) which is obtained from eqn. (7). These properties
will be used in the following.

In many cases Gg, is so narrow-band that it can be represented by a single fre-
quency; e.g. the mean frequency given by

J o 0Gu@) g ©) ko)

[ do o) | @ R

ﬂ-"—

®)

where the last equality is obtained from the even and odd properties of R,, and R,
respectively. The instrumentation for single frequency estimators is much simpler
than complete spectral estimation and has therefore been used so far (Grandchamp
1975, Brandestini 1976, 1977).

In the following section we shall derive expectation values for proposed estimators
and discuss how they relate to @. Three new estimators are also given.

3. Survey of single frequency estimators
3.1. High freguency storage

We here discuss two estimators which work directly on the received echoes and
thus require storage of the signal at high frequencies (1-10 MHz). In the following
the echoes from tissue are considered to have been removed. The first estimator to be
discussed has been proposed by Grandchamp (1975). The structure of the estimator
is given in Fig. 1. The Hilbert transform é, of ¢ is given by

é=Im {& exp (i2koz)} ©)
Fact 1
The expected value of the estimator given in Fig. 1 is
1 . _, R(T5)
—_ -1
wy T sin R.0) (10)
Proof

If x and y are two zero mean gaussian variables, the following relation, which was
first obtained by Van Vleck, holds (Papoulis 1965)

2
{sgnxsgny)=-~sin~!p (11)
ku

E2
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Hilbert M
————=
Transform 1
Signal ™
efz) Averager | | 2T, —owl(z)
a1
Delay Tg [ ;

Figure 1. Doppler frequency estimator proposed by Grandchamp (1975).

where
pm XV
V()

1 x>0
sgn x=

-1 x<0

and

Using this result we obtain

oy = {sgn é, sgn e, }=L si ~1 881
7k i/ &

since stationarity implies {e,_;2>={e2)>.
Now from eqns. (1) and (9) we obtain

1
{é2)ex- I(Z)>=4_i {[Rq exp (i2koz) — %* exp (—i2koz)][£ -y exp (i2k,z)
+ %5 * exp (—i2ko2) D>

1
=4_I' {(Ry— 1 %% exp (i8koz) — (K- 1 Xi*D
+ (Kp— 1™ KD — (R 1™ £F) exp (—idko2)}

By using eqn. (6) and the fact that R,.=R,, are even functions while R,,= —R,,
are odd, we can show by straightforward calculation that

Gr-1d =(%- 1* fﬁ) =0
Rur™ 20> = Re (1)
Cu—12™) = Ree™(T5)
From this we obtain
{bey-1>=R(T)

In the same way we show that {e,2>= R,,(0) and the proof is completed.

Vi(z) in eqgn. (4) is low-pass and >0. Thus by far most of the zero crossings of
ez) are given by the cos term in egn. (4). The phase change A,=d¢;—¢;_1 can
then be obtained from the zero crossings of the e,(z) and e,_ ,(z). Let z, be defined by

2kozy +p—1(z1) =72 (12)
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Then z, is a zero for e,_,(z). For the echoes from the following pulse, ¢(z), this
zero has moved to z, since ¢, has changed

2kozy 4+ di(z2) =72 (13)

From these two equations
dul(22) = bu—1(21) =2k (2, — 22) (14)

z; and z, are so close that due to the low-pass nature of ¢,, we have ¢ (z,) = ¢(z,).

Brandestini (1976) has proposed an estimator which uses the zero crossings of
e(z) and ¢,_,(z) to estimate A, in a way basically given by eqn. (14). However, due
to the periodicity of cos x,|A;| > will be mapped into the region [—, w] by adding
or subtracting multiples of 2. This is demonstrated by the M function in Fig. 3.
The expected value of the estimator will then be

1
“’2=? (M(&k)> (15)

The structure of this estimator is given in Fig. 2. The phase detection is performed
by the use of two D-type flip-flops.

Phase detector

Signal
Averager —ow(2)

sgn ak[Z)

Delay Ts

Figure 2. Estimator proposed by Brandestini (1976, 1977).

mia)
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Figure 3. Mapping function of the phase detector shown in Fig. 2.
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Fact 2
The estimator in Fig. 2 has the following expected value
1
W= =i do sgn (16)
5
l,lr= LRax(Ts)
Ag is given in eqn. (21).
Proof
Since stationarity is assumed, we obtain
(M(ﬁk)>=<M(¢2)l¢1=0> 17

Now, by Bayes rule
p¢|’ é;( i ¢2)
p¢l(¢l)

From the expressions of py, and py 4, given in Davenport and Root (1958, p. 161,
eqn. (8.92) and p. 164, eqn. (8.106)), we obtain

Poalo (P2 [¢1)=

f($2—¢) $el—m, 7]
Poslo($2|0)= (18)
0 otherwise
where
'l‘ = L-Rﬁ'(:rs)
and

_A”z V(1l—a?)—acos™!

fx) 2 (1 —a2)2

= — [Pxxz(j.'s)_l" nyz(n)]”z Ccos X 5 (19)

AVZ=1 _Pxxz(Ts) - nyz(Ts)

Pxx(Ts) = Rx.x( Ts)l; Rxx(o)’ ny(n) = ny(n)f Rxx(o) J

We note that f{—x)=f(x+2a)=f(x), i.e. f is periodic with period 27. A typical
plot of f is shown in Fig. 4.

The probability density above is defined for ¢,€[—m, 7]. ¢, is the argument of
the phasor £,, and when we follow %, continuously, values of ¢, outside this region
occur. These values should be mapped into [—, ] by adding multiples of 2.
This is the same mapping as shown in Fig. 3. By the way ¢, enters into eqn. (18) we
see that the M-mapping is automatically taken care of.

We are now in a position to calculate

M@ $i=05= [ b bafi2—4)

—i1 1§ e
'

- -
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f{x)

-om - o " 2m

Figure 4. Typical plot of the conditional phase angle probability density function f(x).

By straightforward manipulation and taking into account the periodicity of f we obtain
(M($,)| 1 =0>=y—2mA, sgn (20)

do= | dxfix) @1)
paar]
This completes the proof.

Comment

The last term in egns. (16) and (20) arises from the ambiguity of the zero crossings
of the process e,. If A==+ 8 then it is mapped onto —=+ & by subtracting —2a.
This is accounted for by this last term.

3.2. Low-pass storage

The above two estimators work on the r.f. signal and therefore require storage of
high frequency signals. In order to use digital storage or analogue storage in charge
transfer devices it would be desirable to work directly on the information process
%:(2), which is low-pass.

Brandestini (1977) has proposed to use a time discrete zero crosser (TDZC) by
using the average number of polarity changes per unit time of x,(z) (as a function
of k for fixed z), for the discrete changes of interest. For a single frequency signal this
estimator evidently works well when w<w,/2. It is, however, non-directive (i.e. it
does not give the sign of the Doppler shift) which to some extent may be overcome by
certain tricks (Brandestini 1977).

The expected value of the TDZC may be described by the following equation:

wiy=

"'; ¢|sgn X, —sgn X,_y | (22)

Let N; be the number of zero crossings of a process x, during the time interval 7.
Then it is known that (Papoulis 1965)

€ 1/2
l <N >_ 1 _“'!d(ﬂ (uZGxx(‘-’-’) _l ( M_R,”‘(O})IIZ (23)
T ' i _‘Jl d(u G x(‘”) T R”t((])

i.e. twice the r.m.s. average frequency of the spectrum. For the TDZC the following
result holds.
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Fact 3
The TDZC has the following expected value
= | l -1 RXX(TS)
ws=z-c0s™! 2o (24)
Proof

<|sgn Xy —sgn x,_ 1 |>=<]|sgn x,—sgn x, |
w o

0 o
=2I dx, I dxszlx;(xnxz)""zl dx, I A% P x5 (X1, X2)
- 1] 0 -

=4I dxl (.! dePx.x;('_xl: Ig)
[

Then by direct calculation for gaussian variables which is given in the Appendix, we
obtain

2 _,RJ(T)
(|sgn x, —sgn x, |>=;°05 ! R.0)

and eqn. (24) is proved.

Comment

The TDZC gives a different expected value than the continuous zero crosser.
The reason for this is that for signals with non-zero bandwidth there is a non-zero
probability that there is more than one zero crossing between two adjacent samples.
This occurs although the sampling frequency is greater than twice the maximum
frequency of the signal which is the requirement for complete reconstruction of the
signal. For a signal with non-zero bandwidth the TDZC will give an output which is

less than the angular r.m.s. frequency of the signal.
An estimator which gives the same expected value as the TDZC can be obtained

from the following equation

3= =21 1D (25)

wy == §1

Ts 2<lxl‘.|>

This estimator utilizes the normalized beat amplitude between the direct and the
delayed signal. For practical estimators the ensemble expectations in eqns. (22) and
(25) are obtained as time averages.

Fact 4
The expectation value of the beat amplitude estimator given in eqn (25) is the same
as for the TDZC.

Proof
Assuming zero mean gaussian variables, we have

== [[ 2] [ 2wao- Rt

I x-1 |>=\/(§ Xk 12>)=\/(§ Rxx(o))
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From this we obtain
1 . 1—p. (7)) 1
w4=i sin—1 \/[%] "—'Fs cos~? Pxx(Ts)

which completes the proof.
An estimator operating on %, can be based on the following approximation to
eqn. (8) (R,(0)=0):

Ri0) 1 Rof(T9) _ 1 Rgnxo(T3)
R0) " T, Ral0) Ty Ry ugn 5(0)

(26)

The last equality follows from Bussgangs relation which states that for two zero
mean gaussian variables x and y (Papoulis 1965)

(v sgn x>= \/ ( ) = @7

If £, =exp (iwt), i.e. a single frequency signal, we obtain

1 R(T)) l in o,
T.R,0 T."

This indicates that the following expression should be a more useful basis for an
estimator

w“_ sin™! ——— S 2107 —l sin~1! M

T, (.P'f) T, Ayl

For a single frequency signal with & <w,/4 we then have ws=w. We also note that
this is the same expression as that given in eqn. (10), and this estimator therefore
gives the same result as estimator 1.

From the sin™" law of gaussian variables, eqn. (11), we also note that the follow-
ing expression can be used as a basis for an estimator

(28)

1 Ty
‘ﬂe—“ (88N X35 8N Y} =— sin~! Ro(T)

a7, 75" R0) @)

From eqn. (11) we also obtain the following result (Pawula 1968)

d 2 R, 2
(sen 0| eyt [} -2 2202 (30)

which suggests an estimator based on the following equation

w-;—— {[sgn yx—sgn y,- ] sgn x_ > (31)

Since R,y(0)=0, ws=w,, but the formula in eqn. (31) suggests a different realization
than that in eqn. (29). In order to minimize the amount of storage required, it is
convenient to replace the term sgn x,_; with sgn x, in eqn. (31). This operation
only results in a change of sign in the expectation value.

In view of Figs. 1 and 2 a realization of these last five estimators should be evident.
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4. Discussion and examples

The estimators 1, 5, 6, and 7 give identical results while estimators 2, 3, and 4
differ from the rest of the group. Although the formulas are identical, the basic
expressions, eqns. (10), (28), (29) and (31) suggest different implementations. Esti-
mator 2 requires storage of the r.f. signal while estimator 1 only requires storage of
samples of the r.f. signal (1-10 MHz) for estimation at discrete depths. The rest of
the estimators require storage of a low-pass signal (<300 kHz). For all estimators it
is required to store the sign of the signal only, which may be performed by a | bit
digital shift register. However, when the r.f. signal is stored, this requires a large
number of bits in the register, which emphasizes analogue storage in this case (acoustic
delay line). All estimators require storage of one echo only. Estimators 4 and 5
require a division to normalize for signal amplitude.

All estimators, except 3 and 4, are directional, i.e. the polarity of the output give
the sign of the Doppler shift. For a single frequency Doppler signal all estimators
give an unbiased estimate, provided its frequency is below a limit. This limit is w/2
for estimators 2, 3 and 4. while it is /4 for estimators 1, 5, 6 and 7. The estimator
outputs for a single frequency signal are shown in Fig. 5.

— — — — Estimator 1,5,6,7
Estimator 2
= + « « Esgtimator 3,4

Figure 5. Estimator outputs for single frequency Doppler signal output.

For the case of non-zero signal bandwidth we study the following spectrum
which is indicated in Fig. 6:

Gi(w)=Glo—a) (32)

where @ is the mean angular frequency of G, defined in eqn. (8) and G() is low-pass.
The autocorrelation function of £ will be

Ry(r)=exp (iwt)R(r) (33)

where R(r)=R.(r)+iR,(7) is the inverse Fourier transform of G(w). The subscripts
e and o, indicate that the functions are even and odd respectively. From egns. (6)
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Gy (w)

o w

Figure 6. Typical power spectrum of the Doppler signal.

and (33) we obtain
Rei(7)=4R(z) cos [ar+ 9(7)]}
(34)

Ry(7)=1R(7) sin [wr + 6(7)]

where R=|R| and 6=/ R. The output of estimators 1, 5, 6 and 7 will, for this signal,
be

w1, 5.6, 1=m sin=" {p(T}) sin [&T,+6(T;)]}
T (35)

p(T5)=R(T,)/R(0)
Note that if G(—w)=G(w), i.e. G¢z(w) symmetric around @, Ry(r)=0, which implies
6=0.

If the bandwidth of G(w) is small compared to e,, p(7,)~ 1 and 8(T,)=0 so that
we obtain

wy, 5,6, TNG

For estimator 2 we obtain from egn. (16) with the above signal spectrum
1 1
wy =t o= O(T)— e, Ao sgn [a+;9(?;)] (36)

Ay must be determined numerically. For a narrow-band signal 620 and A4,~0
which give

wzﬁcﬁ

For estimators 3 and 4 we get the following output according to eqn. (24)
1
@3, s =7 cos™* {p(T;) cos [aT, +H(T,)]} 37
8

Again we have as for the above estimators that when £ is narrow-band

wz. 4%5)
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Figure 7. Expectation value of the estimators as a function of the mean angular frequency
of the power spectrum, (@) B=0-2a; (b) B=2&.

When T,—0, the argument of cos™! in eqn. (37) tends to 1 and cos™* g= 4/2(1 —¢),
g <1, which give (R,,(0)=0):

lim W3, 4= [—Rxx(o)/Rxx(O)]”z=‘”r.m.s.
Tim0
i.e. the same value as for the continuous zero crosser. The reason for this is that
when @7, becomes small, the probability of multiple zero crossings in an interval of
length T, tends towards zero.
To get an idea of the magnitude of the difference between the estimator outputs
and the average Doppler frequency we perform numerical calculations for the
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following spectrum:

4n | |-cB
— w —

Gw)=1{ B = (38)
0 otherwise

with the following two bandwidths
B, =02, B,=2&

For this spectrum we obtain
. Br

sin —

R(r)=2

B (39)

2

We note that since the spectrum is symmetric, 6=0. The results for the different
estimators are shown in Fig. 7.

In both cases the performance of estimator 2 is clearly superior to that of esti-
mators 1, 5, 6 and 7. When B= B,, the bias of estimator 2 is small as long as the maxi-
mum frequency wy of G g(e) is less than the Nyquist frequency. In the broad-band
case, however, the bias of w, is quite large, even for wy well below w,/2. The reason
for this is easily understood from Fig. 8, which shows plots of f(x) for two different
bandwidths. It is apparent that f(x) gets broader when B increases. When & is a
constant, this results in a larger 4, which accounts for the increasing bias of esti-
mator 2 when the relative bandwidth B/a increases,

The bias of the non-directive estimators 3 and 4 is also negligible when G;; is
narrow-band. When B=B, and & is small, this group overestimates with about
159, but the bias decreases with increasing @, passing through zero when o=
wof4. We see from eqn. (37) that this is valid invariant of B for 8=0. Because of the
non-directivity of these estimators, the error does not increase drastically as wy
passes through /2.

fix}
1.4 4
1.2 -
1.0 1
0.8 A
06 ¢
0.4 4

0.2

Figure 8. Dependence of f(x) upon the bandwidth of the power spectrum.
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Appendix
The second-order gaussian probability density is given by

- 1 = x12+x22—2px1x2
Px,x,(xu xz)—m p 2027 /(1—p?)

0'2 — Rx'x‘(O)
p= 'Rxlx,(:rg)]Rx‘x‘(O), i= l, 2

We here give the details of the integration for the proof of eqn. (24). By changing
variables of integration

Xx;=rcosf
X,=rsin 8
we obtain

o -]
I=4 I dxl I dxi_pxixg(_xl.!xZ)
V] V]
2 = 1+ psin 260
=——— | d de —_rd i
wo’«/(l—pz):! ”1! e { =y ey
_24/(1—-pH)2  db
H T o 1+psin26

By substituting z=tan 8, we obtain

0

A=

2= -1 p 2
I_;I:E e V(- 2)]—’7(:08 .

which completes the proof.

2 @ d 2 ztp
I_ﬂ/(l-P’)!l_l_[ 2+p] i (\/(1—91))
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